]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/mm.h
mm/page_alloc.c: calculate 'available' memory in a separate function
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24
25 struct mempolicy;
26 struct anon_vma;
27 struct anon_vma_chain;
28 struct file_ra_state;
29 struct user_struct;
30 struct writeback_control;
31 struct bdi_writeback;
32
33 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
34 extern unsigned long max_mapnr;
35
36 static inline void set_max_mapnr(unsigned long limit)
37 {
38 max_mapnr = limit;
39 }
40 #else
41 static inline void set_max_mapnr(unsigned long limit) { }
42 #endif
43
44 extern unsigned long totalram_pages;
45 extern void * high_memory;
46 extern int page_cluster;
47
48 #ifdef CONFIG_SYSCTL
49 extern int sysctl_legacy_va_layout;
50 #else
51 #define sysctl_legacy_va_layout 0
52 #endif
53
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57
58 #ifndef __pa_symbol
59 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
60 #endif
61
62 /*
63 * To prevent common memory management code establishing
64 * a zero page mapping on a read fault.
65 * This macro should be defined within <asm/pgtable.h>.
66 * s390 does this to prevent multiplexing of hardware bits
67 * related to the physical page in case of virtualization.
68 */
69 #ifndef mm_forbids_zeropage
70 #define mm_forbids_zeropage(X) (0)
71 #endif
72
73 extern unsigned long sysctl_user_reserve_kbytes;
74 extern unsigned long sysctl_admin_reserve_kbytes;
75
76 extern int sysctl_overcommit_memory;
77 extern int sysctl_overcommit_ratio;
78 extern unsigned long sysctl_overcommit_kbytes;
79
80 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
83 size_t *, loff_t *);
84
85 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
86
87 /* to align the pointer to the (next) page boundary */
88 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
89
90 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
91 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
92
93 /*
94 * Linux kernel virtual memory manager primitives.
95 * The idea being to have a "virtual" mm in the same way
96 * we have a virtual fs - giving a cleaner interface to the
97 * mm details, and allowing different kinds of memory mappings
98 * (from shared memory to executable loading to arbitrary
99 * mmap() functions).
100 */
101
102 extern struct kmem_cache *vm_area_cachep;
103
104 #ifndef CONFIG_MMU
105 extern struct rb_root nommu_region_tree;
106 extern struct rw_semaphore nommu_region_sem;
107
108 extern unsigned int kobjsize(const void *objp);
109 #endif
110
111 /*
112 * vm_flags in vm_area_struct, see mm_types.h.
113 */
114 #define VM_NONE 0x00000000
115
116 #define VM_READ 0x00000001 /* currently active flags */
117 #define VM_WRITE 0x00000002
118 #define VM_EXEC 0x00000004
119 #define VM_SHARED 0x00000008
120
121 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
122 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
123 #define VM_MAYWRITE 0x00000020
124 #define VM_MAYEXEC 0x00000040
125 #define VM_MAYSHARE 0x00000080
126
127 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
128 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
129 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
130 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
131 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
132
133 #define VM_LOCKED 0x00002000
134 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
135
136 /* Used by sys_madvise() */
137 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
138 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
139
140 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
141 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
142 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
143 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
144 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
145 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
146 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
147 #define VM_ARCH_2 0x02000000
148 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
149
150 #ifdef CONFIG_MEM_SOFT_DIRTY
151 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
152 #else
153 # define VM_SOFTDIRTY 0
154 #endif
155
156 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
157 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
158 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
159 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
160
161 #if defined(CONFIG_X86)
162 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
163 #elif defined(CONFIG_PPC)
164 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
165 #elif defined(CONFIG_PARISC)
166 # define VM_GROWSUP VM_ARCH_1
167 #elif defined(CONFIG_METAG)
168 # define VM_GROWSUP VM_ARCH_1
169 #elif defined(CONFIG_IA64)
170 # define VM_GROWSUP VM_ARCH_1
171 #elif !defined(CONFIG_MMU)
172 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
173 #endif
174
175 #if defined(CONFIG_X86)
176 /* MPX specific bounds table or bounds directory */
177 # define VM_MPX VM_ARCH_2
178 #endif
179
180 #ifndef VM_GROWSUP
181 # define VM_GROWSUP VM_NONE
182 #endif
183
184 /* Bits set in the VMA until the stack is in its final location */
185 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
186
187 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
188 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
189 #endif
190
191 #ifdef CONFIG_STACK_GROWSUP
192 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193 #else
194 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
195 #endif
196
197 /*
198 * Special vmas that are non-mergable, non-mlock()able.
199 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
200 */
201 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
202
203 /* This mask defines which mm->def_flags a process can inherit its parent */
204 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
205
206 /* This mask is used to clear all the VMA flags used by mlock */
207 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
208
209 /*
210 * mapping from the currently active vm_flags protection bits (the
211 * low four bits) to a page protection mask..
212 */
213 extern pgprot_t protection_map[16];
214
215 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
216 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
217 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
218 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
219 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
220 #define FAULT_FLAG_TRIED 0x20 /* Second try */
221 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
222
223 /*
224 * vm_fault is filled by the the pagefault handler and passed to the vma's
225 * ->fault function. The vma's ->fault is responsible for returning a bitmask
226 * of VM_FAULT_xxx flags that give details about how the fault was handled.
227 *
228 * pgoff should be used in favour of virtual_address, if possible.
229 */
230 struct vm_fault {
231 unsigned int flags; /* FAULT_FLAG_xxx flags */
232 pgoff_t pgoff; /* Logical page offset based on vma */
233 void __user *virtual_address; /* Faulting virtual address */
234
235 struct page *cow_page; /* Handler may choose to COW */
236 struct page *page; /* ->fault handlers should return a
237 * page here, unless VM_FAULT_NOPAGE
238 * is set (which is also implied by
239 * VM_FAULT_ERROR).
240 */
241 /* for ->map_pages() only */
242 pgoff_t max_pgoff; /* map pages for offset from pgoff till
243 * max_pgoff inclusive */
244 pte_t *pte; /* pte entry associated with ->pgoff */
245 };
246
247 /*
248 * These are the virtual MM functions - opening of an area, closing and
249 * unmapping it (needed to keep files on disk up-to-date etc), pointer
250 * to the functions called when a no-page or a wp-page exception occurs.
251 */
252 struct vm_operations_struct {
253 void (*open)(struct vm_area_struct * area);
254 void (*close)(struct vm_area_struct * area);
255 int (*mremap)(struct vm_area_struct * area);
256 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
257 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
258 pmd_t *, unsigned int flags);
259 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
260
261 /* notification that a previously read-only page is about to become
262 * writable, if an error is returned it will cause a SIGBUS */
263 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
264
265 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
266 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
267
268 /* called by access_process_vm when get_user_pages() fails, typically
269 * for use by special VMAs that can switch between memory and hardware
270 */
271 int (*access)(struct vm_area_struct *vma, unsigned long addr,
272 void *buf, int len, int write);
273
274 /* Called by the /proc/PID/maps code to ask the vma whether it
275 * has a special name. Returning non-NULL will also cause this
276 * vma to be dumped unconditionally. */
277 const char *(*name)(struct vm_area_struct *vma);
278
279 #ifdef CONFIG_NUMA
280 /*
281 * set_policy() op must add a reference to any non-NULL @new mempolicy
282 * to hold the policy upon return. Caller should pass NULL @new to
283 * remove a policy and fall back to surrounding context--i.e. do not
284 * install a MPOL_DEFAULT policy, nor the task or system default
285 * mempolicy.
286 */
287 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
288
289 /*
290 * get_policy() op must add reference [mpol_get()] to any policy at
291 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
292 * in mm/mempolicy.c will do this automatically.
293 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
294 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
295 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
296 * must return NULL--i.e., do not "fallback" to task or system default
297 * policy.
298 */
299 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
300 unsigned long addr);
301 #endif
302 /*
303 * Called by vm_normal_page() for special PTEs to find the
304 * page for @addr. This is useful if the default behavior
305 * (using pte_page()) would not find the correct page.
306 */
307 struct page *(*find_special_page)(struct vm_area_struct *vma,
308 unsigned long addr);
309 };
310
311 struct mmu_gather;
312 struct inode;
313
314 #define page_private(page) ((page)->private)
315 #define set_page_private(page, v) ((page)->private = (v))
316
317 /*
318 * FIXME: take this include out, include page-flags.h in
319 * files which need it (119 of them)
320 */
321 #include <linux/page-flags.h>
322 #include <linux/huge_mm.h>
323
324 /*
325 * Methods to modify the page usage count.
326 *
327 * What counts for a page usage:
328 * - cache mapping (page->mapping)
329 * - private data (page->private)
330 * - page mapped in a task's page tables, each mapping
331 * is counted separately
332 *
333 * Also, many kernel routines increase the page count before a critical
334 * routine so they can be sure the page doesn't go away from under them.
335 */
336
337 /*
338 * Drop a ref, return true if the refcount fell to zero (the page has no users)
339 */
340 static inline int put_page_testzero(struct page *page)
341 {
342 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
343 return atomic_dec_and_test(&page->_count);
344 }
345
346 /*
347 * Try to grab a ref unless the page has a refcount of zero, return false if
348 * that is the case.
349 * This can be called when MMU is off so it must not access
350 * any of the virtual mappings.
351 */
352 static inline int get_page_unless_zero(struct page *page)
353 {
354 return atomic_inc_not_zero(&page->_count);
355 }
356
357 extern int page_is_ram(unsigned long pfn);
358
359 enum {
360 REGION_INTERSECTS,
361 REGION_DISJOINT,
362 REGION_MIXED,
363 };
364
365 int region_intersects(resource_size_t offset, size_t size, const char *type);
366
367 /* Support for virtually mapped pages */
368 struct page *vmalloc_to_page(const void *addr);
369 unsigned long vmalloc_to_pfn(const void *addr);
370
371 /*
372 * Determine if an address is within the vmalloc range
373 *
374 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
375 * is no special casing required.
376 */
377 static inline int is_vmalloc_addr(const void *x)
378 {
379 #ifdef CONFIG_MMU
380 unsigned long addr = (unsigned long)x;
381
382 return addr >= VMALLOC_START && addr < VMALLOC_END;
383 #else
384 return 0;
385 #endif
386 }
387 #ifdef CONFIG_MMU
388 extern int is_vmalloc_or_module_addr(const void *x);
389 #else
390 static inline int is_vmalloc_or_module_addr(const void *x)
391 {
392 return 0;
393 }
394 #endif
395
396 extern void kvfree(const void *addr);
397
398 static inline void compound_lock(struct page *page)
399 {
400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
401 VM_BUG_ON_PAGE(PageSlab(page), page);
402 bit_spin_lock(PG_compound_lock, &page->flags);
403 #endif
404 }
405
406 static inline void compound_unlock(struct page *page)
407 {
408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
409 VM_BUG_ON_PAGE(PageSlab(page), page);
410 bit_spin_unlock(PG_compound_lock, &page->flags);
411 #endif
412 }
413
414 static inline unsigned long compound_lock_irqsave(struct page *page)
415 {
416 unsigned long uninitialized_var(flags);
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 local_irq_save(flags);
419 compound_lock(page);
420 #endif
421 return flags;
422 }
423
424 static inline void compound_unlock_irqrestore(struct page *page,
425 unsigned long flags)
426 {
427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 compound_unlock(page);
429 local_irq_restore(flags);
430 #endif
431 }
432
433 /*
434 * The atomic page->_mapcount, starts from -1: so that transitions
435 * both from it and to it can be tracked, using atomic_inc_and_test
436 * and atomic_add_negative(-1).
437 */
438 static inline void page_mapcount_reset(struct page *page)
439 {
440 atomic_set(&(page)->_mapcount, -1);
441 }
442
443 static inline int page_mapcount(struct page *page)
444 {
445 VM_BUG_ON_PAGE(PageSlab(page), page);
446 return atomic_read(&page->_mapcount) + 1;
447 }
448
449 static inline int page_count(struct page *page)
450 {
451 return atomic_read(&compound_head(page)->_count);
452 }
453
454 static inline bool __compound_tail_refcounted(struct page *page)
455 {
456 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
457 }
458
459 /*
460 * This takes a head page as parameter and tells if the
461 * tail page reference counting can be skipped.
462 *
463 * For this to be safe, PageSlab and PageHeadHuge must remain true on
464 * any given page where they return true here, until all tail pins
465 * have been released.
466 */
467 static inline bool compound_tail_refcounted(struct page *page)
468 {
469 VM_BUG_ON_PAGE(!PageHead(page), page);
470 return __compound_tail_refcounted(page);
471 }
472
473 static inline void get_huge_page_tail(struct page *page)
474 {
475 /*
476 * __split_huge_page_refcount() cannot run from under us.
477 */
478 VM_BUG_ON_PAGE(!PageTail(page), page);
479 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
480 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
481 if (compound_tail_refcounted(compound_head(page)))
482 atomic_inc(&page->_mapcount);
483 }
484
485 extern bool __get_page_tail(struct page *page);
486
487 static inline void get_page(struct page *page)
488 {
489 if (unlikely(PageTail(page)))
490 if (likely(__get_page_tail(page)))
491 return;
492 /*
493 * Getting a normal page or the head of a compound page
494 * requires to already have an elevated page->_count.
495 */
496 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
497 atomic_inc(&page->_count);
498 }
499
500 static inline struct page *virt_to_head_page(const void *x)
501 {
502 struct page *page = virt_to_page(x);
503
504 return compound_head(page);
505 }
506
507 /*
508 * Setup the page count before being freed into the page allocator for
509 * the first time (boot or memory hotplug)
510 */
511 static inline void init_page_count(struct page *page)
512 {
513 atomic_set(&page->_count, 1);
514 }
515
516 void put_page(struct page *page);
517 void put_pages_list(struct list_head *pages);
518
519 void split_page(struct page *page, unsigned int order);
520 int split_free_page(struct page *page);
521
522 /*
523 * Compound pages have a destructor function. Provide a
524 * prototype for that function and accessor functions.
525 * These are _only_ valid on the head of a compound page.
526 */
527 typedef void compound_page_dtor(struct page *);
528
529 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
530 enum compound_dtor_id {
531 NULL_COMPOUND_DTOR,
532 COMPOUND_PAGE_DTOR,
533 #ifdef CONFIG_HUGETLB_PAGE
534 HUGETLB_PAGE_DTOR,
535 #endif
536 NR_COMPOUND_DTORS,
537 };
538 extern compound_page_dtor * const compound_page_dtors[];
539
540 static inline void set_compound_page_dtor(struct page *page,
541 enum compound_dtor_id compound_dtor)
542 {
543 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
544 page[1].compound_dtor = compound_dtor;
545 }
546
547 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
548 {
549 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
550 return compound_page_dtors[page[1].compound_dtor];
551 }
552
553 static inline unsigned int compound_order(struct page *page)
554 {
555 if (!PageHead(page))
556 return 0;
557 return page[1].compound_order;
558 }
559
560 static inline void set_compound_order(struct page *page, unsigned int order)
561 {
562 page[1].compound_order = order;
563 }
564
565 #ifdef CONFIG_MMU
566 /*
567 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
568 * servicing faults for write access. In the normal case, do always want
569 * pte_mkwrite. But get_user_pages can cause write faults for mappings
570 * that do not have writing enabled, when used by access_process_vm.
571 */
572 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
573 {
574 if (likely(vma->vm_flags & VM_WRITE))
575 pte = pte_mkwrite(pte);
576 return pte;
577 }
578
579 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
580 struct page *page, pte_t *pte, bool write, bool anon);
581 #endif
582
583 /*
584 * Multiple processes may "see" the same page. E.g. for untouched
585 * mappings of /dev/null, all processes see the same page full of
586 * zeroes, and text pages of executables and shared libraries have
587 * only one copy in memory, at most, normally.
588 *
589 * For the non-reserved pages, page_count(page) denotes a reference count.
590 * page_count() == 0 means the page is free. page->lru is then used for
591 * freelist management in the buddy allocator.
592 * page_count() > 0 means the page has been allocated.
593 *
594 * Pages are allocated by the slab allocator in order to provide memory
595 * to kmalloc and kmem_cache_alloc. In this case, the management of the
596 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
597 * unless a particular usage is carefully commented. (the responsibility of
598 * freeing the kmalloc memory is the caller's, of course).
599 *
600 * A page may be used by anyone else who does a __get_free_page().
601 * In this case, page_count still tracks the references, and should only
602 * be used through the normal accessor functions. The top bits of page->flags
603 * and page->virtual store page management information, but all other fields
604 * are unused and could be used privately, carefully. The management of this
605 * page is the responsibility of the one who allocated it, and those who have
606 * subsequently been given references to it.
607 *
608 * The other pages (we may call them "pagecache pages") are completely
609 * managed by the Linux memory manager: I/O, buffers, swapping etc.
610 * The following discussion applies only to them.
611 *
612 * A pagecache page contains an opaque `private' member, which belongs to the
613 * page's address_space. Usually, this is the address of a circular list of
614 * the page's disk buffers. PG_private must be set to tell the VM to call
615 * into the filesystem to release these pages.
616 *
617 * A page may belong to an inode's memory mapping. In this case, page->mapping
618 * is the pointer to the inode, and page->index is the file offset of the page,
619 * in units of PAGE_CACHE_SIZE.
620 *
621 * If pagecache pages are not associated with an inode, they are said to be
622 * anonymous pages. These may become associated with the swapcache, and in that
623 * case PG_swapcache is set, and page->private is an offset into the swapcache.
624 *
625 * In either case (swapcache or inode backed), the pagecache itself holds one
626 * reference to the page. Setting PG_private should also increment the
627 * refcount. The each user mapping also has a reference to the page.
628 *
629 * The pagecache pages are stored in a per-mapping radix tree, which is
630 * rooted at mapping->page_tree, and indexed by offset.
631 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
632 * lists, we instead now tag pages as dirty/writeback in the radix tree.
633 *
634 * All pagecache pages may be subject to I/O:
635 * - inode pages may need to be read from disk,
636 * - inode pages which have been modified and are MAP_SHARED may need
637 * to be written back to the inode on disk,
638 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
639 * modified may need to be swapped out to swap space and (later) to be read
640 * back into memory.
641 */
642
643 /*
644 * The zone field is never updated after free_area_init_core()
645 * sets it, so none of the operations on it need to be atomic.
646 */
647
648 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
649 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
650 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
651 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
652 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
653
654 /*
655 * Define the bit shifts to access each section. For non-existent
656 * sections we define the shift as 0; that plus a 0 mask ensures
657 * the compiler will optimise away reference to them.
658 */
659 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
660 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
661 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
662 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
663
664 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
665 #ifdef NODE_NOT_IN_PAGE_FLAGS
666 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
667 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
668 SECTIONS_PGOFF : ZONES_PGOFF)
669 #else
670 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
671 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
672 NODES_PGOFF : ZONES_PGOFF)
673 #endif
674
675 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
676
677 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
678 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
679 #endif
680
681 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
682 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
683 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
684 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
685 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
686
687 static inline enum zone_type page_zonenum(const struct page *page)
688 {
689 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
690 }
691
692 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
693 #define SECTION_IN_PAGE_FLAGS
694 #endif
695
696 /*
697 * The identification function is mainly used by the buddy allocator for
698 * determining if two pages could be buddies. We are not really identifying
699 * the zone since we could be using the section number id if we do not have
700 * node id available in page flags.
701 * We only guarantee that it will return the same value for two combinable
702 * pages in a zone.
703 */
704 static inline int page_zone_id(struct page *page)
705 {
706 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
707 }
708
709 static inline int zone_to_nid(struct zone *zone)
710 {
711 #ifdef CONFIG_NUMA
712 return zone->node;
713 #else
714 return 0;
715 #endif
716 }
717
718 #ifdef NODE_NOT_IN_PAGE_FLAGS
719 extern int page_to_nid(const struct page *page);
720 #else
721 static inline int page_to_nid(const struct page *page)
722 {
723 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
724 }
725 #endif
726
727 #ifdef CONFIG_NUMA_BALANCING
728 static inline int cpu_pid_to_cpupid(int cpu, int pid)
729 {
730 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
731 }
732
733 static inline int cpupid_to_pid(int cpupid)
734 {
735 return cpupid & LAST__PID_MASK;
736 }
737
738 static inline int cpupid_to_cpu(int cpupid)
739 {
740 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
741 }
742
743 static inline int cpupid_to_nid(int cpupid)
744 {
745 return cpu_to_node(cpupid_to_cpu(cpupid));
746 }
747
748 static inline bool cpupid_pid_unset(int cpupid)
749 {
750 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
751 }
752
753 static inline bool cpupid_cpu_unset(int cpupid)
754 {
755 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
756 }
757
758 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
759 {
760 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
761 }
762
763 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
764 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
765 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
766 {
767 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
768 }
769
770 static inline int page_cpupid_last(struct page *page)
771 {
772 return page->_last_cpupid;
773 }
774 static inline void page_cpupid_reset_last(struct page *page)
775 {
776 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
777 }
778 #else
779 static inline int page_cpupid_last(struct page *page)
780 {
781 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
782 }
783
784 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
785
786 static inline void page_cpupid_reset_last(struct page *page)
787 {
788 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
789
790 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
791 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
792 }
793 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
794 #else /* !CONFIG_NUMA_BALANCING */
795 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
796 {
797 return page_to_nid(page); /* XXX */
798 }
799
800 static inline int page_cpupid_last(struct page *page)
801 {
802 return page_to_nid(page); /* XXX */
803 }
804
805 static inline int cpupid_to_nid(int cpupid)
806 {
807 return -1;
808 }
809
810 static inline int cpupid_to_pid(int cpupid)
811 {
812 return -1;
813 }
814
815 static inline int cpupid_to_cpu(int cpupid)
816 {
817 return -1;
818 }
819
820 static inline int cpu_pid_to_cpupid(int nid, int pid)
821 {
822 return -1;
823 }
824
825 static inline bool cpupid_pid_unset(int cpupid)
826 {
827 return 1;
828 }
829
830 static inline void page_cpupid_reset_last(struct page *page)
831 {
832 }
833
834 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
835 {
836 return false;
837 }
838 #endif /* CONFIG_NUMA_BALANCING */
839
840 static inline struct zone *page_zone(const struct page *page)
841 {
842 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
843 }
844
845 #ifdef SECTION_IN_PAGE_FLAGS
846 static inline void set_page_section(struct page *page, unsigned long section)
847 {
848 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
849 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
850 }
851
852 static inline unsigned long page_to_section(const struct page *page)
853 {
854 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
855 }
856 #endif
857
858 static inline void set_page_zone(struct page *page, enum zone_type zone)
859 {
860 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
861 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
862 }
863
864 static inline void set_page_node(struct page *page, unsigned long node)
865 {
866 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
867 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
868 }
869
870 static inline void set_page_links(struct page *page, enum zone_type zone,
871 unsigned long node, unsigned long pfn)
872 {
873 set_page_zone(page, zone);
874 set_page_node(page, node);
875 #ifdef SECTION_IN_PAGE_FLAGS
876 set_page_section(page, pfn_to_section_nr(pfn));
877 #endif
878 }
879
880 #ifdef CONFIG_MEMCG
881 static inline struct mem_cgroup *page_memcg(struct page *page)
882 {
883 return page->mem_cgroup;
884 }
885
886 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
887 {
888 page->mem_cgroup = memcg;
889 }
890 #else
891 static inline struct mem_cgroup *page_memcg(struct page *page)
892 {
893 return NULL;
894 }
895
896 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
897 {
898 }
899 #endif
900
901 /*
902 * Some inline functions in vmstat.h depend on page_zone()
903 */
904 #include <linux/vmstat.h>
905
906 static __always_inline void *lowmem_page_address(const struct page *page)
907 {
908 return __va(PFN_PHYS(page_to_pfn(page)));
909 }
910
911 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
912 #define HASHED_PAGE_VIRTUAL
913 #endif
914
915 #if defined(WANT_PAGE_VIRTUAL)
916 static inline void *page_address(const struct page *page)
917 {
918 return page->virtual;
919 }
920 static inline void set_page_address(struct page *page, void *address)
921 {
922 page->virtual = address;
923 }
924 #define page_address_init() do { } while(0)
925 #endif
926
927 #if defined(HASHED_PAGE_VIRTUAL)
928 void *page_address(const struct page *page);
929 void set_page_address(struct page *page, void *virtual);
930 void page_address_init(void);
931 #endif
932
933 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
934 #define page_address(page) lowmem_page_address(page)
935 #define set_page_address(page, address) do { } while(0)
936 #define page_address_init() do { } while(0)
937 #endif
938
939 extern void *page_rmapping(struct page *page);
940 extern struct anon_vma *page_anon_vma(struct page *page);
941 extern struct address_space *page_mapping(struct page *page);
942
943 extern struct address_space *__page_file_mapping(struct page *);
944
945 static inline
946 struct address_space *page_file_mapping(struct page *page)
947 {
948 if (unlikely(PageSwapCache(page)))
949 return __page_file_mapping(page);
950
951 return page->mapping;
952 }
953
954 /*
955 * Return the pagecache index of the passed page. Regular pagecache pages
956 * use ->index whereas swapcache pages use ->private
957 */
958 static inline pgoff_t page_index(struct page *page)
959 {
960 if (unlikely(PageSwapCache(page)))
961 return page_private(page);
962 return page->index;
963 }
964
965 extern pgoff_t __page_file_index(struct page *page);
966
967 /*
968 * Return the file index of the page. Regular pagecache pages use ->index
969 * whereas swapcache pages use swp_offset(->private)
970 */
971 static inline pgoff_t page_file_index(struct page *page)
972 {
973 if (unlikely(PageSwapCache(page)))
974 return __page_file_index(page);
975
976 return page->index;
977 }
978
979 /*
980 * Return true if this page is mapped into pagetables.
981 */
982 static inline int page_mapped(struct page *page)
983 {
984 return atomic_read(&(page)->_mapcount) >= 0;
985 }
986
987 /*
988 * Return true only if the page has been allocated with
989 * ALLOC_NO_WATERMARKS and the low watermark was not
990 * met implying that the system is under some pressure.
991 */
992 static inline bool page_is_pfmemalloc(struct page *page)
993 {
994 /*
995 * Page index cannot be this large so this must be
996 * a pfmemalloc page.
997 */
998 return page->index == -1UL;
999 }
1000
1001 /*
1002 * Only to be called by the page allocator on a freshly allocated
1003 * page.
1004 */
1005 static inline void set_page_pfmemalloc(struct page *page)
1006 {
1007 page->index = -1UL;
1008 }
1009
1010 static inline void clear_page_pfmemalloc(struct page *page)
1011 {
1012 page->index = 0;
1013 }
1014
1015 /*
1016 * Different kinds of faults, as returned by handle_mm_fault().
1017 * Used to decide whether a process gets delivered SIGBUS or
1018 * just gets major/minor fault counters bumped up.
1019 */
1020
1021 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1022
1023 #define VM_FAULT_OOM 0x0001
1024 #define VM_FAULT_SIGBUS 0x0002
1025 #define VM_FAULT_MAJOR 0x0004
1026 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1027 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1028 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1029 #define VM_FAULT_SIGSEGV 0x0040
1030
1031 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1032 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1033 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1034 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1035
1036 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1037
1038 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1039 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1040 VM_FAULT_FALLBACK)
1041
1042 /* Encode hstate index for a hwpoisoned large page */
1043 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1044 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1045
1046 /*
1047 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1048 */
1049 extern void pagefault_out_of_memory(void);
1050
1051 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1052
1053 /*
1054 * Flags passed to show_mem() and show_free_areas() to suppress output in
1055 * various contexts.
1056 */
1057 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1058
1059 extern void show_free_areas(unsigned int flags);
1060 extern bool skip_free_areas_node(unsigned int flags, int nid);
1061
1062 int shmem_zero_setup(struct vm_area_struct *);
1063 #ifdef CONFIG_SHMEM
1064 bool shmem_mapping(struct address_space *mapping);
1065 #else
1066 static inline bool shmem_mapping(struct address_space *mapping)
1067 {
1068 return false;
1069 }
1070 #endif
1071
1072 extern int can_do_mlock(void);
1073 extern int user_shm_lock(size_t, struct user_struct *);
1074 extern void user_shm_unlock(size_t, struct user_struct *);
1075
1076 /*
1077 * Parameter block passed down to zap_pte_range in exceptional cases.
1078 */
1079 struct zap_details {
1080 struct address_space *check_mapping; /* Check page->mapping if set */
1081 pgoff_t first_index; /* Lowest page->index to unmap */
1082 pgoff_t last_index; /* Highest page->index to unmap */
1083 };
1084
1085 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1086 pte_t pte);
1087 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1088 pmd_t pmd);
1089
1090 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1091 unsigned long size);
1092 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1093 unsigned long size, struct zap_details *);
1094 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1095 unsigned long start, unsigned long end);
1096
1097 /**
1098 * mm_walk - callbacks for walk_page_range
1099 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1100 * this handler is required to be able to handle
1101 * pmd_trans_huge() pmds. They may simply choose to
1102 * split_huge_page() instead of handling it explicitly.
1103 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1104 * @pte_hole: if set, called for each hole at all levels
1105 * @hugetlb_entry: if set, called for each hugetlb entry
1106 * @test_walk: caller specific callback function to determine whether
1107 * we walk over the current vma or not. A positive returned
1108 * value means "do page table walk over the current vma,"
1109 * and a negative one means "abort current page table walk
1110 * right now." 0 means "skip the current vma."
1111 * @mm: mm_struct representing the target process of page table walk
1112 * @vma: vma currently walked (NULL if walking outside vmas)
1113 * @private: private data for callbacks' usage
1114 *
1115 * (see the comment on walk_page_range() for more details)
1116 */
1117 struct mm_walk {
1118 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1119 unsigned long next, struct mm_walk *walk);
1120 int (*pte_entry)(pte_t *pte, unsigned long addr,
1121 unsigned long next, struct mm_walk *walk);
1122 int (*pte_hole)(unsigned long addr, unsigned long next,
1123 struct mm_walk *walk);
1124 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1125 unsigned long addr, unsigned long next,
1126 struct mm_walk *walk);
1127 int (*test_walk)(unsigned long addr, unsigned long next,
1128 struct mm_walk *walk);
1129 struct mm_struct *mm;
1130 struct vm_area_struct *vma;
1131 void *private;
1132 };
1133
1134 int walk_page_range(unsigned long addr, unsigned long end,
1135 struct mm_walk *walk);
1136 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1137 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1138 unsigned long end, unsigned long floor, unsigned long ceiling);
1139 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1140 struct vm_area_struct *vma);
1141 void unmap_mapping_range(struct address_space *mapping,
1142 loff_t const holebegin, loff_t const holelen, int even_cows);
1143 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1144 unsigned long *pfn);
1145 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1146 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1147 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1148 void *buf, int len, int write);
1149
1150 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1151 loff_t const holebegin, loff_t const holelen)
1152 {
1153 unmap_mapping_range(mapping, holebegin, holelen, 0);
1154 }
1155
1156 extern void truncate_pagecache(struct inode *inode, loff_t new);
1157 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1158 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1159 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1160 int truncate_inode_page(struct address_space *mapping, struct page *page);
1161 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1162 int invalidate_inode_page(struct page *page);
1163
1164 #ifdef CONFIG_MMU
1165 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1166 unsigned long address, unsigned int flags);
1167 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1168 unsigned long address, unsigned int fault_flags);
1169 #else
1170 static inline int handle_mm_fault(struct mm_struct *mm,
1171 struct vm_area_struct *vma, unsigned long address,
1172 unsigned int flags)
1173 {
1174 /* should never happen if there's no MMU */
1175 BUG();
1176 return VM_FAULT_SIGBUS;
1177 }
1178 static inline int fixup_user_fault(struct task_struct *tsk,
1179 struct mm_struct *mm, unsigned long address,
1180 unsigned int fault_flags)
1181 {
1182 /* should never happen if there's no MMU */
1183 BUG();
1184 return -EFAULT;
1185 }
1186 #endif
1187
1188 extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1189 extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1190 int);
1191 extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1192 extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1193
1194 #define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1195 __LINE__)
1196 #define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1197 __LINE__)
1198 #define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1199 #define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1200
1201 #ifndef CONFIG_MMU
1202 extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1203 extern void vmr_do_fput(struct vm_region *, const char[], int);
1204
1205 #define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1206 __LINE__)
1207 #define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1208 #endif /* !CONFIG_MMU */
1209
1210 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1211 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1212 void *buf, int len, int write);
1213
1214 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1215 unsigned long start, unsigned long nr_pages,
1216 unsigned int foll_flags, struct page **pages,
1217 struct vm_area_struct **vmas, int *nonblocking);
1218 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1219 unsigned long start, unsigned long nr_pages,
1220 int write, int force, struct page **pages,
1221 struct vm_area_struct **vmas);
1222 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1223 unsigned long start, unsigned long nr_pages,
1224 int write, int force, struct page **pages,
1225 int *locked);
1226 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1227 unsigned long start, unsigned long nr_pages,
1228 int write, int force, struct page **pages,
1229 unsigned int gup_flags);
1230 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1231 unsigned long start, unsigned long nr_pages,
1232 int write, int force, struct page **pages);
1233 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1234 struct page **pages);
1235
1236 /* Container for pinned pfns / pages */
1237 struct frame_vector {
1238 unsigned int nr_allocated; /* Number of frames we have space for */
1239 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1240 bool got_ref; /* Did we pin pages by getting page ref? */
1241 bool is_pfns; /* Does array contain pages or pfns? */
1242 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1243 * pfns_vector_pages() or pfns_vector_pfns()
1244 * for access */
1245 };
1246
1247 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1248 void frame_vector_destroy(struct frame_vector *vec);
1249 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1250 bool write, bool force, struct frame_vector *vec);
1251 void put_vaddr_frames(struct frame_vector *vec);
1252 int frame_vector_to_pages(struct frame_vector *vec);
1253 void frame_vector_to_pfns(struct frame_vector *vec);
1254
1255 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1256 {
1257 return vec->nr_frames;
1258 }
1259
1260 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1261 {
1262 if (vec->is_pfns) {
1263 int err = frame_vector_to_pages(vec);
1264
1265 if (err)
1266 return ERR_PTR(err);
1267 }
1268 return (struct page **)(vec->ptrs);
1269 }
1270
1271 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1272 {
1273 if (!vec->is_pfns)
1274 frame_vector_to_pfns(vec);
1275 return (unsigned long *)(vec->ptrs);
1276 }
1277
1278 struct kvec;
1279 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1280 struct page **pages);
1281 int get_kernel_page(unsigned long start, int write, struct page **pages);
1282 struct page *get_dump_page(unsigned long addr);
1283
1284 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1285 extern void do_invalidatepage(struct page *page, unsigned int offset,
1286 unsigned int length);
1287
1288 int __set_page_dirty_nobuffers(struct page *page);
1289 int __set_page_dirty_no_writeback(struct page *page);
1290 int redirty_page_for_writepage(struct writeback_control *wbc,
1291 struct page *page);
1292 void account_page_dirtied(struct page *page, struct address_space *mapping,
1293 struct mem_cgroup *memcg);
1294 void account_page_cleaned(struct page *page, struct address_space *mapping,
1295 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1296 int set_page_dirty(struct page *page);
1297 int set_page_dirty_lock(struct page *page);
1298 void cancel_dirty_page(struct page *page);
1299 int clear_page_dirty_for_io(struct page *page);
1300
1301 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1302
1303 /* Is the vma a continuation of the stack vma above it? */
1304 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1305 {
1306 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1307 }
1308
1309 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1310 {
1311 return !vma->vm_ops;
1312 }
1313
1314 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1315 unsigned long addr)
1316 {
1317 return (vma->vm_flags & VM_GROWSDOWN) &&
1318 (vma->vm_start == addr) &&
1319 !vma_growsdown(vma->vm_prev, addr);
1320 }
1321
1322 /* Is the vma a continuation of the stack vma below it? */
1323 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1324 {
1325 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1326 }
1327
1328 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1329 unsigned long addr)
1330 {
1331 return (vma->vm_flags & VM_GROWSUP) &&
1332 (vma->vm_end == addr) &&
1333 !vma_growsup(vma->vm_next, addr);
1334 }
1335
1336 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1337
1338 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1339 unsigned long old_addr, struct vm_area_struct *new_vma,
1340 unsigned long new_addr, unsigned long len,
1341 bool need_rmap_locks);
1342 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1343 unsigned long end, pgprot_t newprot,
1344 int dirty_accountable, int prot_numa);
1345 extern int mprotect_fixup(struct vm_area_struct *vma,
1346 struct vm_area_struct **pprev, unsigned long start,
1347 unsigned long end, unsigned long newflags);
1348
1349 /*
1350 * doesn't attempt to fault and will return short.
1351 */
1352 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1353 struct page **pages);
1354 /*
1355 * per-process(per-mm_struct) statistics.
1356 */
1357 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1358 {
1359 long val = atomic_long_read(&mm->rss_stat.count[member]);
1360
1361 #ifdef SPLIT_RSS_COUNTING
1362 /*
1363 * counter is updated in asynchronous manner and may go to minus.
1364 * But it's never be expected number for users.
1365 */
1366 if (val < 0)
1367 val = 0;
1368 #endif
1369 return (unsigned long)val;
1370 }
1371
1372 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1373 {
1374 atomic_long_add(value, &mm->rss_stat.count[member]);
1375 }
1376
1377 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1378 {
1379 atomic_long_inc(&mm->rss_stat.count[member]);
1380 }
1381
1382 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1383 {
1384 atomic_long_dec(&mm->rss_stat.count[member]);
1385 }
1386
1387 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1388 {
1389 return get_mm_counter(mm, MM_FILEPAGES) +
1390 get_mm_counter(mm, MM_ANONPAGES);
1391 }
1392
1393 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1394 {
1395 return max(mm->hiwater_rss, get_mm_rss(mm));
1396 }
1397
1398 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1399 {
1400 return max(mm->hiwater_vm, mm->total_vm);
1401 }
1402
1403 static inline void update_hiwater_rss(struct mm_struct *mm)
1404 {
1405 unsigned long _rss = get_mm_rss(mm);
1406
1407 if ((mm)->hiwater_rss < _rss)
1408 (mm)->hiwater_rss = _rss;
1409 }
1410
1411 static inline void update_hiwater_vm(struct mm_struct *mm)
1412 {
1413 if (mm->hiwater_vm < mm->total_vm)
1414 mm->hiwater_vm = mm->total_vm;
1415 }
1416
1417 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1418 {
1419 mm->hiwater_rss = get_mm_rss(mm);
1420 }
1421
1422 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1423 struct mm_struct *mm)
1424 {
1425 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1426
1427 if (*maxrss < hiwater_rss)
1428 *maxrss = hiwater_rss;
1429 }
1430
1431 #if defined(SPLIT_RSS_COUNTING)
1432 void sync_mm_rss(struct mm_struct *mm);
1433 #else
1434 static inline void sync_mm_rss(struct mm_struct *mm)
1435 {
1436 }
1437 #endif
1438
1439 int vma_wants_writenotify(struct vm_area_struct *vma);
1440
1441 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442 spinlock_t **ptl);
1443 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444 spinlock_t **ptl)
1445 {
1446 pte_t *ptep;
1447 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1448 return ptep;
1449 }
1450
1451 #ifdef __PAGETABLE_PUD_FOLDED
1452 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1453 unsigned long address)
1454 {
1455 return 0;
1456 }
1457 #else
1458 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1459 #endif
1460
1461 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1462 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1463 unsigned long address)
1464 {
1465 return 0;
1466 }
1467
1468 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1469
1470 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1471 {
1472 return 0;
1473 }
1474
1475 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1476 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1477
1478 #else
1479 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1480
1481 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1482 {
1483 atomic_long_set(&mm->nr_pmds, 0);
1484 }
1485
1486 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1487 {
1488 return atomic_long_read(&mm->nr_pmds);
1489 }
1490
1491 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1492 {
1493 atomic_long_inc(&mm->nr_pmds);
1494 }
1495
1496 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1497 {
1498 atomic_long_dec(&mm->nr_pmds);
1499 }
1500 #endif
1501
1502 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1503 pmd_t *pmd, unsigned long address);
1504 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1505
1506 /*
1507 * The following ifdef needed to get the 4level-fixup.h header to work.
1508 * Remove it when 4level-fixup.h has been removed.
1509 */
1510 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1511 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1512 {
1513 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1514 NULL: pud_offset(pgd, address);
1515 }
1516
1517 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1518 {
1519 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1520 NULL: pmd_offset(pud, address);
1521 }
1522 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1523
1524 #if USE_SPLIT_PTE_PTLOCKS
1525 #if ALLOC_SPLIT_PTLOCKS
1526 void __init ptlock_cache_init(void);
1527 extern bool ptlock_alloc(struct page *page);
1528 extern void ptlock_free(struct page *page);
1529
1530 static inline spinlock_t *ptlock_ptr(struct page *page)
1531 {
1532 return page->ptl;
1533 }
1534 #else /* ALLOC_SPLIT_PTLOCKS */
1535 static inline void ptlock_cache_init(void)
1536 {
1537 }
1538
1539 static inline bool ptlock_alloc(struct page *page)
1540 {
1541 return true;
1542 }
1543
1544 static inline void ptlock_free(struct page *page)
1545 {
1546 }
1547
1548 static inline spinlock_t *ptlock_ptr(struct page *page)
1549 {
1550 return &page->ptl;
1551 }
1552 #endif /* ALLOC_SPLIT_PTLOCKS */
1553
1554 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1555 {
1556 return ptlock_ptr(pmd_page(*pmd));
1557 }
1558
1559 static inline bool ptlock_init(struct page *page)
1560 {
1561 /*
1562 * prep_new_page() initialize page->private (and therefore page->ptl)
1563 * with 0. Make sure nobody took it in use in between.
1564 *
1565 * It can happen if arch try to use slab for page table allocation:
1566 * slab code uses page->slab_cache, which share storage with page->ptl.
1567 */
1568 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1569 if (!ptlock_alloc(page))
1570 return false;
1571 spin_lock_init(ptlock_ptr(page));
1572 return true;
1573 }
1574
1575 /* Reset page->mapping so free_pages_check won't complain. */
1576 static inline void pte_lock_deinit(struct page *page)
1577 {
1578 page->mapping = NULL;
1579 ptlock_free(page);
1580 }
1581
1582 #else /* !USE_SPLIT_PTE_PTLOCKS */
1583 /*
1584 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1585 */
1586 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1587 {
1588 return &mm->page_table_lock;
1589 }
1590 static inline void ptlock_cache_init(void) {}
1591 static inline bool ptlock_init(struct page *page) { return true; }
1592 static inline void pte_lock_deinit(struct page *page) {}
1593 #endif /* USE_SPLIT_PTE_PTLOCKS */
1594
1595 static inline void pgtable_init(void)
1596 {
1597 ptlock_cache_init();
1598 pgtable_cache_init();
1599 }
1600
1601 static inline bool pgtable_page_ctor(struct page *page)
1602 {
1603 if (!ptlock_init(page))
1604 return false;
1605 inc_zone_page_state(page, NR_PAGETABLE);
1606 return true;
1607 }
1608
1609 static inline void pgtable_page_dtor(struct page *page)
1610 {
1611 pte_lock_deinit(page);
1612 dec_zone_page_state(page, NR_PAGETABLE);
1613 }
1614
1615 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1616 ({ \
1617 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1618 pte_t *__pte = pte_offset_map(pmd, address); \
1619 *(ptlp) = __ptl; \
1620 spin_lock(__ptl); \
1621 __pte; \
1622 })
1623
1624 #define pte_unmap_unlock(pte, ptl) do { \
1625 spin_unlock(ptl); \
1626 pte_unmap(pte); \
1627 } while (0)
1628
1629 #define pte_alloc_map(mm, vma, pmd, address) \
1630 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1631 pmd, address))? \
1632 NULL: pte_offset_map(pmd, address))
1633
1634 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1635 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1636 pmd, address))? \
1637 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1638
1639 #define pte_alloc_kernel(pmd, address) \
1640 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1641 NULL: pte_offset_kernel(pmd, address))
1642
1643 #if USE_SPLIT_PMD_PTLOCKS
1644
1645 static struct page *pmd_to_page(pmd_t *pmd)
1646 {
1647 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1648 return virt_to_page((void *)((unsigned long) pmd & mask));
1649 }
1650
1651 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1652 {
1653 return ptlock_ptr(pmd_to_page(pmd));
1654 }
1655
1656 static inline bool pgtable_pmd_page_ctor(struct page *page)
1657 {
1658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1659 page->pmd_huge_pte = NULL;
1660 #endif
1661 return ptlock_init(page);
1662 }
1663
1664 static inline void pgtable_pmd_page_dtor(struct page *page)
1665 {
1666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1667 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1668 #endif
1669 ptlock_free(page);
1670 }
1671
1672 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1673
1674 #else
1675
1676 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1677 {
1678 return &mm->page_table_lock;
1679 }
1680
1681 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1682 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1683
1684 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1685
1686 #endif
1687
1688 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1689 {
1690 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1691 spin_lock(ptl);
1692 return ptl;
1693 }
1694
1695 extern void free_area_init(unsigned long * zones_size);
1696 extern void free_area_init_node(int nid, unsigned long * zones_size,
1697 unsigned long zone_start_pfn, unsigned long *zholes_size);
1698 extern void free_initmem(void);
1699
1700 /*
1701 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1702 * into the buddy system. The freed pages will be poisoned with pattern
1703 * "poison" if it's within range [0, UCHAR_MAX].
1704 * Return pages freed into the buddy system.
1705 */
1706 extern unsigned long free_reserved_area(void *start, void *end,
1707 int poison, char *s);
1708
1709 #ifdef CONFIG_HIGHMEM
1710 /*
1711 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1712 * and totalram_pages.
1713 */
1714 extern void free_highmem_page(struct page *page);
1715 #endif
1716
1717 extern void adjust_managed_page_count(struct page *page, long count);
1718 extern void mem_init_print_info(const char *str);
1719
1720 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1721
1722 /* Free the reserved page into the buddy system, so it gets managed. */
1723 static inline void __free_reserved_page(struct page *page)
1724 {
1725 ClearPageReserved(page);
1726 init_page_count(page);
1727 __free_page(page);
1728 }
1729
1730 static inline void free_reserved_page(struct page *page)
1731 {
1732 __free_reserved_page(page);
1733 adjust_managed_page_count(page, 1);
1734 }
1735
1736 static inline void mark_page_reserved(struct page *page)
1737 {
1738 SetPageReserved(page);
1739 adjust_managed_page_count(page, -1);
1740 }
1741
1742 /*
1743 * Default method to free all the __init memory into the buddy system.
1744 * The freed pages will be poisoned with pattern "poison" if it's within
1745 * range [0, UCHAR_MAX].
1746 * Return pages freed into the buddy system.
1747 */
1748 static inline unsigned long free_initmem_default(int poison)
1749 {
1750 extern char __init_begin[], __init_end[];
1751
1752 return free_reserved_area(&__init_begin, &__init_end,
1753 poison, "unused kernel");
1754 }
1755
1756 static inline unsigned long get_num_physpages(void)
1757 {
1758 int nid;
1759 unsigned long phys_pages = 0;
1760
1761 for_each_online_node(nid)
1762 phys_pages += node_present_pages(nid);
1763
1764 return phys_pages;
1765 }
1766
1767 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1768 /*
1769 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1770 * zones, allocate the backing mem_map and account for memory holes in a more
1771 * architecture independent manner. This is a substitute for creating the
1772 * zone_sizes[] and zholes_size[] arrays and passing them to
1773 * free_area_init_node()
1774 *
1775 * An architecture is expected to register range of page frames backed by
1776 * physical memory with memblock_add[_node]() before calling
1777 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1778 * usage, an architecture is expected to do something like
1779 *
1780 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1781 * max_highmem_pfn};
1782 * for_each_valid_physical_page_range()
1783 * memblock_add_node(base, size, nid)
1784 * free_area_init_nodes(max_zone_pfns);
1785 *
1786 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1787 * registered physical page range. Similarly
1788 * sparse_memory_present_with_active_regions() calls memory_present() for
1789 * each range when SPARSEMEM is enabled.
1790 *
1791 * See mm/page_alloc.c for more information on each function exposed by
1792 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1793 */
1794 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1795 unsigned long node_map_pfn_alignment(void);
1796 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1797 unsigned long end_pfn);
1798 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1799 unsigned long end_pfn);
1800 extern void get_pfn_range_for_nid(unsigned int nid,
1801 unsigned long *start_pfn, unsigned long *end_pfn);
1802 extern unsigned long find_min_pfn_with_active_regions(void);
1803 extern void free_bootmem_with_active_regions(int nid,
1804 unsigned long max_low_pfn);
1805 extern void sparse_memory_present_with_active_regions(int nid);
1806
1807 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1808
1809 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1810 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1811 static inline int __early_pfn_to_nid(unsigned long pfn,
1812 struct mminit_pfnnid_cache *state)
1813 {
1814 return 0;
1815 }
1816 #else
1817 /* please see mm/page_alloc.c */
1818 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1819 /* there is a per-arch backend function. */
1820 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1821 struct mminit_pfnnid_cache *state);
1822 #endif
1823
1824 extern void set_dma_reserve(unsigned long new_dma_reserve);
1825 extern void memmap_init_zone(unsigned long, int, unsigned long,
1826 unsigned long, enum memmap_context);
1827 extern void setup_per_zone_wmarks(void);
1828 extern int __meminit init_per_zone_wmark_min(void);
1829 extern void mem_init(void);
1830 extern void __init mmap_init(void);
1831 extern void show_mem(unsigned int flags);
1832 extern long si_mem_available(void);
1833 extern void si_meminfo(struct sysinfo * val);
1834 extern void si_meminfo_node(struct sysinfo *val, int nid);
1835
1836 extern __printf(3, 4)
1837 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1838 const char *fmt, ...);
1839
1840 extern void setup_per_cpu_pageset(void);
1841
1842 extern void zone_pcp_update(struct zone *zone);
1843 extern void zone_pcp_reset(struct zone *zone);
1844
1845 /* page_alloc.c */
1846 extern int min_free_kbytes;
1847
1848 /* nommu.c */
1849 extern atomic_long_t mmap_pages_allocated;
1850 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1851
1852 /* interval_tree.c */
1853 void vma_interval_tree_insert(struct vm_area_struct *node,
1854 struct rb_root *root);
1855 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1856 struct vm_area_struct *prev,
1857 struct rb_root *root);
1858 void vma_interval_tree_remove(struct vm_area_struct *node,
1859 struct rb_root *root);
1860 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1861 unsigned long start, unsigned long last);
1862 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1863 unsigned long start, unsigned long last);
1864
1865 #define vma_interval_tree_foreach(vma, root, start, last) \
1866 for (vma = vma_interval_tree_iter_first(root, start, last); \
1867 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1868
1869 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1870 struct rb_root *root);
1871 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1872 struct rb_root *root);
1873 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1874 struct rb_root *root, unsigned long start, unsigned long last);
1875 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1876 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1877 #ifdef CONFIG_DEBUG_VM_RB
1878 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1879 #endif
1880
1881 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1882 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1883 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1884
1885 /* mmap.c */
1886 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1887 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1888 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1889 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1890 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1891 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1892 struct mempolicy *, struct vm_userfaultfd_ctx);
1893 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1894 extern int split_vma(struct mm_struct *,
1895 struct vm_area_struct *, unsigned long addr, int new_below);
1896 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1897 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1898 struct rb_node **, struct rb_node *);
1899 extern void unlink_file_vma(struct vm_area_struct *);
1900 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1901 unsigned long addr, unsigned long len, pgoff_t pgoff,
1902 bool *need_rmap_locks);
1903 extern void exit_mmap(struct mm_struct *);
1904
1905 static inline int check_data_rlimit(unsigned long rlim,
1906 unsigned long new,
1907 unsigned long start,
1908 unsigned long end_data,
1909 unsigned long start_data)
1910 {
1911 if (rlim < RLIM_INFINITY) {
1912 if (((new - start) + (end_data - start_data)) > rlim)
1913 return -ENOSPC;
1914 }
1915
1916 return 0;
1917 }
1918
1919 extern int mm_take_all_locks(struct mm_struct *mm);
1920 extern void mm_drop_all_locks(struct mm_struct *mm);
1921
1922 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1923 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1924
1925 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1926 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1927 unsigned long addr, unsigned long len,
1928 unsigned long flags,
1929 const struct vm_special_mapping *spec);
1930 /* This is an obsolete alternative to _install_special_mapping. */
1931 extern int install_special_mapping(struct mm_struct *mm,
1932 unsigned long addr, unsigned long len,
1933 unsigned long flags, struct page **pages);
1934
1935 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1936
1937 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1938 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1939 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1940 unsigned long len, unsigned long prot, unsigned long flags,
1941 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1942 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1943
1944 static inline unsigned long
1945 do_mmap_pgoff(struct file *file, unsigned long addr,
1946 unsigned long len, unsigned long prot, unsigned long flags,
1947 unsigned long pgoff, unsigned long *populate)
1948 {
1949 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1950 }
1951
1952 #ifdef CONFIG_MMU
1953 extern int __mm_populate(unsigned long addr, unsigned long len,
1954 int ignore_errors);
1955 static inline void mm_populate(unsigned long addr, unsigned long len)
1956 {
1957 /* Ignore errors */
1958 (void) __mm_populate(addr, len, 1);
1959 }
1960 #else
1961 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1962 #endif
1963
1964 /* These take the mm semaphore themselves */
1965 extern unsigned long vm_brk(unsigned long, unsigned long);
1966 extern int vm_munmap(unsigned long, size_t);
1967 extern unsigned long vm_mmap(struct file *, unsigned long,
1968 unsigned long, unsigned long,
1969 unsigned long, unsigned long);
1970
1971 struct vm_unmapped_area_info {
1972 #define VM_UNMAPPED_AREA_TOPDOWN 1
1973 unsigned long flags;
1974 unsigned long length;
1975 unsigned long low_limit;
1976 unsigned long high_limit;
1977 unsigned long align_mask;
1978 unsigned long align_offset;
1979 };
1980
1981 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1982 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1983
1984 /*
1985 * Search for an unmapped address range.
1986 *
1987 * We are looking for a range that:
1988 * - does not intersect with any VMA;
1989 * - is contained within the [low_limit, high_limit) interval;
1990 * - is at least the desired size.
1991 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1992 */
1993 static inline unsigned long
1994 vm_unmapped_area(struct vm_unmapped_area_info *info)
1995 {
1996 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1997 return unmapped_area_topdown(info);
1998 else
1999 return unmapped_area(info);
2000 }
2001
2002 /* truncate.c */
2003 extern void truncate_inode_pages(struct address_space *, loff_t);
2004 extern void truncate_inode_pages_range(struct address_space *,
2005 loff_t lstart, loff_t lend);
2006 extern void truncate_inode_pages_final(struct address_space *);
2007
2008 /* generic vm_area_ops exported for stackable file systems */
2009 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2010 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2011 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2012
2013 /* mm/page-writeback.c */
2014 int write_one_page(struct page *page, int wait);
2015 void task_dirty_inc(struct task_struct *tsk);
2016
2017 /* readahead.c */
2018 #define VM_MAX_READAHEAD 128 /* kbytes */
2019 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2020
2021 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2022 pgoff_t offset, unsigned long nr_to_read);
2023
2024 void page_cache_sync_readahead(struct address_space *mapping,
2025 struct file_ra_state *ra,
2026 struct file *filp,
2027 pgoff_t offset,
2028 unsigned long size);
2029
2030 void page_cache_async_readahead(struct address_space *mapping,
2031 struct file_ra_state *ra,
2032 struct file *filp,
2033 struct page *pg,
2034 pgoff_t offset,
2035 unsigned long size);
2036
2037 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2038 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2039
2040 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2041 extern int expand_downwards(struct vm_area_struct *vma,
2042 unsigned long address);
2043 #if VM_GROWSUP
2044 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2045 #else
2046 #define expand_upwards(vma, address) (0)
2047 #endif
2048
2049 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2050 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2051 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2052 struct vm_area_struct **pprev);
2053
2054 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2055 NULL if none. Assume start_addr < end_addr. */
2056 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2057 {
2058 struct vm_area_struct * vma = find_vma(mm,start_addr);
2059
2060 if (vma && end_addr <= vma->vm_start)
2061 vma = NULL;
2062 return vma;
2063 }
2064
2065 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2066 {
2067 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2068 }
2069
2070 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2071 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2072 unsigned long vm_start, unsigned long vm_end)
2073 {
2074 struct vm_area_struct *vma = find_vma(mm, vm_start);
2075
2076 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2077 vma = NULL;
2078
2079 return vma;
2080 }
2081
2082 #ifdef CONFIG_MMU
2083 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2084 void vma_set_page_prot(struct vm_area_struct *vma);
2085 #else
2086 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2087 {
2088 return __pgprot(0);
2089 }
2090 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2091 {
2092 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2093 }
2094 #endif
2095
2096 #ifdef CONFIG_NUMA_BALANCING
2097 unsigned long change_prot_numa(struct vm_area_struct *vma,
2098 unsigned long start, unsigned long end);
2099 #endif
2100
2101 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2102 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2103 unsigned long pfn, unsigned long size, pgprot_t);
2104 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2105 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2106 unsigned long pfn);
2107 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2108 unsigned long pfn);
2109 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2110
2111
2112 struct page *follow_page_mask(struct vm_area_struct *vma,
2113 unsigned long address, unsigned int foll_flags,
2114 unsigned int *page_mask);
2115
2116 static inline struct page *follow_page(struct vm_area_struct *vma,
2117 unsigned long address, unsigned int foll_flags)
2118 {
2119 unsigned int unused_page_mask;
2120 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2121 }
2122
2123 #define FOLL_WRITE 0x01 /* check pte is writable */
2124 #define FOLL_TOUCH 0x02 /* mark page accessed */
2125 #define FOLL_GET 0x04 /* do get_page on page */
2126 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2127 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2128 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2129 * and return without waiting upon it */
2130 #define FOLL_POPULATE 0x40 /* fault in page */
2131 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2132 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2133 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2134 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2135 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2136 #define FOLL_MLOCK 0x1000 /* lock present pages */
2137
2138 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2139 void *data);
2140 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2141 unsigned long size, pte_fn_t fn, void *data);
2142
2143 #ifdef CONFIG_PROC_FS
2144 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2145 #else
2146 static inline void vm_stat_account(struct mm_struct *mm,
2147 unsigned long flags, struct file *file, long pages)
2148 {
2149 mm->total_vm += pages;
2150 }
2151 #endif /* CONFIG_PROC_FS */
2152
2153 #ifdef CONFIG_DEBUG_PAGEALLOC
2154 extern bool _debug_pagealloc_enabled;
2155 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2156
2157 static inline bool debug_pagealloc_enabled(void)
2158 {
2159 return _debug_pagealloc_enabled;
2160 }
2161
2162 static inline void
2163 kernel_map_pages(struct page *page, int numpages, int enable)
2164 {
2165 if (!debug_pagealloc_enabled())
2166 return;
2167
2168 __kernel_map_pages(page, numpages, enable);
2169 }
2170 #ifdef CONFIG_HIBERNATION
2171 extern bool kernel_page_present(struct page *page);
2172 #endif /* CONFIG_HIBERNATION */
2173 #else
2174 static inline void
2175 kernel_map_pages(struct page *page, int numpages, int enable) {}
2176 #ifdef CONFIG_HIBERNATION
2177 static inline bool kernel_page_present(struct page *page) { return true; }
2178 #endif /* CONFIG_HIBERNATION */
2179 #endif
2180
2181 #ifdef __HAVE_ARCH_GATE_AREA
2182 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2183 extern int in_gate_area_no_mm(unsigned long addr);
2184 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2185 #else
2186 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2187 {
2188 return NULL;
2189 }
2190 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2191 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2192 {
2193 return 0;
2194 }
2195 #endif /* __HAVE_ARCH_GATE_AREA */
2196
2197 #ifdef CONFIG_SYSCTL
2198 extern int sysctl_drop_caches;
2199 int drop_caches_sysctl_handler(struct ctl_table *, int,
2200 void __user *, size_t *, loff_t *);
2201 #endif
2202
2203 void drop_slab(void);
2204 void drop_slab_node(int nid);
2205
2206 #ifndef CONFIG_MMU
2207 #define randomize_va_space 0
2208 #else
2209 extern int randomize_va_space;
2210 #endif
2211
2212 const char * arch_vma_name(struct vm_area_struct *vma);
2213 void print_vma_addr(char *prefix, unsigned long rip);
2214
2215 void sparse_mem_maps_populate_node(struct page **map_map,
2216 unsigned long pnum_begin,
2217 unsigned long pnum_end,
2218 unsigned long map_count,
2219 int nodeid);
2220
2221 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2222 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2223 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2224 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2225 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2226 void *vmemmap_alloc_block(unsigned long size, int node);
2227 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2228 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2229 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2230 int node);
2231 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2232 void vmemmap_populate_print_last(void);
2233 #ifdef CONFIG_MEMORY_HOTPLUG
2234 void vmemmap_free(unsigned long start, unsigned long end);
2235 #endif
2236 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2237 unsigned long size);
2238
2239 enum mf_flags {
2240 MF_COUNT_INCREASED = 1 << 0,
2241 MF_ACTION_REQUIRED = 1 << 1,
2242 MF_MUST_KILL = 1 << 2,
2243 MF_SOFT_OFFLINE = 1 << 3,
2244 };
2245 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2246 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2247 extern int unpoison_memory(unsigned long pfn);
2248 extern int get_hwpoison_page(struct page *page);
2249 extern void put_hwpoison_page(struct page *page);
2250 extern int sysctl_memory_failure_early_kill;
2251 extern int sysctl_memory_failure_recovery;
2252 extern void shake_page(struct page *p, int access);
2253 extern atomic_long_t num_poisoned_pages;
2254 extern int soft_offline_page(struct page *page, int flags);
2255
2256
2257 /*
2258 * Error handlers for various types of pages.
2259 */
2260 enum mf_result {
2261 MF_IGNORED, /* Error: cannot be handled */
2262 MF_FAILED, /* Error: handling failed */
2263 MF_DELAYED, /* Will be handled later */
2264 MF_RECOVERED, /* Successfully recovered */
2265 };
2266
2267 enum mf_action_page_type {
2268 MF_MSG_KERNEL,
2269 MF_MSG_KERNEL_HIGH_ORDER,
2270 MF_MSG_SLAB,
2271 MF_MSG_DIFFERENT_COMPOUND,
2272 MF_MSG_POISONED_HUGE,
2273 MF_MSG_HUGE,
2274 MF_MSG_FREE_HUGE,
2275 MF_MSG_UNMAP_FAILED,
2276 MF_MSG_DIRTY_SWAPCACHE,
2277 MF_MSG_CLEAN_SWAPCACHE,
2278 MF_MSG_DIRTY_MLOCKED_LRU,
2279 MF_MSG_CLEAN_MLOCKED_LRU,
2280 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2281 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2282 MF_MSG_DIRTY_LRU,
2283 MF_MSG_CLEAN_LRU,
2284 MF_MSG_TRUNCATED_LRU,
2285 MF_MSG_BUDDY,
2286 MF_MSG_BUDDY_2ND,
2287 MF_MSG_UNKNOWN,
2288 };
2289
2290 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2291 extern void clear_huge_page(struct page *page,
2292 unsigned long addr,
2293 unsigned int pages_per_huge_page);
2294 extern void copy_user_huge_page(struct page *dst, struct page *src,
2295 unsigned long addr, struct vm_area_struct *vma,
2296 unsigned int pages_per_huge_page);
2297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2298
2299 extern struct page_ext_operations debug_guardpage_ops;
2300 extern struct page_ext_operations page_poisoning_ops;
2301
2302 #ifdef CONFIG_DEBUG_PAGEALLOC
2303 extern unsigned int _debug_guardpage_minorder;
2304 extern bool _debug_guardpage_enabled;
2305
2306 static inline unsigned int debug_guardpage_minorder(void)
2307 {
2308 return _debug_guardpage_minorder;
2309 }
2310
2311 static inline bool debug_guardpage_enabled(void)
2312 {
2313 return _debug_guardpage_enabled;
2314 }
2315
2316 static inline bool page_is_guard(struct page *page)
2317 {
2318 struct page_ext *page_ext;
2319
2320 if (!debug_guardpage_enabled())
2321 return false;
2322
2323 page_ext = lookup_page_ext(page);
2324 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2325 }
2326 #else
2327 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2328 static inline bool debug_guardpage_enabled(void) { return false; }
2329 static inline bool page_is_guard(struct page *page) { return false; }
2330 #endif /* CONFIG_DEBUG_PAGEALLOC */
2331
2332 #if MAX_NUMNODES > 1
2333 void __init setup_nr_node_ids(void);
2334 #else
2335 static inline void setup_nr_node_ids(void) {}
2336 #endif
2337
2338 #endif /* __KERNEL__ */
2339 #endif /* _LINUX_MM_H */