]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mm.h
473abbda942e0a1db072a3300db46211e12322fe
[mirror_ubuntu-artful-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73 #define VM_NONE 0x00000000
74
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90 #define VM_POPULATE 0x00001000
91 #define VM_LOCKED 0x00002000
92 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93
94 /* Used by sys_madvise() */
95 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97
98 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
100 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
101 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
102 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
103 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
104 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
105 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
106
107 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
108 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
109 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
110 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
111
112 #if defined(CONFIG_X86)
113 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
114 #elif defined(CONFIG_PPC)
115 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
116 #elif defined(CONFIG_PARISC)
117 # define VM_GROWSUP VM_ARCH_1
118 #elif defined(CONFIG_IA64)
119 # define VM_GROWSUP VM_ARCH_1
120 #elif !defined(CONFIG_MMU)
121 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
122 #endif
123
124 #ifndef VM_GROWSUP
125 # define VM_GROWSUP VM_NONE
126 #endif
127
128 /* Bits set in the VMA until the stack is in its final location */
129 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
130
131 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
132 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
133 #endif
134
135 #ifdef CONFIG_STACK_GROWSUP
136 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
137 #else
138 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
139 #endif
140
141 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
142 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
143 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
144 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
145 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
146
147 /*
148 * Special vmas that are non-mergable, non-mlock()able.
149 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
150 */
151 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
152
153 /*
154 * mapping from the currently active vm_flags protection bits (the
155 * low four bits) to a page protection mask..
156 */
157 extern pgprot_t protection_map[16];
158
159 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
160 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
161 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
162 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
163 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
164 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
165 #define FAULT_FLAG_TRIED 0x40 /* second try */
166
167 /*
168 * vm_fault is filled by the the pagefault handler and passed to the vma's
169 * ->fault function. The vma's ->fault is responsible for returning a bitmask
170 * of VM_FAULT_xxx flags that give details about how the fault was handled.
171 *
172 * pgoff should be used in favour of virtual_address, if possible. If pgoff
173 * is used, one may implement ->remap_pages to get nonlinear mapping support.
174 */
175 struct vm_fault {
176 unsigned int flags; /* FAULT_FLAG_xxx flags */
177 pgoff_t pgoff; /* Logical page offset based on vma */
178 void __user *virtual_address; /* Faulting virtual address */
179
180 struct page *page; /* ->fault handlers should return a
181 * page here, unless VM_FAULT_NOPAGE
182 * is set (which is also implied by
183 * VM_FAULT_ERROR).
184 */
185 };
186
187 /*
188 * These are the virtual MM functions - opening of an area, closing and
189 * unmapping it (needed to keep files on disk up-to-date etc), pointer
190 * to the functions called when a no-page or a wp-page exception occurs.
191 */
192 struct vm_operations_struct {
193 void (*open)(struct vm_area_struct * area);
194 void (*close)(struct vm_area_struct * area);
195 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
196
197 /* notification that a previously read-only page is about to become
198 * writable, if an error is returned it will cause a SIGBUS */
199 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
200
201 /* called by access_process_vm when get_user_pages() fails, typically
202 * for use by special VMAs that can switch between memory and hardware
203 */
204 int (*access)(struct vm_area_struct *vma, unsigned long addr,
205 void *buf, int len, int write);
206 #ifdef CONFIG_NUMA
207 /*
208 * set_policy() op must add a reference to any non-NULL @new mempolicy
209 * to hold the policy upon return. Caller should pass NULL @new to
210 * remove a policy and fall back to surrounding context--i.e. do not
211 * install a MPOL_DEFAULT policy, nor the task or system default
212 * mempolicy.
213 */
214 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
215
216 /*
217 * get_policy() op must add reference [mpol_get()] to any policy at
218 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
219 * in mm/mempolicy.c will do this automatically.
220 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
221 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
222 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
223 * must return NULL--i.e., do not "fallback" to task or system default
224 * policy.
225 */
226 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
227 unsigned long addr);
228 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
229 const nodemask_t *to, unsigned long flags);
230 #endif
231 /* called by sys_remap_file_pages() to populate non-linear mapping */
232 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
233 unsigned long size, pgoff_t pgoff);
234 };
235
236 struct mmu_gather;
237 struct inode;
238
239 #define page_private(page) ((page)->private)
240 #define set_page_private(page, v) ((page)->private = (v))
241
242 /* It's valid only if the page is free path or free_list */
243 static inline void set_freepage_migratetype(struct page *page, int migratetype)
244 {
245 page->index = migratetype;
246 }
247
248 /* It's valid only if the page is free path or free_list */
249 static inline int get_freepage_migratetype(struct page *page)
250 {
251 return page->index;
252 }
253
254 /*
255 * FIXME: take this include out, include page-flags.h in
256 * files which need it (119 of them)
257 */
258 #include <linux/page-flags.h>
259 #include <linux/huge_mm.h>
260
261 /*
262 * Methods to modify the page usage count.
263 *
264 * What counts for a page usage:
265 * - cache mapping (page->mapping)
266 * - private data (page->private)
267 * - page mapped in a task's page tables, each mapping
268 * is counted separately
269 *
270 * Also, many kernel routines increase the page count before a critical
271 * routine so they can be sure the page doesn't go away from under them.
272 */
273
274 /*
275 * Drop a ref, return true if the refcount fell to zero (the page has no users)
276 */
277 static inline int put_page_testzero(struct page *page)
278 {
279 VM_BUG_ON(atomic_read(&page->_count) == 0);
280 return atomic_dec_and_test(&page->_count);
281 }
282
283 /*
284 * Try to grab a ref unless the page has a refcount of zero, return false if
285 * that is the case.
286 */
287 static inline int get_page_unless_zero(struct page *page)
288 {
289 return atomic_inc_not_zero(&page->_count);
290 }
291
292 extern int page_is_ram(unsigned long pfn);
293
294 /* Support for virtually mapped pages */
295 struct page *vmalloc_to_page(const void *addr);
296 unsigned long vmalloc_to_pfn(const void *addr);
297
298 /*
299 * Determine if an address is within the vmalloc range
300 *
301 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
302 * is no special casing required.
303 */
304 static inline int is_vmalloc_addr(const void *x)
305 {
306 #ifdef CONFIG_MMU
307 unsigned long addr = (unsigned long)x;
308
309 return addr >= VMALLOC_START && addr < VMALLOC_END;
310 #else
311 return 0;
312 #endif
313 }
314 #ifdef CONFIG_MMU
315 extern int is_vmalloc_or_module_addr(const void *x);
316 #else
317 static inline int is_vmalloc_or_module_addr(const void *x)
318 {
319 return 0;
320 }
321 #endif
322
323 static inline void compound_lock(struct page *page)
324 {
325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
326 VM_BUG_ON(PageSlab(page));
327 bit_spin_lock(PG_compound_lock, &page->flags);
328 #endif
329 }
330
331 static inline void compound_unlock(struct page *page)
332 {
333 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 VM_BUG_ON(PageSlab(page));
335 bit_spin_unlock(PG_compound_lock, &page->flags);
336 #endif
337 }
338
339 static inline unsigned long compound_lock_irqsave(struct page *page)
340 {
341 unsigned long uninitialized_var(flags);
342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
343 local_irq_save(flags);
344 compound_lock(page);
345 #endif
346 return flags;
347 }
348
349 static inline void compound_unlock_irqrestore(struct page *page,
350 unsigned long flags)
351 {
352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
353 compound_unlock(page);
354 local_irq_restore(flags);
355 #endif
356 }
357
358 static inline struct page *compound_head(struct page *page)
359 {
360 if (unlikely(PageTail(page)))
361 return page->first_page;
362 return page;
363 }
364
365 /*
366 * The atomic page->_mapcount, starts from -1: so that transitions
367 * both from it and to it can be tracked, using atomic_inc_and_test
368 * and atomic_add_negative(-1).
369 */
370 static inline void reset_page_mapcount(struct page *page)
371 {
372 atomic_set(&(page)->_mapcount, -1);
373 }
374
375 static inline int page_mapcount(struct page *page)
376 {
377 return atomic_read(&(page)->_mapcount) + 1;
378 }
379
380 static inline int page_count(struct page *page)
381 {
382 return atomic_read(&compound_head(page)->_count);
383 }
384
385 static inline void get_huge_page_tail(struct page *page)
386 {
387 /*
388 * __split_huge_page_refcount() cannot run
389 * from under us.
390 */
391 VM_BUG_ON(page_mapcount(page) < 0);
392 VM_BUG_ON(atomic_read(&page->_count) != 0);
393 atomic_inc(&page->_mapcount);
394 }
395
396 extern bool __get_page_tail(struct page *page);
397
398 static inline void get_page(struct page *page)
399 {
400 if (unlikely(PageTail(page)))
401 if (likely(__get_page_tail(page)))
402 return;
403 /*
404 * Getting a normal page or the head of a compound page
405 * requires to already have an elevated page->_count.
406 */
407 VM_BUG_ON(atomic_read(&page->_count) <= 0);
408 atomic_inc(&page->_count);
409 }
410
411 static inline struct page *virt_to_head_page(const void *x)
412 {
413 struct page *page = virt_to_page(x);
414 return compound_head(page);
415 }
416
417 /*
418 * Setup the page count before being freed into the page allocator for
419 * the first time (boot or memory hotplug)
420 */
421 static inline void init_page_count(struct page *page)
422 {
423 atomic_set(&page->_count, 1);
424 }
425
426 /*
427 * PageBuddy() indicate that the page is free and in the buddy system
428 * (see mm/page_alloc.c).
429 *
430 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
431 * -2 so that an underflow of the page_mapcount() won't be mistaken
432 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
433 * efficiently by most CPU architectures.
434 */
435 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
436
437 static inline int PageBuddy(struct page *page)
438 {
439 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
440 }
441
442 static inline void __SetPageBuddy(struct page *page)
443 {
444 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
445 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
446 }
447
448 static inline void __ClearPageBuddy(struct page *page)
449 {
450 VM_BUG_ON(!PageBuddy(page));
451 atomic_set(&page->_mapcount, -1);
452 }
453
454 void put_page(struct page *page);
455 void put_pages_list(struct list_head *pages);
456
457 void split_page(struct page *page, unsigned int order);
458 int split_free_page(struct page *page);
459
460 /*
461 * Compound pages have a destructor function. Provide a
462 * prototype for that function and accessor functions.
463 * These are _only_ valid on the head of a PG_compound page.
464 */
465 typedef void compound_page_dtor(struct page *);
466
467 static inline void set_compound_page_dtor(struct page *page,
468 compound_page_dtor *dtor)
469 {
470 page[1].lru.next = (void *)dtor;
471 }
472
473 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
474 {
475 return (compound_page_dtor *)page[1].lru.next;
476 }
477
478 static inline int compound_order(struct page *page)
479 {
480 if (!PageHead(page))
481 return 0;
482 return (unsigned long)page[1].lru.prev;
483 }
484
485 static inline int compound_trans_order(struct page *page)
486 {
487 int order;
488 unsigned long flags;
489
490 if (!PageHead(page))
491 return 0;
492
493 flags = compound_lock_irqsave(page);
494 order = compound_order(page);
495 compound_unlock_irqrestore(page, flags);
496 return order;
497 }
498
499 static inline void set_compound_order(struct page *page, unsigned long order)
500 {
501 page[1].lru.prev = (void *)order;
502 }
503
504 #ifdef CONFIG_MMU
505 /*
506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
507 * servicing faults for write access. In the normal case, do always want
508 * pte_mkwrite. But get_user_pages can cause write faults for mappings
509 * that do not have writing enabled, when used by access_process_vm.
510 */
511 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512 {
513 if (likely(vma->vm_flags & VM_WRITE))
514 pte = pte_mkwrite(pte);
515 return pte;
516 }
517 #endif
518
519 /*
520 * Multiple processes may "see" the same page. E.g. for untouched
521 * mappings of /dev/null, all processes see the same page full of
522 * zeroes, and text pages of executables and shared libraries have
523 * only one copy in memory, at most, normally.
524 *
525 * For the non-reserved pages, page_count(page) denotes a reference count.
526 * page_count() == 0 means the page is free. page->lru is then used for
527 * freelist management in the buddy allocator.
528 * page_count() > 0 means the page has been allocated.
529 *
530 * Pages are allocated by the slab allocator in order to provide memory
531 * to kmalloc and kmem_cache_alloc. In this case, the management of the
532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533 * unless a particular usage is carefully commented. (the responsibility of
534 * freeing the kmalloc memory is the caller's, of course).
535 *
536 * A page may be used by anyone else who does a __get_free_page().
537 * In this case, page_count still tracks the references, and should only
538 * be used through the normal accessor functions. The top bits of page->flags
539 * and page->virtual store page management information, but all other fields
540 * are unused and could be used privately, carefully. The management of this
541 * page is the responsibility of the one who allocated it, and those who have
542 * subsequently been given references to it.
543 *
544 * The other pages (we may call them "pagecache pages") are completely
545 * managed by the Linux memory manager: I/O, buffers, swapping etc.
546 * The following discussion applies only to them.
547 *
548 * A pagecache page contains an opaque `private' member, which belongs to the
549 * page's address_space. Usually, this is the address of a circular list of
550 * the page's disk buffers. PG_private must be set to tell the VM to call
551 * into the filesystem to release these pages.
552 *
553 * A page may belong to an inode's memory mapping. In this case, page->mapping
554 * is the pointer to the inode, and page->index is the file offset of the page,
555 * in units of PAGE_CACHE_SIZE.
556 *
557 * If pagecache pages are not associated with an inode, they are said to be
558 * anonymous pages. These may become associated with the swapcache, and in that
559 * case PG_swapcache is set, and page->private is an offset into the swapcache.
560 *
561 * In either case (swapcache or inode backed), the pagecache itself holds one
562 * reference to the page. Setting PG_private should also increment the
563 * refcount. The each user mapping also has a reference to the page.
564 *
565 * The pagecache pages are stored in a per-mapping radix tree, which is
566 * rooted at mapping->page_tree, and indexed by offset.
567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568 * lists, we instead now tag pages as dirty/writeback in the radix tree.
569 *
570 * All pagecache pages may be subject to I/O:
571 * - inode pages may need to be read from disk,
572 * - inode pages which have been modified and are MAP_SHARED may need
573 * to be written back to the inode on disk,
574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575 * modified may need to be swapped out to swap space and (later) to be read
576 * back into memory.
577 */
578
579 /*
580 * The zone field is never updated after free_area_init_core()
581 * sets it, so none of the operations on it need to be atomic.
582 */
583
584 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
585 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
586 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
587 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
588 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
589
590 /*
591 * Define the bit shifts to access each section. For non-existent
592 * sections we define the shift as 0; that plus a 0 mask ensures
593 * the compiler will optimise away reference to them.
594 */
595 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
596 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
597 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
598 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
599
600 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
601 #ifdef NODE_NOT_IN_PAGE_FLAGS
602 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
603 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
604 SECTIONS_PGOFF : ZONES_PGOFF)
605 #else
606 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
607 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
608 NODES_PGOFF : ZONES_PGOFF)
609 #endif
610
611 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
612
613 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
614 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
615 #endif
616
617 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
618 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
619 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
620 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
621 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
622
623 static inline enum zone_type page_zonenum(const struct page *page)
624 {
625 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
626 }
627
628 /*
629 * The identification function is only used by the buddy allocator for
630 * determining if two pages could be buddies. We are not really
631 * identifying a zone since we could be using a the section number
632 * id if we have not node id available in page flags.
633 * We guarantee only that it will return the same value for two
634 * combinable pages in a zone.
635 */
636 static inline int page_zone_id(struct page *page)
637 {
638 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
639 }
640
641 static inline int zone_to_nid(struct zone *zone)
642 {
643 #ifdef CONFIG_NUMA
644 return zone->node;
645 #else
646 return 0;
647 #endif
648 }
649
650 #ifdef NODE_NOT_IN_PAGE_FLAGS
651 extern int page_to_nid(const struct page *page);
652 #else
653 static inline int page_to_nid(const struct page *page)
654 {
655 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
656 }
657 #endif
658
659 #ifdef CONFIG_NUMA_BALANCING
660 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
661 static inline int page_xchg_last_nid(struct page *page, int nid)
662 {
663 return xchg(&page->_last_nid, nid);
664 }
665
666 static inline int page_last_nid(struct page *page)
667 {
668 return page->_last_nid;
669 }
670 static inline void reset_page_last_nid(struct page *page)
671 {
672 page->_last_nid = -1;
673 }
674 #else
675 static inline int page_last_nid(struct page *page)
676 {
677 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
678 }
679
680 static inline int page_xchg_last_nid(struct page *page, int nid)
681 {
682 unsigned long old_flags, flags;
683 int last_nid;
684
685 do {
686 old_flags = flags = page->flags;
687 last_nid = page_last_nid(page);
688
689 flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
690 flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
691 } while (unlikely(cmpxchg(&page->flags, old_flags, flags) != old_flags));
692
693 return last_nid;
694 }
695
696 static inline void reset_page_last_nid(struct page *page)
697 {
698 page_xchg_last_nid(page, (1 << LAST_NID_SHIFT) - 1);
699 }
700 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
701 #else
702 static inline int page_xchg_last_nid(struct page *page, int nid)
703 {
704 return page_to_nid(page);
705 }
706
707 static inline int page_last_nid(struct page *page)
708 {
709 return page_to_nid(page);
710 }
711
712 static inline void reset_page_last_nid(struct page *page)
713 {
714 }
715 #endif
716
717 static inline struct zone *page_zone(const struct page *page)
718 {
719 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
720 }
721
722 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
723 static inline void set_page_section(struct page *page, unsigned long section)
724 {
725 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
726 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
727 }
728
729 static inline unsigned long page_to_section(const struct page *page)
730 {
731 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
732 }
733 #endif
734
735 static inline void set_page_zone(struct page *page, enum zone_type zone)
736 {
737 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
738 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
739 }
740
741 static inline void set_page_node(struct page *page, unsigned long node)
742 {
743 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
744 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
745 }
746
747 static inline void set_page_links(struct page *page, enum zone_type zone,
748 unsigned long node, unsigned long pfn)
749 {
750 set_page_zone(page, zone);
751 set_page_node(page, node);
752 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
753 set_page_section(page, pfn_to_section_nr(pfn));
754 #endif
755 }
756
757 /*
758 * Some inline functions in vmstat.h depend on page_zone()
759 */
760 #include <linux/vmstat.h>
761
762 static __always_inline void *lowmem_page_address(const struct page *page)
763 {
764 return __va(PFN_PHYS(page_to_pfn(page)));
765 }
766
767 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
768 #define HASHED_PAGE_VIRTUAL
769 #endif
770
771 #if defined(WANT_PAGE_VIRTUAL)
772 #define page_address(page) ((page)->virtual)
773 #define set_page_address(page, address) \
774 do { \
775 (page)->virtual = (address); \
776 } while(0)
777 #define page_address_init() do { } while(0)
778 #endif
779
780 #if defined(HASHED_PAGE_VIRTUAL)
781 void *page_address(const struct page *page);
782 void set_page_address(struct page *page, void *virtual);
783 void page_address_init(void);
784 #endif
785
786 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
787 #define page_address(page) lowmem_page_address(page)
788 #define set_page_address(page, address) do { } while(0)
789 #define page_address_init() do { } while(0)
790 #endif
791
792 /*
793 * On an anonymous page mapped into a user virtual memory area,
794 * page->mapping points to its anon_vma, not to a struct address_space;
795 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
796 *
797 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
798 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
799 * and then page->mapping points, not to an anon_vma, but to a private
800 * structure which KSM associates with that merged page. See ksm.h.
801 *
802 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
803 *
804 * Please note that, confusingly, "page_mapping" refers to the inode
805 * address_space which maps the page from disk; whereas "page_mapped"
806 * refers to user virtual address space into which the page is mapped.
807 */
808 #define PAGE_MAPPING_ANON 1
809 #define PAGE_MAPPING_KSM 2
810 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
811
812 extern struct address_space swapper_space;
813 static inline struct address_space *page_mapping(struct page *page)
814 {
815 struct address_space *mapping = page->mapping;
816
817 VM_BUG_ON(PageSlab(page));
818 if (unlikely(PageSwapCache(page)))
819 mapping = &swapper_space;
820 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
821 mapping = NULL;
822 return mapping;
823 }
824
825 /* Neutral page->mapping pointer to address_space or anon_vma or other */
826 static inline void *page_rmapping(struct page *page)
827 {
828 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
829 }
830
831 extern struct address_space *__page_file_mapping(struct page *);
832
833 static inline
834 struct address_space *page_file_mapping(struct page *page)
835 {
836 if (unlikely(PageSwapCache(page)))
837 return __page_file_mapping(page);
838
839 return page->mapping;
840 }
841
842 static inline int PageAnon(struct page *page)
843 {
844 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
845 }
846
847 /*
848 * Return the pagecache index of the passed page. Regular pagecache pages
849 * use ->index whereas swapcache pages use ->private
850 */
851 static inline pgoff_t page_index(struct page *page)
852 {
853 if (unlikely(PageSwapCache(page)))
854 return page_private(page);
855 return page->index;
856 }
857
858 extern pgoff_t __page_file_index(struct page *page);
859
860 /*
861 * Return the file index of the page. Regular pagecache pages use ->index
862 * whereas swapcache pages use swp_offset(->private)
863 */
864 static inline pgoff_t page_file_index(struct page *page)
865 {
866 if (unlikely(PageSwapCache(page)))
867 return __page_file_index(page);
868
869 return page->index;
870 }
871
872 /*
873 * Return true if this page is mapped into pagetables.
874 */
875 static inline int page_mapped(struct page *page)
876 {
877 return atomic_read(&(page)->_mapcount) >= 0;
878 }
879
880 /*
881 * Different kinds of faults, as returned by handle_mm_fault().
882 * Used to decide whether a process gets delivered SIGBUS or
883 * just gets major/minor fault counters bumped up.
884 */
885
886 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
887
888 #define VM_FAULT_OOM 0x0001
889 #define VM_FAULT_SIGBUS 0x0002
890 #define VM_FAULT_MAJOR 0x0004
891 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
892 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
893 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
894
895 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
896 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
897 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
898
899 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
900
901 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
902 VM_FAULT_HWPOISON_LARGE)
903
904 /* Encode hstate index for a hwpoisoned large page */
905 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
906 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
907
908 /*
909 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
910 */
911 extern void pagefault_out_of_memory(void);
912
913 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
914
915 /*
916 * Flags passed to show_mem() and show_free_areas() to suppress output in
917 * various contexts.
918 */
919 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
920
921 extern void show_free_areas(unsigned int flags);
922 extern bool skip_free_areas_node(unsigned int flags, int nid);
923
924 int shmem_zero_setup(struct vm_area_struct *);
925
926 extern int can_do_mlock(void);
927 extern int user_shm_lock(size_t, struct user_struct *);
928 extern void user_shm_unlock(size_t, struct user_struct *);
929
930 /*
931 * Parameter block passed down to zap_pte_range in exceptional cases.
932 */
933 struct zap_details {
934 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
935 struct address_space *check_mapping; /* Check page->mapping if set */
936 pgoff_t first_index; /* Lowest page->index to unmap */
937 pgoff_t last_index; /* Highest page->index to unmap */
938 };
939
940 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
941 pte_t pte);
942
943 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
944 unsigned long size);
945 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
946 unsigned long size, struct zap_details *);
947 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
948 unsigned long start, unsigned long end);
949
950 /**
951 * mm_walk - callbacks for walk_page_range
952 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
953 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
954 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
955 * this handler is required to be able to handle
956 * pmd_trans_huge() pmds. They may simply choose to
957 * split_huge_page() instead of handling it explicitly.
958 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
959 * @pte_hole: if set, called for each hole at all levels
960 * @hugetlb_entry: if set, called for each hugetlb entry
961 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
962 * is used.
963 *
964 * (see walk_page_range for more details)
965 */
966 struct mm_walk {
967 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
968 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
969 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
970 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
971 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
972 int (*hugetlb_entry)(pte_t *, unsigned long,
973 unsigned long, unsigned long, struct mm_walk *);
974 struct mm_struct *mm;
975 void *private;
976 };
977
978 int walk_page_range(unsigned long addr, unsigned long end,
979 struct mm_walk *walk);
980 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
981 unsigned long end, unsigned long floor, unsigned long ceiling);
982 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
983 struct vm_area_struct *vma);
984 void unmap_mapping_range(struct address_space *mapping,
985 loff_t const holebegin, loff_t const holelen, int even_cows);
986 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
987 unsigned long *pfn);
988 int follow_phys(struct vm_area_struct *vma, unsigned long address,
989 unsigned int flags, unsigned long *prot, resource_size_t *phys);
990 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
991 void *buf, int len, int write);
992
993 static inline void unmap_shared_mapping_range(struct address_space *mapping,
994 loff_t const holebegin, loff_t const holelen)
995 {
996 unmap_mapping_range(mapping, holebegin, holelen, 0);
997 }
998
999 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1000 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1001 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1002 int truncate_inode_page(struct address_space *mapping, struct page *page);
1003 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1004 int invalidate_inode_page(struct page *page);
1005
1006 #ifdef CONFIG_MMU
1007 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1008 unsigned long address, unsigned int flags);
1009 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1010 unsigned long address, unsigned int fault_flags);
1011 #else
1012 static inline int handle_mm_fault(struct mm_struct *mm,
1013 struct vm_area_struct *vma, unsigned long address,
1014 unsigned int flags)
1015 {
1016 /* should never happen if there's no MMU */
1017 BUG();
1018 return VM_FAULT_SIGBUS;
1019 }
1020 static inline int fixup_user_fault(struct task_struct *tsk,
1021 struct mm_struct *mm, unsigned long address,
1022 unsigned int fault_flags)
1023 {
1024 /* should never happen if there's no MMU */
1025 BUG();
1026 return -EFAULT;
1027 }
1028 #endif
1029
1030 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1031 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1032 void *buf, int len, int write);
1033
1034 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1035 unsigned long start, int len, unsigned int foll_flags,
1036 struct page **pages, struct vm_area_struct **vmas,
1037 int *nonblocking);
1038 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1039 unsigned long start, int nr_pages, int write, int force,
1040 struct page **pages, struct vm_area_struct **vmas);
1041 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1042 struct page **pages);
1043 struct kvec;
1044 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1045 struct page **pages);
1046 int get_kernel_page(unsigned long start, int write, struct page **pages);
1047 struct page *get_dump_page(unsigned long addr);
1048
1049 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1050 extern void do_invalidatepage(struct page *page, unsigned long offset);
1051
1052 int __set_page_dirty_nobuffers(struct page *page);
1053 int __set_page_dirty_no_writeback(struct page *page);
1054 int redirty_page_for_writepage(struct writeback_control *wbc,
1055 struct page *page);
1056 void account_page_dirtied(struct page *page, struct address_space *mapping);
1057 void account_page_writeback(struct page *page);
1058 int set_page_dirty(struct page *page);
1059 int set_page_dirty_lock(struct page *page);
1060 int clear_page_dirty_for_io(struct page *page);
1061
1062 /* Is the vma a continuation of the stack vma above it? */
1063 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1064 {
1065 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1066 }
1067
1068 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1069 unsigned long addr)
1070 {
1071 return (vma->vm_flags & VM_GROWSDOWN) &&
1072 (vma->vm_start == addr) &&
1073 !vma_growsdown(vma->vm_prev, addr);
1074 }
1075
1076 /* Is the vma a continuation of the stack vma below it? */
1077 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1078 {
1079 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1080 }
1081
1082 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1083 unsigned long addr)
1084 {
1085 return (vma->vm_flags & VM_GROWSUP) &&
1086 (vma->vm_end == addr) &&
1087 !vma_growsup(vma->vm_next, addr);
1088 }
1089
1090 extern pid_t
1091 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1092
1093 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1094 unsigned long old_addr, struct vm_area_struct *new_vma,
1095 unsigned long new_addr, unsigned long len,
1096 bool need_rmap_locks);
1097 extern unsigned long do_mremap(unsigned long addr,
1098 unsigned long old_len, unsigned long new_len,
1099 unsigned long flags, unsigned long new_addr);
1100 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1101 unsigned long end, pgprot_t newprot,
1102 int dirty_accountable, int prot_numa);
1103 extern int mprotect_fixup(struct vm_area_struct *vma,
1104 struct vm_area_struct **pprev, unsigned long start,
1105 unsigned long end, unsigned long newflags);
1106
1107 /*
1108 * doesn't attempt to fault and will return short.
1109 */
1110 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1111 struct page **pages);
1112 /*
1113 * per-process(per-mm_struct) statistics.
1114 */
1115 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1116 {
1117 long val = atomic_long_read(&mm->rss_stat.count[member]);
1118
1119 #ifdef SPLIT_RSS_COUNTING
1120 /*
1121 * counter is updated in asynchronous manner and may go to minus.
1122 * But it's never be expected number for users.
1123 */
1124 if (val < 0)
1125 val = 0;
1126 #endif
1127 return (unsigned long)val;
1128 }
1129
1130 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1131 {
1132 atomic_long_add(value, &mm->rss_stat.count[member]);
1133 }
1134
1135 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1136 {
1137 atomic_long_inc(&mm->rss_stat.count[member]);
1138 }
1139
1140 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1141 {
1142 atomic_long_dec(&mm->rss_stat.count[member]);
1143 }
1144
1145 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1146 {
1147 return get_mm_counter(mm, MM_FILEPAGES) +
1148 get_mm_counter(mm, MM_ANONPAGES);
1149 }
1150
1151 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1152 {
1153 return max(mm->hiwater_rss, get_mm_rss(mm));
1154 }
1155
1156 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1157 {
1158 return max(mm->hiwater_vm, mm->total_vm);
1159 }
1160
1161 static inline void update_hiwater_rss(struct mm_struct *mm)
1162 {
1163 unsigned long _rss = get_mm_rss(mm);
1164
1165 if ((mm)->hiwater_rss < _rss)
1166 (mm)->hiwater_rss = _rss;
1167 }
1168
1169 static inline void update_hiwater_vm(struct mm_struct *mm)
1170 {
1171 if (mm->hiwater_vm < mm->total_vm)
1172 mm->hiwater_vm = mm->total_vm;
1173 }
1174
1175 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1176 struct mm_struct *mm)
1177 {
1178 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1179
1180 if (*maxrss < hiwater_rss)
1181 *maxrss = hiwater_rss;
1182 }
1183
1184 #if defined(SPLIT_RSS_COUNTING)
1185 void sync_mm_rss(struct mm_struct *mm);
1186 #else
1187 static inline void sync_mm_rss(struct mm_struct *mm)
1188 {
1189 }
1190 #endif
1191
1192 int vma_wants_writenotify(struct vm_area_struct *vma);
1193
1194 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1195 spinlock_t **ptl);
1196 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1197 spinlock_t **ptl)
1198 {
1199 pte_t *ptep;
1200 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1201 return ptep;
1202 }
1203
1204 #ifdef __PAGETABLE_PUD_FOLDED
1205 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1206 unsigned long address)
1207 {
1208 return 0;
1209 }
1210 #else
1211 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1212 #endif
1213
1214 #ifdef __PAGETABLE_PMD_FOLDED
1215 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1216 unsigned long address)
1217 {
1218 return 0;
1219 }
1220 #else
1221 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1222 #endif
1223
1224 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1225 pmd_t *pmd, unsigned long address);
1226 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1227
1228 /*
1229 * The following ifdef needed to get the 4level-fixup.h header to work.
1230 * Remove it when 4level-fixup.h has been removed.
1231 */
1232 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1233 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1234 {
1235 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1236 NULL: pud_offset(pgd, address);
1237 }
1238
1239 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1240 {
1241 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1242 NULL: pmd_offset(pud, address);
1243 }
1244 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1245
1246 #if USE_SPLIT_PTLOCKS
1247 /*
1248 * We tuck a spinlock to guard each pagetable page into its struct page,
1249 * at page->private, with BUILD_BUG_ON to make sure that this will not
1250 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1251 * When freeing, reset page->mapping so free_pages_check won't complain.
1252 */
1253 #define __pte_lockptr(page) &((page)->ptl)
1254 #define pte_lock_init(_page) do { \
1255 spin_lock_init(__pte_lockptr(_page)); \
1256 } while (0)
1257 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1258 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1259 #else /* !USE_SPLIT_PTLOCKS */
1260 /*
1261 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1262 */
1263 #define pte_lock_init(page) do {} while (0)
1264 #define pte_lock_deinit(page) do {} while (0)
1265 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1266 #endif /* USE_SPLIT_PTLOCKS */
1267
1268 static inline void pgtable_page_ctor(struct page *page)
1269 {
1270 pte_lock_init(page);
1271 inc_zone_page_state(page, NR_PAGETABLE);
1272 }
1273
1274 static inline void pgtable_page_dtor(struct page *page)
1275 {
1276 pte_lock_deinit(page);
1277 dec_zone_page_state(page, NR_PAGETABLE);
1278 }
1279
1280 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1281 ({ \
1282 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1283 pte_t *__pte = pte_offset_map(pmd, address); \
1284 *(ptlp) = __ptl; \
1285 spin_lock(__ptl); \
1286 __pte; \
1287 })
1288
1289 #define pte_unmap_unlock(pte, ptl) do { \
1290 spin_unlock(ptl); \
1291 pte_unmap(pte); \
1292 } while (0)
1293
1294 #define pte_alloc_map(mm, vma, pmd, address) \
1295 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1296 pmd, address))? \
1297 NULL: pte_offset_map(pmd, address))
1298
1299 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1300 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1301 pmd, address))? \
1302 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1303
1304 #define pte_alloc_kernel(pmd, address) \
1305 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1306 NULL: pte_offset_kernel(pmd, address))
1307
1308 extern void free_area_init(unsigned long * zones_size);
1309 extern void free_area_init_node(int nid, unsigned long * zones_size,
1310 unsigned long zone_start_pfn, unsigned long *zholes_size);
1311 extern void free_initmem(void);
1312
1313 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1314 /*
1315 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1316 * zones, allocate the backing mem_map and account for memory holes in a more
1317 * architecture independent manner. This is a substitute for creating the
1318 * zone_sizes[] and zholes_size[] arrays and passing them to
1319 * free_area_init_node()
1320 *
1321 * An architecture is expected to register range of page frames backed by
1322 * physical memory with memblock_add[_node]() before calling
1323 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1324 * usage, an architecture is expected to do something like
1325 *
1326 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1327 * max_highmem_pfn};
1328 * for_each_valid_physical_page_range()
1329 * memblock_add_node(base, size, nid)
1330 * free_area_init_nodes(max_zone_pfns);
1331 *
1332 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1333 * registered physical page range. Similarly
1334 * sparse_memory_present_with_active_regions() calls memory_present() for
1335 * each range when SPARSEMEM is enabled.
1336 *
1337 * See mm/page_alloc.c for more information on each function exposed by
1338 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1339 */
1340 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1341 unsigned long node_map_pfn_alignment(void);
1342 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1343 unsigned long end_pfn);
1344 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1345 unsigned long end_pfn);
1346 extern void get_pfn_range_for_nid(unsigned int nid,
1347 unsigned long *start_pfn, unsigned long *end_pfn);
1348 extern unsigned long find_min_pfn_with_active_regions(void);
1349 extern void free_bootmem_with_active_regions(int nid,
1350 unsigned long max_low_pfn);
1351 extern void sparse_memory_present_with_active_regions(int nid);
1352
1353 #define MOVABLEMEM_MAP_MAX MAX_NUMNODES
1354 struct movablemem_entry {
1355 unsigned long start_pfn; /* start pfn of memory segment */
1356 unsigned long end_pfn; /* end pfn of memory segment (exclusive) */
1357 };
1358
1359 struct movablemem_map {
1360 bool acpi; /* true if using SRAT info */
1361 int nr_map;
1362 struct movablemem_entry map[MOVABLEMEM_MAP_MAX];
1363 nodemask_t numa_nodes_hotplug; /* on which nodes we specify memory */
1364 nodemask_t numa_nodes_kernel; /* on which nodes kernel resides in */
1365 };
1366
1367 extern void __init insert_movablemem_map(unsigned long start_pfn,
1368 unsigned long end_pfn);
1369 extern int __init movablemem_map_overlap(unsigned long start_pfn,
1370 unsigned long end_pfn);
1371 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1372
1373 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1374 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1375 static inline int __early_pfn_to_nid(unsigned long pfn)
1376 {
1377 return 0;
1378 }
1379 #else
1380 /* please see mm/page_alloc.c */
1381 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1382 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1383 /* there is a per-arch backend function. */
1384 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1385 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1386 #endif
1387
1388 extern void set_dma_reserve(unsigned long new_dma_reserve);
1389 extern void memmap_init_zone(unsigned long, int, unsigned long,
1390 unsigned long, enum memmap_context);
1391 extern void setup_per_zone_wmarks(void);
1392 extern int __meminit init_per_zone_wmark_min(void);
1393 extern void mem_init(void);
1394 extern void __init mmap_init(void);
1395 extern void show_mem(unsigned int flags);
1396 extern void si_meminfo(struct sysinfo * val);
1397 extern void si_meminfo_node(struct sysinfo *val, int nid);
1398
1399 extern __printf(3, 4)
1400 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1401
1402 extern void setup_per_cpu_pageset(void);
1403
1404 extern void zone_pcp_update(struct zone *zone);
1405 extern void zone_pcp_reset(struct zone *zone);
1406
1407 /* nommu.c */
1408 extern atomic_long_t mmap_pages_allocated;
1409 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1410
1411 /* interval_tree.c */
1412 void vma_interval_tree_insert(struct vm_area_struct *node,
1413 struct rb_root *root);
1414 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1415 struct vm_area_struct *prev,
1416 struct rb_root *root);
1417 void vma_interval_tree_remove(struct vm_area_struct *node,
1418 struct rb_root *root);
1419 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1420 unsigned long start, unsigned long last);
1421 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1422 unsigned long start, unsigned long last);
1423
1424 #define vma_interval_tree_foreach(vma, root, start, last) \
1425 for (vma = vma_interval_tree_iter_first(root, start, last); \
1426 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1427
1428 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1429 struct list_head *list)
1430 {
1431 list_add_tail(&vma->shared.nonlinear, list);
1432 }
1433
1434 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1435 struct rb_root *root);
1436 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1437 struct rb_root *root);
1438 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1439 struct rb_root *root, unsigned long start, unsigned long last);
1440 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1441 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1442 #ifdef CONFIG_DEBUG_VM_RB
1443 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1444 #endif
1445
1446 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1447 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1448 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1449
1450 /* mmap.c */
1451 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1452 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1453 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1454 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1455 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1456 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1457 struct mempolicy *);
1458 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1459 extern int split_vma(struct mm_struct *,
1460 struct vm_area_struct *, unsigned long addr, int new_below);
1461 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1462 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1463 struct rb_node **, struct rb_node *);
1464 extern void unlink_file_vma(struct vm_area_struct *);
1465 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1466 unsigned long addr, unsigned long len, pgoff_t pgoff,
1467 bool *need_rmap_locks);
1468 extern void exit_mmap(struct mm_struct *);
1469
1470 extern int mm_take_all_locks(struct mm_struct *mm);
1471 extern void mm_drop_all_locks(struct mm_struct *mm);
1472
1473 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1474 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1475
1476 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1477 extern int install_special_mapping(struct mm_struct *mm,
1478 unsigned long addr, unsigned long len,
1479 unsigned long flags, struct page **pages);
1480
1481 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1482
1483 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1484 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1485 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1486 unsigned long len, unsigned long prot, unsigned long flags,
1487 unsigned long pgoff, unsigned long *populate);
1488 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1489
1490 #ifdef CONFIG_MMU
1491 extern int __mm_populate(unsigned long addr, unsigned long len,
1492 int ignore_errors);
1493 static inline void mm_populate(unsigned long addr, unsigned long len)
1494 {
1495 /* Ignore errors */
1496 (void) __mm_populate(addr, len, 1);
1497 }
1498 #else
1499 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1500 #endif
1501
1502 /* These take the mm semaphore themselves */
1503 extern unsigned long vm_brk(unsigned long, unsigned long);
1504 extern int vm_munmap(unsigned long, size_t);
1505 extern unsigned long vm_mmap(struct file *, unsigned long,
1506 unsigned long, unsigned long,
1507 unsigned long, unsigned long);
1508
1509 struct vm_unmapped_area_info {
1510 #define VM_UNMAPPED_AREA_TOPDOWN 1
1511 unsigned long flags;
1512 unsigned long length;
1513 unsigned long low_limit;
1514 unsigned long high_limit;
1515 unsigned long align_mask;
1516 unsigned long align_offset;
1517 };
1518
1519 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1520 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1521
1522 /*
1523 * Search for an unmapped address range.
1524 *
1525 * We are looking for a range that:
1526 * - does not intersect with any VMA;
1527 * - is contained within the [low_limit, high_limit) interval;
1528 * - is at least the desired size.
1529 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1530 */
1531 static inline unsigned long
1532 vm_unmapped_area(struct vm_unmapped_area_info *info)
1533 {
1534 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1535 return unmapped_area(info);
1536 else
1537 return unmapped_area_topdown(info);
1538 }
1539
1540 /* truncate.c */
1541 extern void truncate_inode_pages(struct address_space *, loff_t);
1542 extern void truncate_inode_pages_range(struct address_space *,
1543 loff_t lstart, loff_t lend);
1544
1545 /* generic vm_area_ops exported for stackable file systems */
1546 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1547 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1548
1549 /* mm/page-writeback.c */
1550 int write_one_page(struct page *page, int wait);
1551 void task_dirty_inc(struct task_struct *tsk);
1552
1553 /* readahead.c */
1554 #define VM_MAX_READAHEAD 128 /* kbytes */
1555 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1556
1557 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1558 pgoff_t offset, unsigned long nr_to_read);
1559
1560 void page_cache_sync_readahead(struct address_space *mapping,
1561 struct file_ra_state *ra,
1562 struct file *filp,
1563 pgoff_t offset,
1564 unsigned long size);
1565
1566 void page_cache_async_readahead(struct address_space *mapping,
1567 struct file_ra_state *ra,
1568 struct file *filp,
1569 struct page *pg,
1570 pgoff_t offset,
1571 unsigned long size);
1572
1573 unsigned long max_sane_readahead(unsigned long nr);
1574 unsigned long ra_submit(struct file_ra_state *ra,
1575 struct address_space *mapping,
1576 struct file *filp);
1577
1578 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1579 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1580
1581 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1582 extern int expand_downwards(struct vm_area_struct *vma,
1583 unsigned long address);
1584 #if VM_GROWSUP
1585 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1586 #else
1587 #define expand_upwards(vma, address) do { } while (0)
1588 #endif
1589
1590 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1591 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1592 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1593 struct vm_area_struct **pprev);
1594
1595 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1596 NULL if none. Assume start_addr < end_addr. */
1597 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1598 {
1599 struct vm_area_struct * vma = find_vma(mm,start_addr);
1600
1601 if (vma && end_addr <= vma->vm_start)
1602 vma = NULL;
1603 return vma;
1604 }
1605
1606 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1607 {
1608 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1609 }
1610
1611 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1612 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1613 unsigned long vm_start, unsigned long vm_end)
1614 {
1615 struct vm_area_struct *vma = find_vma(mm, vm_start);
1616
1617 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1618 vma = NULL;
1619
1620 return vma;
1621 }
1622
1623 #ifdef CONFIG_MMU
1624 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1625 #else
1626 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1627 {
1628 return __pgprot(0);
1629 }
1630 #endif
1631
1632 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1633 unsigned long change_prot_numa(struct vm_area_struct *vma,
1634 unsigned long start, unsigned long end);
1635 #endif
1636
1637 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1638 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1639 unsigned long pfn, unsigned long size, pgprot_t);
1640 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1641 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1642 unsigned long pfn);
1643 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1644 unsigned long pfn);
1645
1646 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1647 unsigned int foll_flags);
1648 #define FOLL_WRITE 0x01 /* check pte is writable */
1649 #define FOLL_TOUCH 0x02 /* mark page accessed */
1650 #define FOLL_GET 0x04 /* do get_page on page */
1651 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1652 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1653 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1654 * and return without waiting upon it */
1655 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1656 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1657 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1658 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1659
1660 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1661 void *data);
1662 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1663 unsigned long size, pte_fn_t fn, void *data);
1664
1665 #ifdef CONFIG_PROC_FS
1666 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1667 #else
1668 static inline void vm_stat_account(struct mm_struct *mm,
1669 unsigned long flags, struct file *file, long pages)
1670 {
1671 mm->total_vm += pages;
1672 }
1673 #endif /* CONFIG_PROC_FS */
1674
1675 #ifdef CONFIG_DEBUG_PAGEALLOC
1676 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1677 #ifdef CONFIG_HIBERNATION
1678 extern bool kernel_page_present(struct page *page);
1679 #endif /* CONFIG_HIBERNATION */
1680 #else
1681 static inline void
1682 kernel_map_pages(struct page *page, int numpages, int enable) {}
1683 #ifdef CONFIG_HIBERNATION
1684 static inline bool kernel_page_present(struct page *page) { return true; }
1685 #endif /* CONFIG_HIBERNATION */
1686 #endif
1687
1688 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1689 #ifdef __HAVE_ARCH_GATE_AREA
1690 int in_gate_area_no_mm(unsigned long addr);
1691 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1692 #else
1693 int in_gate_area_no_mm(unsigned long addr);
1694 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1695 #endif /* __HAVE_ARCH_GATE_AREA */
1696
1697 int drop_caches_sysctl_handler(struct ctl_table *, int,
1698 void __user *, size_t *, loff_t *);
1699 unsigned long shrink_slab(struct shrink_control *shrink,
1700 unsigned long nr_pages_scanned,
1701 unsigned long lru_pages);
1702
1703 #ifndef CONFIG_MMU
1704 #define randomize_va_space 0
1705 #else
1706 extern int randomize_va_space;
1707 #endif
1708
1709 const char * arch_vma_name(struct vm_area_struct *vma);
1710 void print_vma_addr(char *prefix, unsigned long rip);
1711
1712 void sparse_mem_maps_populate_node(struct page **map_map,
1713 unsigned long pnum_begin,
1714 unsigned long pnum_end,
1715 unsigned long map_count,
1716 int nodeid);
1717
1718 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1719 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1720 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1721 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1722 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1723 void *vmemmap_alloc_block(unsigned long size, int node);
1724 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1725 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1726 int vmemmap_populate_basepages(struct page *start_page,
1727 unsigned long pages, int node);
1728 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1729 void vmemmap_populate_print_last(void);
1730 #ifdef CONFIG_MEMORY_HOTPLUG
1731 void vmemmap_free(struct page *memmap, unsigned long nr_pages);
1732 #endif
1733 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1734 unsigned long size);
1735
1736 enum mf_flags {
1737 MF_COUNT_INCREASED = 1 << 0,
1738 MF_ACTION_REQUIRED = 1 << 1,
1739 MF_MUST_KILL = 1 << 2,
1740 };
1741 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1742 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1743 extern int unpoison_memory(unsigned long pfn);
1744 extern int sysctl_memory_failure_early_kill;
1745 extern int sysctl_memory_failure_recovery;
1746 extern void shake_page(struct page *p, int access);
1747 extern atomic_long_t num_poisoned_pages;
1748 extern int soft_offline_page(struct page *page, int flags);
1749
1750 extern void dump_page(struct page *page);
1751
1752 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1753 extern void clear_huge_page(struct page *page,
1754 unsigned long addr,
1755 unsigned int pages_per_huge_page);
1756 extern void copy_user_huge_page(struct page *dst, struct page *src,
1757 unsigned long addr, struct vm_area_struct *vma,
1758 unsigned int pages_per_huge_page);
1759 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1760
1761 #ifdef CONFIG_DEBUG_PAGEALLOC
1762 extern unsigned int _debug_guardpage_minorder;
1763
1764 static inline unsigned int debug_guardpage_minorder(void)
1765 {
1766 return _debug_guardpage_minorder;
1767 }
1768
1769 static inline bool page_is_guard(struct page *page)
1770 {
1771 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1772 }
1773 #else
1774 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1775 static inline bool page_is_guard(struct page *page) { return false; }
1776 #endif /* CONFIG_DEBUG_PAGEALLOC */
1777
1778 #endif /* __KERNEL__ */
1779 #endif /* _LINUX_MM_H */