]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm.h
drivers/base: Introduce kill_device()
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28
29 struct mempolicy;
30 struct anon_vma;
31 struct anon_vma_chain;
32 struct file_ra_state;
33 struct user_struct;
34 struct writeback_control;
35 struct bdi_writeback;
36
37 void init_mm_internals(void);
38
39 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
40 extern unsigned long max_mapnr;
41
42 static inline void set_max_mapnr(unsigned long limit)
43 {
44 max_mapnr = limit;
45 }
46 #else
47 static inline void set_max_mapnr(unsigned long limit) { }
48 #endif
49
50 extern unsigned long totalram_pages;
51 extern void * high_memory;
52 extern int page_cluster;
53
54 #ifdef CONFIG_SYSCTL
55 extern int sysctl_legacy_va_layout;
56 #else
57 #define sysctl_legacy_va_layout 0
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 extern const int mmap_rnd_bits_min;
62 extern const int mmap_rnd_bits_max;
63 extern int mmap_rnd_bits __read_mostly;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 extern const int mmap_rnd_compat_bits_min;
67 extern const int mmap_rnd_compat_bits_max;
68 extern int mmap_rnd_compat_bits __read_mostly;
69 #endif
70
71 #include <asm/page.h>
72 #include <asm/pgtable.h>
73 #include <asm/processor.h>
74
75 #ifndef __pa_symbol
76 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77 #endif
78
79 #ifndef page_to_virt
80 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81 #endif
82
83 #ifndef lm_alias
84 #define lm_alias(x) __va(__pa_symbol(x))
85 #endif
86
87 /*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94 #ifndef mm_forbids_zeropage
95 #define mm_forbids_zeropage(X) (0)
96 #endif
97
98 /*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103 #ifndef mm_zero_struct_page
104 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105 #endif
106
107 /*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123 #define MAPCOUNT_ELF_CORE_MARGIN (5)
124 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126 extern int sysctl_max_map_count;
127
128 extern unsigned long sysctl_user_reserve_kbytes;
129 extern unsigned long sysctl_admin_reserve_kbytes;
130
131 extern int sysctl_overcommit_memory;
132 extern int sysctl_overcommit_ratio;
133 extern unsigned long sysctl_overcommit_kbytes;
134
135 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
140 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
142 /* to align the pointer to the (next) page boundary */
143 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
145 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
146 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
147
148 /*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
157 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
158 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
159 void vm_area_free(struct vm_area_struct *);
160
161 #ifndef CONFIG_MMU
162 extern struct rb_root nommu_region_tree;
163 extern struct rw_semaphore nommu_region_sem;
164
165 extern unsigned int kobjsize(const void *objp);
166 #endif
167
168 /*
169 * vm_flags in vm_area_struct, see mm_types.h.
170 * When changing, update also include/trace/events/mmflags.h
171 */
172 #define VM_NONE 0x00000000
173
174 #define VM_READ 0x00000001 /* currently active flags */
175 #define VM_WRITE 0x00000002
176 #define VM_EXEC 0x00000004
177 #define VM_SHARED 0x00000008
178
179 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
180 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
181 #define VM_MAYWRITE 0x00000020
182 #define VM_MAYEXEC 0x00000040
183 #define VM_MAYSHARE 0x00000080
184
185 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
186 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
187 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
188 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
189 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
190
191 #define VM_LOCKED 0x00002000
192 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
193
194 /* Used by sys_madvise() */
195 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
196 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
197
198 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
199 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
200 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
201 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
202 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
203 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
204 #define VM_SYNC 0x00800000 /* Synchronous page faults */
205 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
206 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
207 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
208
209 #ifdef CONFIG_MEM_SOFT_DIRTY
210 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
211 #else
212 # define VM_SOFTDIRTY 0
213 #endif
214
215 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
216 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
217 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
218 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
219
220 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
221 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
222 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
226 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
227 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
228 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
229 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
230 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
231 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
232
233 #if defined(CONFIG_X86)
234 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
235 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
236 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
237 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
238 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
239 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
240 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
241 #endif
242 #elif defined(CONFIG_PPC)
243 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
244 #elif defined(CONFIG_PARISC)
245 # define VM_GROWSUP VM_ARCH_1
246 #elif defined(CONFIG_METAG)
247 # define VM_GROWSUP VM_ARCH_1
248 #elif defined(CONFIG_IA64)
249 # define VM_GROWSUP VM_ARCH_1
250 #elif !defined(CONFIG_MMU)
251 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
252 #endif
253
254 #if defined(CONFIG_X86_INTEL_MPX)
255 /* MPX specific bounds table or bounds directory */
256 # define VM_MPX VM_HIGH_ARCH_4
257 #else
258 # define VM_MPX VM_NONE
259 #endif
260
261 #ifndef VM_GROWSUP
262 # define VM_GROWSUP VM_NONE
263 #endif
264
265 /* Bits set in the VMA until the stack is in its final location */
266 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
267
268 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
269 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
270 #endif
271
272 #ifdef CONFIG_STACK_GROWSUP
273 #define VM_STACK VM_GROWSUP
274 #else
275 #define VM_STACK VM_GROWSDOWN
276 #endif
277
278 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
279
280 /*
281 * Special vmas that are non-mergable, non-mlock()able.
282 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
283 */
284 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
285
286 /* This mask defines which mm->def_flags a process can inherit its parent */
287 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
288
289 /* This mask is used to clear all the VMA flags used by mlock */
290 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
291
292 /*
293 * mapping from the currently active vm_flags protection bits (the
294 * low four bits) to a page protection mask..
295 */
296 extern pgprot_t protection_map[16];
297
298 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
299 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
300 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
301 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
302 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
303 #define FAULT_FLAG_TRIED 0x20 /* Second try */
304 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
305 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
306 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
307
308 #define FAULT_FLAG_TRACE \
309 { FAULT_FLAG_WRITE, "WRITE" }, \
310 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
311 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
312 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
313 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
314 { FAULT_FLAG_TRIED, "TRIED" }, \
315 { FAULT_FLAG_USER, "USER" }, \
316 { FAULT_FLAG_REMOTE, "REMOTE" }, \
317 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
318
319 /*
320 * vm_fault is filled by the the pagefault handler and passed to the vma's
321 * ->fault function. The vma's ->fault is responsible for returning a bitmask
322 * of VM_FAULT_xxx flags that give details about how the fault was handled.
323 *
324 * MM layer fills up gfp_mask for page allocations but fault handler might
325 * alter it if its implementation requires a different allocation context.
326 *
327 * pgoff should be used in favour of virtual_address, if possible.
328 */
329 struct vm_fault {
330 struct vm_area_struct *vma; /* Target VMA */
331 unsigned int flags; /* FAULT_FLAG_xxx flags */
332 gfp_t gfp_mask; /* gfp mask to be used for allocations */
333 pgoff_t pgoff; /* Logical page offset based on vma */
334 unsigned long address; /* Faulting virtual address */
335 pmd_t *pmd; /* Pointer to pmd entry matching
336 * the 'address' */
337 pud_t *pud; /* Pointer to pud entry matching
338 * the 'address'
339 */
340 pte_t orig_pte; /* Value of PTE at the time of fault */
341
342 struct page *cow_page; /* Page handler may use for COW fault */
343 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
344 struct page *page; /* ->fault handlers should return a
345 * page here, unless VM_FAULT_NOPAGE
346 * is set (which is also implied by
347 * VM_FAULT_ERROR).
348 */
349 /* These three entries are valid only while holding ptl lock */
350 pte_t *pte; /* Pointer to pte entry matching
351 * the 'address'. NULL if the page
352 * table hasn't been allocated.
353 */
354 spinlock_t *ptl; /* Page table lock.
355 * Protects pte page table if 'pte'
356 * is not NULL, otherwise pmd.
357 */
358 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
359 * vm_ops->map_pages() calls
360 * alloc_set_pte() from atomic context.
361 * do_fault_around() pre-allocates
362 * page table to avoid allocation from
363 * atomic context.
364 */
365 };
366
367 /* page entry size for vm->huge_fault() */
368 enum page_entry_size {
369 PE_SIZE_PTE = 0,
370 PE_SIZE_PMD,
371 PE_SIZE_PUD,
372 };
373
374 /*
375 * These are the virtual MM functions - opening of an area, closing and
376 * unmapping it (needed to keep files on disk up-to-date etc), pointer
377 * to the functions called when a no-page or a wp-page exception occurs.
378 */
379 struct vm_operations_struct {
380 void (*open)(struct vm_area_struct * area);
381 void (*close)(struct vm_area_struct * area);
382 int (*split)(struct vm_area_struct * area, unsigned long addr);
383 int (*mremap)(struct vm_area_struct * area);
384 int (*fault)(struct vm_fault *vmf);
385 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
386 void (*map_pages)(struct vm_fault *vmf,
387 pgoff_t start_pgoff, pgoff_t end_pgoff);
388
389 /* notification that a previously read-only page is about to become
390 * writable, if an error is returned it will cause a SIGBUS */
391 int (*page_mkwrite)(struct vm_fault *vmf);
392
393 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
394 int (*pfn_mkwrite)(struct vm_fault *vmf);
395
396 /* called by access_process_vm when get_user_pages() fails, typically
397 * for use by special VMAs that can switch between memory and hardware
398 */
399 int (*access)(struct vm_area_struct *vma, unsigned long addr,
400 void *buf, int len, int write);
401
402 /* Called by the /proc/PID/maps code to ask the vma whether it
403 * has a special name. Returning non-NULL will also cause this
404 * vma to be dumped unconditionally. */
405 const char *(*name)(struct vm_area_struct *vma);
406
407 #ifdef CONFIG_NUMA
408 /*
409 * set_policy() op must add a reference to any non-NULL @new mempolicy
410 * to hold the policy upon return. Caller should pass NULL @new to
411 * remove a policy and fall back to surrounding context--i.e. do not
412 * install a MPOL_DEFAULT policy, nor the task or system default
413 * mempolicy.
414 */
415 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
416
417 /*
418 * get_policy() op must add reference [mpol_get()] to any policy at
419 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
420 * in mm/mempolicy.c will do this automatically.
421 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
422 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
423 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
424 * must return NULL--i.e., do not "fallback" to task or system default
425 * policy.
426 */
427 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
428 unsigned long addr);
429 #endif
430 /*
431 * Called by vm_normal_page() for special PTEs to find the
432 * page for @addr. This is useful if the default behavior
433 * (using pte_page()) would not find the correct page.
434 */
435 struct page *(*find_special_page)(struct vm_area_struct *vma,
436 unsigned long addr);
437 };
438
439 struct mmu_gather;
440 struct inode;
441
442 #define page_private(page) ((page)->private)
443 #define set_page_private(page, v) ((page)->private = (v))
444
445 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
446 static inline int pmd_devmap(pmd_t pmd)
447 {
448 return 0;
449 }
450 static inline int pud_devmap(pud_t pud)
451 {
452 return 0;
453 }
454 static inline int pgd_devmap(pgd_t pgd)
455 {
456 return 0;
457 }
458 #endif
459
460 /*
461 * FIXME: take this include out, include page-flags.h in
462 * files which need it (119 of them)
463 */
464 #include <linux/page-flags.h>
465 #include <linux/huge_mm.h>
466
467 /*
468 * Methods to modify the page usage count.
469 *
470 * What counts for a page usage:
471 * - cache mapping (page->mapping)
472 * - private data (page->private)
473 * - page mapped in a task's page tables, each mapping
474 * is counted separately
475 *
476 * Also, many kernel routines increase the page count before a critical
477 * routine so they can be sure the page doesn't go away from under them.
478 */
479
480 /*
481 * Drop a ref, return true if the refcount fell to zero (the page has no users)
482 */
483 static inline int put_page_testzero(struct page *page)
484 {
485 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
486 return page_ref_dec_and_test(page);
487 }
488
489 /*
490 * Try to grab a ref unless the page has a refcount of zero, return false if
491 * that is the case.
492 * This can be called when MMU is off so it must not access
493 * any of the virtual mappings.
494 */
495 static inline int get_page_unless_zero(struct page *page)
496 {
497 return page_ref_add_unless(page, 1, 0);
498 }
499
500 extern int page_is_ram(unsigned long pfn);
501
502 enum {
503 REGION_INTERSECTS,
504 REGION_DISJOINT,
505 REGION_MIXED,
506 };
507
508 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
509 unsigned long desc);
510
511 /* Support for virtually mapped pages */
512 struct page *vmalloc_to_page(const void *addr);
513 unsigned long vmalloc_to_pfn(const void *addr);
514
515 /*
516 * Determine if an address is within the vmalloc range
517 *
518 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
519 * is no special casing required.
520 */
521 static inline bool is_vmalloc_addr(const void *x)
522 {
523 #ifdef CONFIG_MMU
524 unsigned long addr = (unsigned long)x;
525
526 return addr >= VMALLOC_START && addr < VMALLOC_END;
527 #else
528 return false;
529 #endif
530 }
531 #ifdef CONFIG_MMU
532 extern int is_vmalloc_or_module_addr(const void *x);
533 #else
534 static inline int is_vmalloc_or_module_addr(const void *x)
535 {
536 return 0;
537 }
538 #endif
539
540 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
541 static inline void *kvmalloc(size_t size, gfp_t flags)
542 {
543 return kvmalloc_node(size, flags, NUMA_NO_NODE);
544 }
545 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
546 {
547 return kvmalloc_node(size, flags | __GFP_ZERO, node);
548 }
549 static inline void *kvzalloc(size_t size, gfp_t flags)
550 {
551 return kvmalloc(size, flags | __GFP_ZERO);
552 }
553
554 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
555 {
556 if (size != 0 && n > SIZE_MAX / size)
557 return NULL;
558
559 return kvmalloc(n * size, flags);
560 }
561
562 extern void kvfree(const void *addr);
563
564 static inline atomic_t *compound_mapcount_ptr(struct page *page)
565 {
566 return &page[1].compound_mapcount;
567 }
568
569 static inline int compound_mapcount(struct page *page)
570 {
571 VM_BUG_ON_PAGE(!PageCompound(page), page);
572 page = compound_head(page);
573 return atomic_read(compound_mapcount_ptr(page)) + 1;
574 }
575
576 /*
577 * The atomic page->_mapcount, starts from -1: so that transitions
578 * both from it and to it can be tracked, using atomic_inc_and_test
579 * and atomic_add_negative(-1).
580 */
581 static inline void page_mapcount_reset(struct page *page)
582 {
583 atomic_set(&(page)->_mapcount, -1);
584 }
585
586 int __page_mapcount(struct page *page);
587
588 static inline int page_mapcount(struct page *page)
589 {
590 VM_BUG_ON_PAGE(PageSlab(page), page);
591
592 if (unlikely(PageCompound(page)))
593 return __page_mapcount(page);
594 return atomic_read(&page->_mapcount) + 1;
595 }
596
597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
598 int total_mapcount(struct page *page);
599 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
600 #else
601 static inline int total_mapcount(struct page *page)
602 {
603 return page_mapcount(page);
604 }
605 static inline int page_trans_huge_mapcount(struct page *page,
606 int *total_mapcount)
607 {
608 int mapcount = page_mapcount(page);
609 if (total_mapcount)
610 *total_mapcount = mapcount;
611 return mapcount;
612 }
613 #endif
614
615 static inline struct page *virt_to_head_page(const void *x)
616 {
617 struct page *page = virt_to_page(x);
618
619 return compound_head(page);
620 }
621
622 void __put_page(struct page *page);
623
624 void put_pages_list(struct list_head *pages);
625
626 void split_page(struct page *page, unsigned int order);
627
628 /*
629 * Compound pages have a destructor function. Provide a
630 * prototype for that function and accessor functions.
631 * These are _only_ valid on the head of a compound page.
632 */
633 typedef void compound_page_dtor(struct page *);
634
635 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
636 enum compound_dtor_id {
637 NULL_COMPOUND_DTOR,
638 COMPOUND_PAGE_DTOR,
639 #ifdef CONFIG_HUGETLB_PAGE
640 HUGETLB_PAGE_DTOR,
641 #endif
642 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
643 TRANSHUGE_PAGE_DTOR,
644 #endif
645 NR_COMPOUND_DTORS,
646 };
647 extern compound_page_dtor * const compound_page_dtors[];
648
649 static inline void set_compound_page_dtor(struct page *page,
650 enum compound_dtor_id compound_dtor)
651 {
652 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
653 page[1].compound_dtor = compound_dtor;
654 }
655
656 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
657 {
658 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
659 return compound_page_dtors[page[1].compound_dtor];
660 }
661
662 static inline unsigned int compound_order(struct page *page)
663 {
664 if (!PageHead(page))
665 return 0;
666 return page[1].compound_order;
667 }
668
669 static inline void set_compound_order(struct page *page, unsigned int order)
670 {
671 page[1].compound_order = order;
672 }
673
674 void free_compound_page(struct page *page);
675
676 #ifdef CONFIG_MMU
677 /*
678 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
679 * servicing faults for write access. In the normal case, do always want
680 * pte_mkwrite. But get_user_pages can cause write faults for mappings
681 * that do not have writing enabled, when used by access_process_vm.
682 */
683 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
684 {
685 if (likely(vma->vm_flags & VM_WRITE))
686 pte = pte_mkwrite(pte);
687 return pte;
688 }
689
690 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
691 struct page *page);
692 int finish_fault(struct vm_fault *vmf);
693 int finish_mkwrite_fault(struct vm_fault *vmf);
694 #endif
695
696 /*
697 * Multiple processes may "see" the same page. E.g. for untouched
698 * mappings of /dev/null, all processes see the same page full of
699 * zeroes, and text pages of executables and shared libraries have
700 * only one copy in memory, at most, normally.
701 *
702 * For the non-reserved pages, page_count(page) denotes a reference count.
703 * page_count() == 0 means the page is free. page->lru is then used for
704 * freelist management in the buddy allocator.
705 * page_count() > 0 means the page has been allocated.
706 *
707 * Pages are allocated by the slab allocator in order to provide memory
708 * to kmalloc and kmem_cache_alloc. In this case, the management of the
709 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
710 * unless a particular usage is carefully commented. (the responsibility of
711 * freeing the kmalloc memory is the caller's, of course).
712 *
713 * A page may be used by anyone else who does a __get_free_page().
714 * In this case, page_count still tracks the references, and should only
715 * be used through the normal accessor functions. The top bits of page->flags
716 * and page->virtual store page management information, but all other fields
717 * are unused and could be used privately, carefully. The management of this
718 * page is the responsibility of the one who allocated it, and those who have
719 * subsequently been given references to it.
720 *
721 * The other pages (we may call them "pagecache pages") are completely
722 * managed by the Linux memory manager: I/O, buffers, swapping etc.
723 * The following discussion applies only to them.
724 *
725 * A pagecache page contains an opaque `private' member, which belongs to the
726 * page's address_space. Usually, this is the address of a circular list of
727 * the page's disk buffers. PG_private must be set to tell the VM to call
728 * into the filesystem to release these pages.
729 *
730 * A page may belong to an inode's memory mapping. In this case, page->mapping
731 * is the pointer to the inode, and page->index is the file offset of the page,
732 * in units of PAGE_SIZE.
733 *
734 * If pagecache pages are not associated with an inode, they are said to be
735 * anonymous pages. These may become associated with the swapcache, and in that
736 * case PG_swapcache is set, and page->private is an offset into the swapcache.
737 *
738 * In either case (swapcache or inode backed), the pagecache itself holds one
739 * reference to the page. Setting PG_private should also increment the
740 * refcount. The each user mapping also has a reference to the page.
741 *
742 * The pagecache pages are stored in a per-mapping radix tree, which is
743 * rooted at mapping->page_tree, and indexed by offset.
744 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
745 * lists, we instead now tag pages as dirty/writeback in the radix tree.
746 *
747 * All pagecache pages may be subject to I/O:
748 * - inode pages may need to be read from disk,
749 * - inode pages which have been modified and are MAP_SHARED may need
750 * to be written back to the inode on disk,
751 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
752 * modified may need to be swapped out to swap space and (later) to be read
753 * back into memory.
754 */
755
756 /*
757 * The zone field is never updated after free_area_init_core()
758 * sets it, so none of the operations on it need to be atomic.
759 */
760
761 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
762 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
763 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
764 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
765 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
766
767 /*
768 * Define the bit shifts to access each section. For non-existent
769 * sections we define the shift as 0; that plus a 0 mask ensures
770 * the compiler will optimise away reference to them.
771 */
772 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
773 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
774 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
775 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
776
777 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
778 #ifdef NODE_NOT_IN_PAGE_FLAGS
779 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
780 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
781 SECTIONS_PGOFF : ZONES_PGOFF)
782 #else
783 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
784 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
785 NODES_PGOFF : ZONES_PGOFF)
786 #endif
787
788 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
789
790 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
791 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
792 #endif
793
794 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
795 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
796 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
797 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
798 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
799
800 static inline enum zone_type page_zonenum(const struct page *page)
801 {
802 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
803 }
804
805 #ifdef CONFIG_ZONE_DEVICE
806 static inline bool is_zone_device_page(const struct page *page)
807 {
808 return page_zonenum(page) == ZONE_DEVICE;
809 }
810 #else
811 static inline bool is_zone_device_page(const struct page *page)
812 {
813 return false;
814 }
815 #endif
816
817 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
818 void put_zone_device_private_or_public_page(struct page *page);
819 DECLARE_STATIC_KEY_FALSE(device_private_key);
820 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
821 static inline bool is_device_private_page(const struct page *page);
822 static inline bool is_device_public_page(const struct page *page);
823 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
824 static inline void put_zone_device_private_or_public_page(struct page *page)
825 {
826 }
827 #define IS_HMM_ENABLED 0
828 static inline bool is_device_private_page(const struct page *page)
829 {
830 return false;
831 }
832 static inline bool is_device_public_page(const struct page *page)
833 {
834 return false;
835 }
836 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
837
838
839 /* 127: arbitrary random number, small enough to assemble well */
840 #define page_ref_zero_or_close_to_overflow(page) \
841 ((unsigned int) page_ref_count(page) + 127u <= 127u)
842
843 static inline void get_page(struct page *page)
844 {
845 page = compound_head(page);
846 /*
847 * Getting a normal page or the head of a compound page
848 * requires to already have an elevated page->_refcount.
849 */
850 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
851 page_ref_inc(page);
852 }
853
854 static inline __must_check bool try_get_page(struct page *page)
855 {
856 page = compound_head(page);
857 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
858 return false;
859 page_ref_inc(page);
860 return true;
861 }
862
863 static inline void put_page(struct page *page)
864 {
865 page = compound_head(page);
866
867 /*
868 * For private device pages we need to catch refcount transition from
869 * 2 to 1, when refcount reach one it means the private device page is
870 * free and we need to inform the device driver through callback. See
871 * include/linux/memremap.h and HMM for details.
872 */
873 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
874 unlikely(is_device_public_page(page)))) {
875 put_zone_device_private_or_public_page(page);
876 return;
877 }
878
879 if (put_page_testzero(page))
880 __put_page(page);
881 }
882
883 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
884 #define SECTION_IN_PAGE_FLAGS
885 #endif
886
887 /*
888 * The identification function is mainly used by the buddy allocator for
889 * determining if two pages could be buddies. We are not really identifying
890 * the zone since we could be using the section number id if we do not have
891 * node id available in page flags.
892 * We only guarantee that it will return the same value for two combinable
893 * pages in a zone.
894 */
895 static inline int page_zone_id(struct page *page)
896 {
897 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
898 }
899
900 static inline int zone_to_nid(struct zone *zone)
901 {
902 #ifdef CONFIG_NUMA
903 return zone->node;
904 #else
905 return 0;
906 #endif
907 }
908
909 #ifdef NODE_NOT_IN_PAGE_FLAGS
910 extern int page_to_nid(const struct page *page);
911 #else
912 static inline int page_to_nid(const struct page *page)
913 {
914 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
915 }
916 #endif
917
918 #ifdef CONFIG_NUMA_BALANCING
919 static inline int cpu_pid_to_cpupid(int cpu, int pid)
920 {
921 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
922 }
923
924 static inline int cpupid_to_pid(int cpupid)
925 {
926 return cpupid & LAST__PID_MASK;
927 }
928
929 static inline int cpupid_to_cpu(int cpupid)
930 {
931 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
932 }
933
934 static inline int cpupid_to_nid(int cpupid)
935 {
936 return cpu_to_node(cpupid_to_cpu(cpupid));
937 }
938
939 static inline bool cpupid_pid_unset(int cpupid)
940 {
941 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
942 }
943
944 static inline bool cpupid_cpu_unset(int cpupid)
945 {
946 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
947 }
948
949 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
950 {
951 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
952 }
953
954 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
955 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
956 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
957 {
958 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
959 }
960
961 static inline int page_cpupid_last(struct page *page)
962 {
963 return page->_last_cpupid;
964 }
965 static inline void page_cpupid_reset_last(struct page *page)
966 {
967 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
968 }
969 #else
970 static inline int page_cpupid_last(struct page *page)
971 {
972 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
973 }
974
975 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
976
977 static inline void page_cpupid_reset_last(struct page *page)
978 {
979 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
980 }
981 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
982 #else /* !CONFIG_NUMA_BALANCING */
983 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
984 {
985 return page_to_nid(page); /* XXX */
986 }
987
988 static inline int page_cpupid_last(struct page *page)
989 {
990 return page_to_nid(page); /* XXX */
991 }
992
993 static inline int cpupid_to_nid(int cpupid)
994 {
995 return -1;
996 }
997
998 static inline int cpupid_to_pid(int cpupid)
999 {
1000 return -1;
1001 }
1002
1003 static inline int cpupid_to_cpu(int cpupid)
1004 {
1005 return -1;
1006 }
1007
1008 static inline int cpu_pid_to_cpupid(int nid, int pid)
1009 {
1010 return -1;
1011 }
1012
1013 static inline bool cpupid_pid_unset(int cpupid)
1014 {
1015 return 1;
1016 }
1017
1018 static inline void page_cpupid_reset_last(struct page *page)
1019 {
1020 }
1021
1022 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1023 {
1024 return false;
1025 }
1026 #endif /* CONFIG_NUMA_BALANCING */
1027
1028 static inline struct zone *page_zone(const struct page *page)
1029 {
1030 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1031 }
1032
1033 static inline pg_data_t *page_pgdat(const struct page *page)
1034 {
1035 return NODE_DATA(page_to_nid(page));
1036 }
1037
1038 #ifdef SECTION_IN_PAGE_FLAGS
1039 static inline void set_page_section(struct page *page, unsigned long section)
1040 {
1041 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1042 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1043 }
1044
1045 static inline unsigned long page_to_section(const struct page *page)
1046 {
1047 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1048 }
1049 #endif
1050
1051 static inline void set_page_zone(struct page *page, enum zone_type zone)
1052 {
1053 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1054 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1055 }
1056
1057 static inline void set_page_node(struct page *page, unsigned long node)
1058 {
1059 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1060 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1061 }
1062
1063 static inline void set_page_links(struct page *page, enum zone_type zone,
1064 unsigned long node, unsigned long pfn)
1065 {
1066 set_page_zone(page, zone);
1067 set_page_node(page, node);
1068 #ifdef SECTION_IN_PAGE_FLAGS
1069 set_page_section(page, pfn_to_section_nr(pfn));
1070 #endif
1071 }
1072
1073 #ifdef CONFIG_MEMCG
1074 static inline struct mem_cgroup *page_memcg(struct page *page)
1075 {
1076 return page->mem_cgroup;
1077 }
1078 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1079 {
1080 WARN_ON_ONCE(!rcu_read_lock_held());
1081 return READ_ONCE(page->mem_cgroup);
1082 }
1083 #else
1084 static inline struct mem_cgroup *page_memcg(struct page *page)
1085 {
1086 return NULL;
1087 }
1088 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1089 {
1090 WARN_ON_ONCE(!rcu_read_lock_held());
1091 return NULL;
1092 }
1093 #endif
1094
1095 /*
1096 * Some inline functions in vmstat.h depend on page_zone()
1097 */
1098 #include <linux/vmstat.h>
1099
1100 static __always_inline void *lowmem_page_address(const struct page *page)
1101 {
1102 return page_to_virt(page);
1103 }
1104
1105 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1106 #define HASHED_PAGE_VIRTUAL
1107 #endif
1108
1109 #if defined(WANT_PAGE_VIRTUAL)
1110 static inline void *page_address(const struct page *page)
1111 {
1112 return page->virtual;
1113 }
1114 static inline void set_page_address(struct page *page, void *address)
1115 {
1116 page->virtual = address;
1117 }
1118 #define page_address_init() do { } while(0)
1119 #endif
1120
1121 #if defined(HASHED_PAGE_VIRTUAL)
1122 void *page_address(const struct page *page);
1123 void set_page_address(struct page *page, void *virtual);
1124 void page_address_init(void);
1125 #endif
1126
1127 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1128 #define page_address(page) lowmem_page_address(page)
1129 #define set_page_address(page, address) do { } while(0)
1130 #define page_address_init() do { } while(0)
1131 #endif
1132
1133 extern void *page_rmapping(struct page *page);
1134 extern struct anon_vma *page_anon_vma(struct page *page);
1135 extern struct address_space *page_mapping(struct page *page);
1136
1137 extern struct address_space *__page_file_mapping(struct page *);
1138
1139 static inline
1140 struct address_space *page_file_mapping(struct page *page)
1141 {
1142 if (unlikely(PageSwapCache(page)))
1143 return __page_file_mapping(page);
1144
1145 return page->mapping;
1146 }
1147
1148 extern pgoff_t __page_file_index(struct page *page);
1149
1150 /*
1151 * Return the pagecache index of the passed page. Regular pagecache pages
1152 * use ->index whereas swapcache pages use swp_offset(->private)
1153 */
1154 static inline pgoff_t page_index(struct page *page)
1155 {
1156 if (unlikely(PageSwapCache(page)))
1157 return __page_file_index(page);
1158 return page->index;
1159 }
1160
1161 bool page_mapped(struct page *page);
1162 struct address_space *page_mapping(struct page *page);
1163
1164 /*
1165 * Return true only if the page has been allocated with
1166 * ALLOC_NO_WATERMARKS and the low watermark was not
1167 * met implying that the system is under some pressure.
1168 */
1169 static inline bool page_is_pfmemalloc(struct page *page)
1170 {
1171 /*
1172 * Page index cannot be this large so this must be
1173 * a pfmemalloc page.
1174 */
1175 return page->index == -1UL;
1176 }
1177
1178 /*
1179 * Only to be called by the page allocator on a freshly allocated
1180 * page.
1181 */
1182 static inline void set_page_pfmemalloc(struct page *page)
1183 {
1184 page->index = -1UL;
1185 }
1186
1187 static inline void clear_page_pfmemalloc(struct page *page)
1188 {
1189 page->index = 0;
1190 }
1191
1192 /*
1193 * Different kinds of faults, as returned by handle_mm_fault().
1194 * Used to decide whether a process gets delivered SIGBUS or
1195 * just gets major/minor fault counters bumped up.
1196 */
1197
1198 #define VM_FAULT_OOM 0x0001
1199 #define VM_FAULT_SIGBUS 0x0002
1200 #define VM_FAULT_MAJOR 0x0004
1201 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1202 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1203 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1204 #define VM_FAULT_SIGSEGV 0x0040
1205
1206 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1207 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1208 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1209 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1210 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1211 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1212 * and needs fsync() to complete (for
1213 * synchronous page faults in DAX) */
1214
1215 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1216 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1217 VM_FAULT_FALLBACK)
1218
1219 #define VM_FAULT_RESULT_TRACE \
1220 { VM_FAULT_OOM, "OOM" }, \
1221 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1222 { VM_FAULT_MAJOR, "MAJOR" }, \
1223 { VM_FAULT_WRITE, "WRITE" }, \
1224 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1225 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1226 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1227 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1228 { VM_FAULT_LOCKED, "LOCKED" }, \
1229 { VM_FAULT_RETRY, "RETRY" }, \
1230 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1231 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1232 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1233
1234 /* Encode hstate index for a hwpoisoned large page */
1235 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1236 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1237
1238 /*
1239 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1240 */
1241 extern void pagefault_out_of_memory(void);
1242
1243 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1244
1245 /*
1246 * Flags passed to show_mem() and show_free_areas() to suppress output in
1247 * various contexts.
1248 */
1249 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1250
1251 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1252
1253 extern bool can_do_mlock(void);
1254 extern int user_shm_lock(size_t, struct user_struct *);
1255 extern void user_shm_unlock(size_t, struct user_struct *);
1256
1257 /*
1258 * Parameter block passed down to zap_pte_range in exceptional cases.
1259 */
1260 struct zap_details {
1261 struct address_space *check_mapping; /* Check page->mapping if set */
1262 pgoff_t first_index; /* Lowest page->index to unmap */
1263 pgoff_t last_index; /* Highest page->index to unmap */
1264 };
1265
1266 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1267 pte_t pte, bool with_public_device);
1268 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1269
1270 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1271 pmd_t pmd);
1272
1273 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1274 unsigned long size);
1275 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1276 unsigned long size);
1277 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1278 unsigned long start, unsigned long end);
1279
1280 /**
1281 * mm_walk - callbacks for walk_page_range
1282 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1283 * this handler should only handle pud_trans_huge() puds.
1284 * the pmd_entry or pte_entry callbacks will be used for
1285 * regular PUDs.
1286 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1287 * this handler is required to be able to handle
1288 * pmd_trans_huge() pmds. They may simply choose to
1289 * split_huge_page() instead of handling it explicitly.
1290 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1291 * @pte_hole: if set, called for each hole at all levels
1292 * @hugetlb_entry: if set, called for each hugetlb entry
1293 * @test_walk: caller specific callback function to determine whether
1294 * we walk over the current vma or not. Returning 0
1295 * value means "do page table walk over the current vma,"
1296 * and a negative one means "abort current page table walk
1297 * right now." 1 means "skip the current vma."
1298 * @mm: mm_struct representing the target process of page table walk
1299 * @vma: vma currently walked (NULL if walking outside vmas)
1300 * @private: private data for callbacks' usage
1301 *
1302 * (see the comment on walk_page_range() for more details)
1303 */
1304 struct mm_walk {
1305 int (*pud_entry)(pud_t *pud, unsigned long addr,
1306 unsigned long next, struct mm_walk *walk);
1307 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1308 unsigned long next, struct mm_walk *walk);
1309 int (*pte_entry)(pte_t *pte, unsigned long addr,
1310 unsigned long next, struct mm_walk *walk);
1311 int (*pte_hole)(unsigned long addr, unsigned long next,
1312 struct mm_walk *walk);
1313 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1314 unsigned long addr, unsigned long next,
1315 struct mm_walk *walk);
1316 int (*test_walk)(unsigned long addr, unsigned long next,
1317 struct mm_walk *walk);
1318 struct mm_struct *mm;
1319 struct vm_area_struct *vma;
1320 void *private;
1321 };
1322
1323 int walk_page_range(unsigned long addr, unsigned long end,
1324 struct mm_walk *walk);
1325 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1326 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1327 unsigned long end, unsigned long floor, unsigned long ceiling);
1328 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1329 struct vm_area_struct *vma);
1330 void unmap_mapping_range(struct address_space *mapping,
1331 loff_t const holebegin, loff_t const holelen, int even_cows);
1332 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1333 unsigned long *start, unsigned long *end,
1334 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1335 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1336 unsigned long *pfn);
1337 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1338 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1339 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1340 void *buf, int len, int write);
1341
1342 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1343 loff_t const holebegin, loff_t const holelen)
1344 {
1345 unmap_mapping_range(mapping, holebegin, holelen, 0);
1346 }
1347
1348 extern void truncate_pagecache(struct inode *inode, loff_t new);
1349 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1350 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1351 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1352 int truncate_inode_page(struct address_space *mapping, struct page *page);
1353 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1354 int invalidate_inode_page(struct page *page);
1355
1356 #ifdef CONFIG_MMU
1357 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1358 unsigned int flags);
1359 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1360 unsigned long address, unsigned int fault_flags,
1361 bool *unlocked);
1362 #else
1363 static inline int handle_mm_fault(struct vm_area_struct *vma,
1364 unsigned long address, unsigned int flags)
1365 {
1366 /* should never happen if there's no MMU */
1367 BUG();
1368 return VM_FAULT_SIGBUS;
1369 }
1370 static inline int fixup_user_fault(struct task_struct *tsk,
1371 struct mm_struct *mm, unsigned long address,
1372 unsigned int fault_flags, bool *unlocked)
1373 {
1374 /* should never happen if there's no MMU */
1375 BUG();
1376 return -EFAULT;
1377 }
1378 #endif
1379
1380 extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1381 extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1382 int);
1383 extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1384 extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1385
1386 #define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1387 __LINE__)
1388 #define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1389 __LINE__)
1390 #define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1391 #define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1392
1393 #ifndef CONFIG_MMU
1394 extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1395 extern void vmr_do_fput(struct vm_region *, const char[], int);
1396
1397 #define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1398 __LINE__)
1399 #define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1400 #endif /* !CONFIG_MMU */
1401
1402 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1403 unsigned int gup_flags);
1404 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1405 void *buf, int len, unsigned int gup_flags);
1406 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1407 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1408
1409 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1410 unsigned long start, unsigned long nr_pages,
1411 unsigned int gup_flags, struct page **pages,
1412 struct vm_area_struct **vmas, int *locked);
1413 long get_user_pages(unsigned long start, unsigned long nr_pages,
1414 unsigned int gup_flags, struct page **pages,
1415 struct vm_area_struct **vmas);
1416 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1417 unsigned int gup_flags, struct page **pages, int *locked);
1418 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1419 struct page **pages, unsigned int gup_flags);
1420 #ifdef CONFIG_FS_DAX
1421 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1422 unsigned int gup_flags, struct page **pages,
1423 struct vm_area_struct **vmas);
1424 #else
1425 static inline long get_user_pages_longterm(unsigned long start,
1426 unsigned long nr_pages, unsigned int gup_flags,
1427 struct page **pages, struct vm_area_struct **vmas)
1428 {
1429 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1430 }
1431 #endif /* CONFIG_FS_DAX */
1432
1433 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1434 struct page **pages);
1435
1436 /* Container for pinned pfns / pages */
1437 struct frame_vector {
1438 unsigned int nr_allocated; /* Number of frames we have space for */
1439 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1440 bool got_ref; /* Did we pin pages by getting page ref? */
1441 bool is_pfns; /* Does array contain pages or pfns? */
1442 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1443 * pfns_vector_pages() or pfns_vector_pfns()
1444 * for access */
1445 };
1446
1447 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1448 void frame_vector_destroy(struct frame_vector *vec);
1449 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1450 unsigned int gup_flags, struct frame_vector *vec);
1451 void put_vaddr_frames(struct frame_vector *vec);
1452 int frame_vector_to_pages(struct frame_vector *vec);
1453 void frame_vector_to_pfns(struct frame_vector *vec);
1454
1455 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1456 {
1457 return vec->nr_frames;
1458 }
1459
1460 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1461 {
1462 if (vec->is_pfns) {
1463 int err = frame_vector_to_pages(vec);
1464
1465 if (err)
1466 return ERR_PTR(err);
1467 }
1468 return (struct page **)(vec->ptrs);
1469 }
1470
1471 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1472 {
1473 if (!vec->is_pfns)
1474 frame_vector_to_pfns(vec);
1475 return (unsigned long *)(vec->ptrs);
1476 }
1477
1478 struct kvec;
1479 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1480 struct page **pages);
1481 int get_kernel_page(unsigned long start, int write, struct page **pages);
1482 struct page *get_dump_page(unsigned long addr);
1483
1484 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1485 extern void do_invalidatepage(struct page *page, unsigned int offset,
1486 unsigned int length);
1487
1488 int __set_page_dirty_nobuffers(struct page *page);
1489 int __set_page_dirty_no_writeback(struct page *page);
1490 int redirty_page_for_writepage(struct writeback_control *wbc,
1491 struct page *page);
1492 void account_page_dirtied(struct page *page, struct address_space *mapping);
1493 void account_page_cleaned(struct page *page, struct address_space *mapping,
1494 struct bdi_writeback *wb);
1495 int set_page_dirty(struct page *page);
1496 int set_page_dirty_lock(struct page *page);
1497 void __cancel_dirty_page(struct page *page);
1498 static inline void cancel_dirty_page(struct page *page)
1499 {
1500 /* Avoid atomic ops, locking, etc. when not actually needed. */
1501 if (PageDirty(page))
1502 __cancel_dirty_page(page);
1503 }
1504 int clear_page_dirty_for_io(struct page *page);
1505
1506 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1507
1508 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1509 {
1510 return !vma->vm_ops;
1511 }
1512
1513 #ifdef CONFIG_SHMEM
1514 /*
1515 * The vma_is_shmem is not inline because it is used only by slow
1516 * paths in userfault.
1517 */
1518 bool vma_is_shmem(struct vm_area_struct *vma);
1519 #else
1520 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1521 #endif
1522
1523 int vma_is_stack_for_current(struct vm_area_struct *vma);
1524
1525 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1526 unsigned long old_addr, struct vm_area_struct *new_vma,
1527 unsigned long new_addr, unsigned long len,
1528 bool need_rmap_locks);
1529 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1530 unsigned long end, pgprot_t newprot,
1531 int dirty_accountable, int prot_numa);
1532 extern int mprotect_fixup(struct vm_area_struct *vma,
1533 struct vm_area_struct **pprev, unsigned long start,
1534 unsigned long end, unsigned long newflags);
1535
1536 /*
1537 * doesn't attempt to fault and will return short.
1538 */
1539 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1540 struct page **pages);
1541 /*
1542 * per-process(per-mm_struct) statistics.
1543 */
1544 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1545 {
1546 long val = atomic_long_read(&mm->rss_stat.count[member]);
1547
1548 #ifdef SPLIT_RSS_COUNTING
1549 /*
1550 * counter is updated in asynchronous manner and may go to minus.
1551 * But it's never be expected number for users.
1552 */
1553 if (val < 0)
1554 val = 0;
1555 #endif
1556 return (unsigned long)val;
1557 }
1558
1559 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1560 {
1561 atomic_long_add(value, &mm->rss_stat.count[member]);
1562 }
1563
1564 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1565 {
1566 atomic_long_inc(&mm->rss_stat.count[member]);
1567 }
1568
1569 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1570 {
1571 atomic_long_dec(&mm->rss_stat.count[member]);
1572 }
1573
1574 /* Optimized variant when page is already known not to be PageAnon */
1575 static inline int mm_counter_file(struct page *page)
1576 {
1577 if (PageSwapBacked(page))
1578 return MM_SHMEMPAGES;
1579 return MM_FILEPAGES;
1580 }
1581
1582 static inline int mm_counter(struct page *page)
1583 {
1584 if (PageAnon(page))
1585 return MM_ANONPAGES;
1586 return mm_counter_file(page);
1587 }
1588
1589 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1590 {
1591 return get_mm_counter(mm, MM_FILEPAGES) +
1592 get_mm_counter(mm, MM_ANONPAGES) +
1593 get_mm_counter(mm, MM_SHMEMPAGES);
1594 }
1595
1596 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1597 {
1598 return max(mm->hiwater_rss, get_mm_rss(mm));
1599 }
1600
1601 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1602 {
1603 return max(mm->hiwater_vm, mm->total_vm);
1604 }
1605
1606 static inline void update_hiwater_rss(struct mm_struct *mm)
1607 {
1608 unsigned long _rss = get_mm_rss(mm);
1609
1610 if ((mm)->hiwater_rss < _rss)
1611 (mm)->hiwater_rss = _rss;
1612 }
1613
1614 static inline void update_hiwater_vm(struct mm_struct *mm)
1615 {
1616 if (mm->hiwater_vm < mm->total_vm)
1617 mm->hiwater_vm = mm->total_vm;
1618 }
1619
1620 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1621 {
1622 mm->hiwater_rss = get_mm_rss(mm);
1623 }
1624
1625 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1626 struct mm_struct *mm)
1627 {
1628 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1629
1630 if (*maxrss < hiwater_rss)
1631 *maxrss = hiwater_rss;
1632 }
1633
1634 #if defined(SPLIT_RSS_COUNTING)
1635 void sync_mm_rss(struct mm_struct *mm);
1636 #else
1637 static inline void sync_mm_rss(struct mm_struct *mm)
1638 {
1639 }
1640 #endif
1641
1642 #ifndef __HAVE_ARCH_PTE_DEVMAP
1643 static inline int pte_devmap(pte_t pte)
1644 {
1645 return 0;
1646 }
1647 #endif
1648
1649 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1650
1651 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1652 spinlock_t **ptl);
1653 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1654 spinlock_t **ptl)
1655 {
1656 pte_t *ptep;
1657 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1658 return ptep;
1659 }
1660
1661 #ifdef __PAGETABLE_P4D_FOLDED
1662 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1663 unsigned long address)
1664 {
1665 return 0;
1666 }
1667 #else
1668 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1669 #endif
1670
1671 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1672 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1673 unsigned long address)
1674 {
1675 return 0;
1676 }
1677 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1678 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1679
1680 #else
1681 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1682
1683 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1684 {
1685 if (mm_pud_folded(mm))
1686 return;
1687 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1688 }
1689
1690 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1691 {
1692 if (mm_pud_folded(mm))
1693 return;
1694 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1695 }
1696 #endif
1697
1698 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1699 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1700 unsigned long address)
1701 {
1702 return 0;
1703 }
1704
1705 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1706 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1707
1708 #else
1709 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1710
1711 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1712 {
1713 if (mm_pmd_folded(mm))
1714 return;
1715 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1716 }
1717
1718 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1719 {
1720 if (mm_pmd_folded(mm))
1721 return;
1722 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1723 }
1724 #endif
1725
1726 #ifdef CONFIG_MMU
1727 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1728 {
1729 atomic_long_set(&mm->pgtables_bytes, 0);
1730 }
1731
1732 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1733 {
1734 return atomic_long_read(&mm->pgtables_bytes);
1735 }
1736
1737 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1738 {
1739 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1740 }
1741
1742 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1743 {
1744 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1745 }
1746 #else
1747
1748 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1749 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1750 {
1751 return 0;
1752 }
1753
1754 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1755 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1756 #endif
1757
1758 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1759 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1760
1761 /*
1762 * The following ifdef needed to get the 4level-fixup.h header to work.
1763 * Remove it when 4level-fixup.h has been removed.
1764 */
1765 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1766
1767 #ifndef __ARCH_HAS_5LEVEL_HACK
1768 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1769 unsigned long address)
1770 {
1771 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1772 NULL : p4d_offset(pgd, address);
1773 }
1774
1775 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1776 unsigned long address)
1777 {
1778 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1779 NULL : pud_offset(p4d, address);
1780 }
1781 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1782
1783 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1784 {
1785 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1786 NULL: pmd_offset(pud, address);
1787 }
1788 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1789
1790 #if USE_SPLIT_PTE_PTLOCKS
1791 #if ALLOC_SPLIT_PTLOCKS
1792 void __init ptlock_cache_init(void);
1793 extern bool ptlock_alloc(struct page *page);
1794 extern void ptlock_free(struct page *page);
1795
1796 static inline spinlock_t *ptlock_ptr(struct page *page)
1797 {
1798 return page->ptl;
1799 }
1800 #else /* ALLOC_SPLIT_PTLOCKS */
1801 static inline void ptlock_cache_init(void)
1802 {
1803 }
1804
1805 static inline bool ptlock_alloc(struct page *page)
1806 {
1807 return true;
1808 }
1809
1810 static inline void ptlock_free(struct page *page)
1811 {
1812 }
1813
1814 static inline spinlock_t *ptlock_ptr(struct page *page)
1815 {
1816 return &page->ptl;
1817 }
1818 #endif /* ALLOC_SPLIT_PTLOCKS */
1819
1820 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1821 {
1822 return ptlock_ptr(pmd_page(*pmd));
1823 }
1824
1825 static inline bool ptlock_init(struct page *page)
1826 {
1827 /*
1828 * prep_new_page() initialize page->private (and therefore page->ptl)
1829 * with 0. Make sure nobody took it in use in between.
1830 *
1831 * It can happen if arch try to use slab for page table allocation:
1832 * slab code uses page->slab_cache, which share storage with page->ptl.
1833 */
1834 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1835 if (!ptlock_alloc(page))
1836 return false;
1837 spin_lock_init(ptlock_ptr(page));
1838 return true;
1839 }
1840
1841 /* Reset page->mapping so free_pages_check won't complain. */
1842 static inline void pte_lock_deinit(struct page *page)
1843 {
1844 page->mapping = NULL;
1845 ptlock_free(page);
1846 }
1847
1848 #else /* !USE_SPLIT_PTE_PTLOCKS */
1849 /*
1850 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1851 */
1852 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1853 {
1854 return &mm->page_table_lock;
1855 }
1856 static inline void ptlock_cache_init(void) {}
1857 static inline bool ptlock_init(struct page *page) { return true; }
1858 static inline void pte_lock_deinit(struct page *page) {}
1859 #endif /* USE_SPLIT_PTE_PTLOCKS */
1860
1861 static inline void pgtable_init(void)
1862 {
1863 ptlock_cache_init();
1864 pgtable_cache_init();
1865 }
1866
1867 static inline bool pgtable_page_ctor(struct page *page)
1868 {
1869 if (!ptlock_init(page))
1870 return false;
1871 inc_zone_page_state(page, NR_PAGETABLE);
1872 return true;
1873 }
1874
1875 static inline void pgtable_page_dtor(struct page *page)
1876 {
1877 pte_lock_deinit(page);
1878 dec_zone_page_state(page, NR_PAGETABLE);
1879 }
1880
1881 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1882 ({ \
1883 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1884 pte_t *__pte = pte_offset_map(pmd, address); \
1885 *(ptlp) = __ptl; \
1886 spin_lock(__ptl); \
1887 __pte; \
1888 })
1889
1890 #define pte_unmap_unlock(pte, ptl) do { \
1891 spin_unlock(ptl); \
1892 pte_unmap(pte); \
1893 } while (0)
1894
1895 #define pte_alloc(mm, pmd, address) \
1896 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1897
1898 #define pte_alloc_map(mm, pmd, address) \
1899 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1900
1901 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1902 (pte_alloc(mm, pmd, address) ? \
1903 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1904
1905 #define pte_alloc_kernel(pmd, address) \
1906 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1907 NULL: pte_offset_kernel(pmd, address))
1908
1909 #if USE_SPLIT_PMD_PTLOCKS
1910
1911 static struct page *pmd_to_page(pmd_t *pmd)
1912 {
1913 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1914 return virt_to_page((void *)((unsigned long) pmd & mask));
1915 }
1916
1917 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1918 {
1919 return ptlock_ptr(pmd_to_page(pmd));
1920 }
1921
1922 static inline bool pgtable_pmd_page_ctor(struct page *page)
1923 {
1924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1925 page->pmd_huge_pte = NULL;
1926 #endif
1927 return ptlock_init(page);
1928 }
1929
1930 static inline void pgtable_pmd_page_dtor(struct page *page)
1931 {
1932 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1933 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1934 #endif
1935 ptlock_free(page);
1936 }
1937
1938 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1939
1940 #else
1941
1942 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1943 {
1944 return &mm->page_table_lock;
1945 }
1946
1947 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1948 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1949
1950 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1951
1952 #endif
1953
1954 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1955 {
1956 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1957 spin_lock(ptl);
1958 return ptl;
1959 }
1960
1961 /*
1962 * No scalability reason to split PUD locks yet, but follow the same pattern
1963 * as the PMD locks to make it easier if we decide to. The VM should not be
1964 * considered ready to switch to split PUD locks yet; there may be places
1965 * which need to be converted from page_table_lock.
1966 */
1967 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1968 {
1969 return &mm->page_table_lock;
1970 }
1971
1972 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1973 {
1974 spinlock_t *ptl = pud_lockptr(mm, pud);
1975
1976 spin_lock(ptl);
1977 return ptl;
1978 }
1979
1980 extern void __init pagecache_init(void);
1981 extern void free_area_init(unsigned long * zones_size);
1982 extern void free_area_init_node(int nid, unsigned long * zones_size,
1983 unsigned long zone_start_pfn, unsigned long *zholes_size);
1984 extern void free_initmem(void);
1985
1986 /*
1987 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1988 * into the buddy system. The freed pages will be poisoned with pattern
1989 * "poison" if it's within range [0, UCHAR_MAX].
1990 * Return pages freed into the buddy system.
1991 */
1992 extern unsigned long free_reserved_area(void *start, void *end,
1993 int poison, char *s);
1994
1995 #ifdef CONFIG_HIGHMEM
1996 /*
1997 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1998 * and totalram_pages.
1999 */
2000 extern void free_highmem_page(struct page *page);
2001 #endif
2002
2003 extern void adjust_managed_page_count(struct page *page, long count);
2004 extern void mem_init_print_info(const char *str);
2005
2006 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2007
2008 /* Free the reserved page into the buddy system, so it gets managed. */
2009 static inline void __free_reserved_page(struct page *page)
2010 {
2011 ClearPageReserved(page);
2012 init_page_count(page);
2013 __free_page(page);
2014 }
2015
2016 static inline void free_reserved_page(struct page *page)
2017 {
2018 __free_reserved_page(page);
2019 adjust_managed_page_count(page, 1);
2020 }
2021
2022 static inline void mark_page_reserved(struct page *page)
2023 {
2024 SetPageReserved(page);
2025 adjust_managed_page_count(page, -1);
2026 }
2027
2028 /*
2029 * Default method to free all the __init memory into the buddy system.
2030 * The freed pages will be poisoned with pattern "poison" if it's within
2031 * range [0, UCHAR_MAX].
2032 * Return pages freed into the buddy system.
2033 */
2034 static inline unsigned long free_initmem_default(int poison)
2035 {
2036 extern char __init_begin[], __init_end[];
2037
2038 return free_reserved_area(&__init_begin, &__init_end,
2039 poison, "unused kernel");
2040 }
2041
2042 static inline unsigned long get_num_physpages(void)
2043 {
2044 int nid;
2045 unsigned long phys_pages = 0;
2046
2047 for_each_online_node(nid)
2048 phys_pages += node_present_pages(nid);
2049
2050 return phys_pages;
2051 }
2052
2053 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2054 /*
2055 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2056 * zones, allocate the backing mem_map and account for memory holes in a more
2057 * architecture independent manner. This is a substitute for creating the
2058 * zone_sizes[] and zholes_size[] arrays and passing them to
2059 * free_area_init_node()
2060 *
2061 * An architecture is expected to register range of page frames backed by
2062 * physical memory with memblock_add[_node]() before calling
2063 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2064 * usage, an architecture is expected to do something like
2065 *
2066 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2067 * max_highmem_pfn};
2068 * for_each_valid_physical_page_range()
2069 * memblock_add_node(base, size, nid)
2070 * free_area_init_nodes(max_zone_pfns);
2071 *
2072 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2073 * registered physical page range. Similarly
2074 * sparse_memory_present_with_active_regions() calls memory_present() for
2075 * each range when SPARSEMEM is enabled.
2076 *
2077 * See mm/page_alloc.c for more information on each function exposed by
2078 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2079 */
2080 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2081 unsigned long node_map_pfn_alignment(void);
2082 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2083 unsigned long end_pfn);
2084 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2085 unsigned long end_pfn);
2086 extern void get_pfn_range_for_nid(unsigned int nid,
2087 unsigned long *start_pfn, unsigned long *end_pfn);
2088 extern unsigned long find_min_pfn_with_active_regions(void);
2089 extern void free_bootmem_with_active_regions(int nid,
2090 unsigned long max_low_pfn);
2091 extern void sparse_memory_present_with_active_regions(int nid);
2092
2093 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2094
2095 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2096 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2097 static inline int __early_pfn_to_nid(unsigned long pfn,
2098 struct mminit_pfnnid_cache *state)
2099 {
2100 return 0;
2101 }
2102 #else
2103 /* please see mm/page_alloc.c */
2104 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2105 /* there is a per-arch backend function. */
2106 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2107 struct mminit_pfnnid_cache *state);
2108 #endif
2109
2110 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
2111 void zero_resv_unavail(void);
2112 #else
2113 static inline void zero_resv_unavail(void) {}
2114 #endif
2115
2116 extern void set_dma_reserve(unsigned long new_dma_reserve);
2117 extern void memmap_init_zone(unsigned long, int, unsigned long,
2118 unsigned long, enum memmap_context);
2119 extern void setup_per_zone_wmarks(void);
2120 extern int __meminit init_per_zone_wmark_min(void);
2121 extern void mem_init(void);
2122 extern void __init mmap_init(void);
2123 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2124 extern long si_mem_available(void);
2125 extern void si_meminfo(struct sysinfo * val);
2126 extern void si_meminfo_node(struct sysinfo *val, int nid);
2127 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2128 extern unsigned long arch_reserved_kernel_pages(void);
2129 #endif
2130
2131 extern __printf(3, 4)
2132 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2133
2134 extern void setup_per_cpu_pageset(void);
2135
2136 extern void zone_pcp_update(struct zone *zone);
2137 extern void zone_pcp_reset(struct zone *zone);
2138
2139 /* page_alloc.c */
2140 extern int min_free_kbytes;
2141 extern int watermark_scale_factor;
2142
2143 /* nommu.c */
2144 extern atomic_long_t mmap_pages_allocated;
2145 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2146
2147 /* interval_tree.c */
2148 void vma_interval_tree_insert(struct vm_area_struct *node,
2149 struct rb_root_cached *root);
2150 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2151 struct vm_area_struct *prev,
2152 struct rb_root_cached *root);
2153 void vma_interval_tree_remove(struct vm_area_struct *node,
2154 struct rb_root_cached *root);
2155 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2156 unsigned long start, unsigned long last);
2157 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2158 unsigned long start, unsigned long last);
2159
2160 #define vma_interval_tree_foreach(vma, root, start, last) \
2161 for (vma = vma_interval_tree_iter_first(root, start, last); \
2162 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2163
2164 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2165 struct rb_root_cached *root);
2166 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2167 struct rb_root_cached *root);
2168 struct anon_vma_chain *
2169 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2170 unsigned long start, unsigned long last);
2171 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2172 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2173 #ifdef CONFIG_DEBUG_VM_RB
2174 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2175 #endif
2176
2177 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2178 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2179 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2180
2181 /* mmap.c */
2182 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2183 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2184 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2185 struct vm_area_struct *expand);
2186 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2187 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2188 {
2189 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2190 }
2191 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2192 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2193 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2194 struct mempolicy *, struct vm_userfaultfd_ctx);
2195 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2196 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2197 unsigned long addr, int new_below);
2198 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2199 unsigned long addr, int new_below);
2200 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2201 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2202 struct rb_node **, struct rb_node *);
2203 extern void unlink_file_vma(struct vm_area_struct *);
2204 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2205 unsigned long addr, unsigned long len, pgoff_t pgoff,
2206 bool *need_rmap_locks);
2207 extern void exit_mmap(struct mm_struct *);
2208
2209 static inline int check_data_rlimit(unsigned long rlim,
2210 unsigned long new,
2211 unsigned long start,
2212 unsigned long end_data,
2213 unsigned long start_data)
2214 {
2215 if (rlim < RLIM_INFINITY) {
2216 if (((new - start) + (end_data - start_data)) > rlim)
2217 return -ENOSPC;
2218 }
2219
2220 return 0;
2221 }
2222
2223 extern int mm_take_all_locks(struct mm_struct *mm);
2224 extern void mm_drop_all_locks(struct mm_struct *mm);
2225
2226 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2227 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2228 extern struct file *get_task_exe_file(struct task_struct *task);
2229
2230 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2231 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2232
2233 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2234 const struct vm_special_mapping *sm);
2235 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2236 unsigned long addr, unsigned long len,
2237 unsigned long flags,
2238 const struct vm_special_mapping *spec);
2239 /* This is an obsolete alternative to _install_special_mapping. */
2240 extern int install_special_mapping(struct mm_struct *mm,
2241 unsigned long addr, unsigned long len,
2242 unsigned long flags, struct page **pages);
2243
2244 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2245
2246 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2247 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2248 struct list_head *uf);
2249 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2250 unsigned long len, unsigned long prot, unsigned long flags,
2251 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2252 struct list_head *uf);
2253 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2254 struct list_head *uf);
2255
2256 static inline unsigned long
2257 do_mmap_pgoff(struct file *file, unsigned long addr,
2258 unsigned long len, unsigned long prot, unsigned long flags,
2259 unsigned long pgoff, unsigned long *populate,
2260 struct list_head *uf)
2261 {
2262 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2263 }
2264
2265 #ifdef CONFIG_MMU
2266 extern int __mm_populate(unsigned long addr, unsigned long len,
2267 int ignore_errors);
2268 static inline void mm_populate(unsigned long addr, unsigned long len)
2269 {
2270 /* Ignore errors */
2271 (void) __mm_populate(addr, len, 1);
2272 }
2273 #else
2274 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2275 #endif
2276
2277 /* These take the mm semaphore themselves */
2278 extern int __must_check vm_brk(unsigned long, unsigned long);
2279 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2280 extern int vm_munmap(unsigned long, size_t);
2281 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2282 unsigned long, unsigned long,
2283 unsigned long, unsigned long);
2284
2285 struct vm_unmapped_area_info {
2286 #define VM_UNMAPPED_AREA_TOPDOWN 1
2287 unsigned long flags;
2288 unsigned long length;
2289 unsigned long low_limit;
2290 unsigned long high_limit;
2291 unsigned long align_mask;
2292 unsigned long align_offset;
2293 };
2294
2295 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2296 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2297
2298 /*
2299 * Search for an unmapped address range.
2300 *
2301 * We are looking for a range that:
2302 * - does not intersect with any VMA;
2303 * - is contained within the [low_limit, high_limit) interval;
2304 * - is at least the desired size.
2305 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2306 */
2307 static inline unsigned long
2308 vm_unmapped_area(struct vm_unmapped_area_info *info)
2309 {
2310 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2311 return unmapped_area_topdown(info);
2312 else
2313 return unmapped_area(info);
2314 }
2315
2316 /* truncate.c */
2317 extern void truncate_inode_pages(struct address_space *, loff_t);
2318 extern void truncate_inode_pages_range(struct address_space *,
2319 loff_t lstart, loff_t lend);
2320 extern void truncate_inode_pages_final(struct address_space *);
2321
2322 /* generic vm_area_ops exported for stackable file systems */
2323 extern int filemap_fault(struct vm_fault *vmf);
2324 extern void filemap_map_pages(struct vm_fault *vmf,
2325 pgoff_t start_pgoff, pgoff_t end_pgoff);
2326 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2327
2328 /* mm/page-writeback.c */
2329 int __must_check write_one_page(struct page *page);
2330 void task_dirty_inc(struct task_struct *tsk);
2331
2332 /* readahead.c */
2333 #define VM_MAX_READAHEAD 128 /* kbytes */
2334 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2335
2336 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2337 pgoff_t offset, unsigned long nr_to_read);
2338
2339 void page_cache_sync_readahead(struct address_space *mapping,
2340 struct file_ra_state *ra,
2341 struct file *filp,
2342 pgoff_t offset,
2343 unsigned long size);
2344
2345 void page_cache_async_readahead(struct address_space *mapping,
2346 struct file_ra_state *ra,
2347 struct file *filp,
2348 struct page *pg,
2349 pgoff_t offset,
2350 unsigned long size);
2351
2352 extern unsigned long stack_guard_gap;
2353 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2354 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2355
2356 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2357 extern int expand_downwards(struct vm_area_struct *vma,
2358 unsigned long address);
2359 #if VM_GROWSUP
2360 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2361 #else
2362 #define expand_upwards(vma, address) (0)
2363 #endif
2364
2365 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2366 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2367 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2368 struct vm_area_struct **pprev);
2369
2370 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2371 NULL if none. Assume start_addr < end_addr. */
2372 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2373 {
2374 struct vm_area_struct * vma = find_vma(mm,start_addr);
2375
2376 if (vma && end_addr <= vma->vm_start)
2377 vma = NULL;
2378 return vma;
2379 }
2380
2381 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2382 {
2383 unsigned long vm_start = vma->vm_start;
2384
2385 if (vma->vm_flags & VM_GROWSDOWN) {
2386 vm_start -= stack_guard_gap;
2387 if (vm_start > vma->vm_start)
2388 vm_start = 0;
2389 }
2390 return vm_start;
2391 }
2392
2393 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2394 {
2395 unsigned long vm_end = vma->vm_end;
2396
2397 if (vma->vm_flags & VM_GROWSUP) {
2398 vm_end += stack_guard_gap;
2399 if (vm_end < vma->vm_end)
2400 vm_end = -PAGE_SIZE;
2401 }
2402 return vm_end;
2403 }
2404
2405 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2406 {
2407 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2408 }
2409
2410 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2411 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2412 unsigned long vm_start, unsigned long vm_end)
2413 {
2414 struct vm_area_struct *vma = find_vma(mm, vm_start);
2415
2416 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2417 vma = NULL;
2418
2419 return vma;
2420 }
2421
2422 static inline bool range_in_vma(struct vm_area_struct *vma,
2423 unsigned long start, unsigned long end)
2424 {
2425 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2426 }
2427
2428 #ifdef CONFIG_MMU
2429 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2430 void vma_set_page_prot(struct vm_area_struct *vma);
2431 #else
2432 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2433 {
2434 return __pgprot(0);
2435 }
2436 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2437 {
2438 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2439 }
2440 #endif
2441
2442 #ifdef CONFIG_NUMA_BALANCING
2443 unsigned long change_prot_numa(struct vm_area_struct *vma,
2444 unsigned long start, unsigned long end);
2445 #endif
2446
2447 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2448 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2449 unsigned long pfn, unsigned long size, pgprot_t);
2450 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2451 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2452 unsigned long pfn);
2453 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2454 unsigned long pfn, pgprot_t pgprot);
2455 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2456 pfn_t pfn);
2457 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2458 pfn_t pfn);
2459 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2460
2461
2462 struct page *follow_page_mask(struct vm_area_struct *vma,
2463 unsigned long address, unsigned int foll_flags,
2464 unsigned int *page_mask);
2465
2466 static inline struct page *follow_page(struct vm_area_struct *vma,
2467 unsigned long address, unsigned int foll_flags)
2468 {
2469 unsigned int unused_page_mask;
2470 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2471 }
2472
2473 #define FOLL_WRITE 0x01 /* check pte is writable */
2474 #define FOLL_TOUCH 0x02 /* mark page accessed */
2475 #define FOLL_GET 0x04 /* do get_page on page */
2476 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2477 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2478 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2479 * and return without waiting upon it */
2480 #define FOLL_POPULATE 0x40 /* fault in page */
2481 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2482 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2483 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2484 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2485 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2486 #define FOLL_MLOCK 0x1000 /* lock present pages */
2487 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2488 #define FOLL_COW 0x4000 /* internal GUP flag */
2489 #define FOLL_ANON 0x8000 /* don't do file mappings */
2490
2491 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2492 {
2493 if (vm_fault & VM_FAULT_OOM)
2494 return -ENOMEM;
2495 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2496 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2497 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2498 return -EFAULT;
2499 return 0;
2500 }
2501
2502 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2503 void *data);
2504 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2505 unsigned long size, pte_fn_t fn, void *data);
2506
2507
2508 #ifdef CONFIG_PAGE_POISONING
2509 extern bool page_poisoning_enabled(void);
2510 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2511 extern bool page_is_poisoned(struct page *page);
2512 #else
2513 static inline bool page_poisoning_enabled(void) { return false; }
2514 static inline void kernel_poison_pages(struct page *page, int numpages,
2515 int enable) { }
2516 static inline bool page_is_poisoned(struct page *page) { return false; }
2517 #endif
2518
2519 #ifdef CONFIG_DEBUG_PAGEALLOC
2520 extern bool _debug_pagealloc_enabled;
2521 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2522
2523 static inline bool debug_pagealloc_enabled(void)
2524 {
2525 return _debug_pagealloc_enabled;
2526 }
2527
2528 static inline void
2529 kernel_map_pages(struct page *page, int numpages, int enable)
2530 {
2531 if (!debug_pagealloc_enabled())
2532 return;
2533
2534 __kernel_map_pages(page, numpages, enable);
2535 }
2536 #ifdef CONFIG_HIBERNATION
2537 extern bool kernel_page_present(struct page *page);
2538 #endif /* CONFIG_HIBERNATION */
2539 #else /* CONFIG_DEBUG_PAGEALLOC */
2540 static inline void
2541 kernel_map_pages(struct page *page, int numpages, int enable) {}
2542 #ifdef CONFIG_HIBERNATION
2543 static inline bool kernel_page_present(struct page *page) { return true; }
2544 #endif /* CONFIG_HIBERNATION */
2545 static inline bool debug_pagealloc_enabled(void)
2546 {
2547 return false;
2548 }
2549 #endif /* CONFIG_DEBUG_PAGEALLOC */
2550
2551 #ifdef __HAVE_ARCH_GATE_AREA
2552 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2553 extern int in_gate_area_no_mm(unsigned long addr);
2554 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2555 #else
2556 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2557 {
2558 return NULL;
2559 }
2560 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2561 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2562 {
2563 return 0;
2564 }
2565 #endif /* __HAVE_ARCH_GATE_AREA */
2566
2567 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2568
2569 #ifdef CONFIG_SYSCTL
2570 extern int sysctl_drop_caches;
2571 int drop_caches_sysctl_handler(struct ctl_table *, int,
2572 void __user *, size_t *, loff_t *);
2573 #endif
2574
2575 void drop_slab(void);
2576 void drop_slab_node(int nid);
2577
2578 #ifndef CONFIG_MMU
2579 #define randomize_va_space 0
2580 #else
2581 extern int randomize_va_space;
2582 #endif
2583
2584 const char * arch_vma_name(struct vm_area_struct *vma);
2585 void print_vma_addr(char *prefix, unsigned long rip);
2586
2587 void sparse_mem_maps_populate_node(struct page **map_map,
2588 unsigned long pnum_begin,
2589 unsigned long pnum_end,
2590 unsigned long map_count,
2591 int nodeid);
2592
2593 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2594 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2595 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2596 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2597 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2598 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2599 void *vmemmap_alloc_block(unsigned long size, int node);
2600 struct vmem_altmap;
2601 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2602 struct vmem_altmap *altmap);
2603 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2604 {
2605 return __vmemmap_alloc_block_buf(size, node, NULL);
2606 }
2607
2608 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2609 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2610 int node);
2611 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2612 void vmemmap_populate_print_last(void);
2613 #ifdef CONFIG_MEMORY_HOTPLUG
2614 void vmemmap_free(unsigned long start, unsigned long end);
2615 #endif
2616 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2617 unsigned long nr_pages);
2618
2619 enum mf_flags {
2620 MF_COUNT_INCREASED = 1 << 0,
2621 MF_ACTION_REQUIRED = 1 << 1,
2622 MF_MUST_KILL = 1 << 2,
2623 MF_SOFT_OFFLINE = 1 << 3,
2624 };
2625 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2626 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2627 extern int unpoison_memory(unsigned long pfn);
2628 extern int get_hwpoison_page(struct page *page);
2629 #define put_hwpoison_page(page) put_page(page)
2630 extern int sysctl_memory_failure_early_kill;
2631 extern int sysctl_memory_failure_recovery;
2632 extern void shake_page(struct page *p, int access);
2633 extern atomic_long_t num_poisoned_pages;
2634 extern int soft_offline_page(struct page *page, int flags);
2635
2636
2637 /*
2638 * Error handlers for various types of pages.
2639 */
2640 enum mf_result {
2641 MF_IGNORED, /* Error: cannot be handled */
2642 MF_FAILED, /* Error: handling failed */
2643 MF_DELAYED, /* Will be handled later */
2644 MF_RECOVERED, /* Successfully recovered */
2645 };
2646
2647 enum mf_action_page_type {
2648 MF_MSG_KERNEL,
2649 MF_MSG_KERNEL_HIGH_ORDER,
2650 MF_MSG_SLAB,
2651 MF_MSG_DIFFERENT_COMPOUND,
2652 MF_MSG_POISONED_HUGE,
2653 MF_MSG_HUGE,
2654 MF_MSG_FREE_HUGE,
2655 MF_MSG_NON_PMD_HUGE,
2656 MF_MSG_UNMAP_FAILED,
2657 MF_MSG_DIRTY_SWAPCACHE,
2658 MF_MSG_CLEAN_SWAPCACHE,
2659 MF_MSG_DIRTY_MLOCKED_LRU,
2660 MF_MSG_CLEAN_MLOCKED_LRU,
2661 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2662 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2663 MF_MSG_DIRTY_LRU,
2664 MF_MSG_CLEAN_LRU,
2665 MF_MSG_TRUNCATED_LRU,
2666 MF_MSG_BUDDY,
2667 MF_MSG_BUDDY_2ND,
2668 MF_MSG_UNKNOWN,
2669 };
2670
2671 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2672 extern void clear_huge_page(struct page *page,
2673 unsigned long addr_hint,
2674 unsigned int pages_per_huge_page);
2675 extern void copy_user_huge_page(struct page *dst, struct page *src,
2676 unsigned long addr, struct vm_area_struct *vma,
2677 unsigned int pages_per_huge_page);
2678 extern long copy_huge_page_from_user(struct page *dst_page,
2679 const void __user *usr_src,
2680 unsigned int pages_per_huge_page,
2681 bool allow_pagefault);
2682 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2683
2684 extern struct page_ext_operations debug_guardpage_ops;
2685
2686 #ifdef CONFIG_DEBUG_PAGEALLOC
2687 extern unsigned int _debug_guardpage_minorder;
2688 extern bool _debug_guardpage_enabled;
2689
2690 static inline unsigned int debug_guardpage_minorder(void)
2691 {
2692 return _debug_guardpage_minorder;
2693 }
2694
2695 static inline bool debug_guardpage_enabled(void)
2696 {
2697 return _debug_guardpage_enabled;
2698 }
2699
2700 static inline bool page_is_guard(struct page *page)
2701 {
2702 struct page_ext *page_ext;
2703
2704 if (!debug_guardpage_enabled())
2705 return false;
2706
2707 page_ext = lookup_page_ext(page);
2708 if (unlikely(!page_ext))
2709 return false;
2710
2711 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2712 }
2713 #else
2714 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2715 static inline bool debug_guardpage_enabled(void) { return false; }
2716 static inline bool page_is_guard(struct page *page) { return false; }
2717 #endif /* CONFIG_DEBUG_PAGEALLOC */
2718
2719 #if MAX_NUMNODES > 1
2720 void __init setup_nr_node_ids(void);
2721 #else
2722 static inline void setup_nr_node_ids(void) {}
2723 #endif
2724
2725 #endif /* __KERNEL__ */
2726 #endif /* _LINUX_MM_H */