]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm.h
Merge tag 'rproc-v4.11' of git://github.com/andersson/remoteproc
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70
71 #ifndef __pa_symbol
72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74
75 #ifndef page_to_virt
76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77 #endif
78
79 #ifndef lm_alias
80 #define lm_alias(x) __va(__pa_symbol(x))
81 #endif
82
83 /*
84 * To prevent common memory management code establishing
85 * a zero page mapping on a read fault.
86 * This macro should be defined within <asm/pgtable.h>.
87 * s390 does this to prevent multiplexing of hardware bits
88 * related to the physical page in case of virtualization.
89 */
90 #ifndef mm_forbids_zeropage
91 #define mm_forbids_zeropage(X) (0)
92 #endif
93
94 /*
95 * Default maximum number of active map areas, this limits the number of vmas
96 * per mm struct. Users can overwrite this number by sysctl but there is a
97 * problem.
98 *
99 * When a program's coredump is generated as ELF format, a section is created
100 * per a vma. In ELF, the number of sections is represented in unsigned short.
101 * This means the number of sections should be smaller than 65535 at coredump.
102 * Because the kernel adds some informative sections to a image of program at
103 * generating coredump, we need some margin. The number of extra sections is
104 * 1-3 now and depends on arch. We use "5" as safe margin, here.
105 *
106 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
107 * not a hard limit any more. Although some userspace tools can be surprised by
108 * that.
109 */
110 #define MAPCOUNT_ELF_CORE_MARGIN (5)
111 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
112
113 extern int sysctl_max_map_count;
114
115 extern unsigned long sysctl_user_reserve_kbytes;
116 extern unsigned long sysctl_admin_reserve_kbytes;
117
118 extern int sysctl_overcommit_memory;
119 extern int sysctl_overcommit_ratio;
120 extern unsigned long sysctl_overcommit_kbytes;
121
122 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
123 size_t *, loff_t *);
124 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126
127 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
128
129 /* to align the pointer to the (next) page boundary */
130 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
131
132 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
133 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
134
135 /*
136 * Linux kernel virtual memory manager primitives.
137 * The idea being to have a "virtual" mm in the same way
138 * we have a virtual fs - giving a cleaner interface to the
139 * mm details, and allowing different kinds of memory mappings
140 * (from shared memory to executable loading to arbitrary
141 * mmap() functions).
142 */
143
144 extern struct kmem_cache *vm_area_cachep;
145
146 #ifndef CONFIG_MMU
147 extern struct rb_root nommu_region_tree;
148 extern struct rw_semaphore nommu_region_sem;
149
150 extern unsigned int kobjsize(const void *objp);
151 #endif
152
153 /*
154 * vm_flags in vm_area_struct, see mm_types.h.
155 * When changing, update also include/trace/events/mmflags.h
156 */
157 #define VM_NONE 0x00000000
158
159 #define VM_READ 0x00000001 /* currently active flags */
160 #define VM_WRITE 0x00000002
161 #define VM_EXEC 0x00000004
162 #define VM_SHARED 0x00000008
163
164 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
165 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
166 #define VM_MAYWRITE 0x00000020
167 #define VM_MAYEXEC 0x00000040
168 #define VM_MAYSHARE 0x00000080
169
170 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
171 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
172 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
173 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
174 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
175
176 #define VM_LOCKED 0x00002000
177 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
178
179 /* Used by sys_madvise() */
180 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
181 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
182
183 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
184 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
185 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
186 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
187 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
188 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
189 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
190 #define VM_ARCH_2 0x02000000
191 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
192
193 #ifdef CONFIG_MEM_SOFT_DIRTY
194 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
195 #else
196 # define VM_SOFTDIRTY 0
197 #endif
198
199 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
200 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
201 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
202 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
203
204 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
205 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
206 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
207 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
210 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
211 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
212 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
213 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
214
215 #if defined(CONFIG_X86)
216 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
217 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
218 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
219 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
220 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
221 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
222 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
223 #endif
224 #elif defined(CONFIG_PPC)
225 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
226 #elif defined(CONFIG_PARISC)
227 # define VM_GROWSUP VM_ARCH_1
228 #elif defined(CONFIG_METAG)
229 # define VM_GROWSUP VM_ARCH_1
230 #elif defined(CONFIG_IA64)
231 # define VM_GROWSUP VM_ARCH_1
232 #elif !defined(CONFIG_MMU)
233 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
234 #endif
235
236 #if defined(CONFIG_X86)
237 /* MPX specific bounds table or bounds directory */
238 # define VM_MPX VM_ARCH_2
239 #endif
240
241 #ifndef VM_GROWSUP
242 # define VM_GROWSUP VM_NONE
243 #endif
244
245 /* Bits set in the VMA until the stack is in its final location */
246 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
247
248 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
249 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
250 #endif
251
252 #ifdef CONFIG_STACK_GROWSUP
253 #define VM_STACK VM_GROWSUP
254 #else
255 #define VM_STACK VM_GROWSDOWN
256 #endif
257
258 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
259
260 /*
261 * Special vmas that are non-mergable, non-mlock()able.
262 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
263 */
264 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
265
266 /* This mask defines which mm->def_flags a process can inherit its parent */
267 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
268
269 /* This mask is used to clear all the VMA flags used by mlock */
270 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
271
272 /*
273 * mapping from the currently active vm_flags protection bits (the
274 * low four bits) to a page protection mask..
275 */
276 extern pgprot_t protection_map[16];
277
278 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
279 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
280 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
281 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
282 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
283 #define FAULT_FLAG_TRIED 0x20 /* Second try */
284 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
285 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
286 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
287
288 #define FAULT_FLAG_TRACE \
289 { FAULT_FLAG_WRITE, "WRITE" }, \
290 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
291 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
292 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
293 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
294 { FAULT_FLAG_TRIED, "TRIED" }, \
295 { FAULT_FLAG_USER, "USER" }, \
296 { FAULT_FLAG_REMOTE, "REMOTE" }, \
297 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
298
299 /*
300 * vm_fault is filled by the the pagefault handler and passed to the vma's
301 * ->fault function. The vma's ->fault is responsible for returning a bitmask
302 * of VM_FAULT_xxx flags that give details about how the fault was handled.
303 *
304 * MM layer fills up gfp_mask for page allocations but fault handler might
305 * alter it if its implementation requires a different allocation context.
306 *
307 * pgoff should be used in favour of virtual_address, if possible.
308 */
309 struct vm_fault {
310 struct vm_area_struct *vma; /* Target VMA */
311 unsigned int flags; /* FAULT_FLAG_xxx flags */
312 gfp_t gfp_mask; /* gfp mask to be used for allocations */
313 pgoff_t pgoff; /* Logical page offset based on vma */
314 unsigned long address; /* Faulting virtual address */
315 pmd_t *pmd; /* Pointer to pmd entry matching
316 * the 'address' */
317 pte_t orig_pte; /* Value of PTE at the time of fault */
318
319 struct page *cow_page; /* Page handler may use for COW fault */
320 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
321 struct page *page; /* ->fault handlers should return a
322 * page here, unless VM_FAULT_NOPAGE
323 * is set (which is also implied by
324 * VM_FAULT_ERROR).
325 */
326 /* These three entries are valid only while holding ptl lock */
327 pte_t *pte; /* Pointer to pte entry matching
328 * the 'address'. NULL if the page
329 * table hasn't been allocated.
330 */
331 spinlock_t *ptl; /* Page table lock.
332 * Protects pte page table if 'pte'
333 * is not NULL, otherwise pmd.
334 */
335 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
336 * vm_ops->map_pages() calls
337 * alloc_set_pte() from atomic context.
338 * do_fault_around() pre-allocates
339 * page table to avoid allocation from
340 * atomic context.
341 */
342 };
343
344 /*
345 * These are the virtual MM functions - opening of an area, closing and
346 * unmapping it (needed to keep files on disk up-to-date etc), pointer
347 * to the functions called when a no-page or a wp-page exception occurs.
348 */
349 struct vm_operations_struct {
350 void (*open)(struct vm_area_struct * area);
351 void (*close)(struct vm_area_struct * area);
352 int (*mremap)(struct vm_area_struct * area);
353 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
354 int (*pmd_fault)(struct vm_fault *vmf);
355 void (*map_pages)(struct vm_fault *vmf,
356 pgoff_t start_pgoff, pgoff_t end_pgoff);
357
358 /* notification that a previously read-only page is about to become
359 * writable, if an error is returned it will cause a SIGBUS */
360 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
361
362 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
363 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
364
365 /* called by access_process_vm when get_user_pages() fails, typically
366 * for use by special VMAs that can switch between memory and hardware
367 */
368 int (*access)(struct vm_area_struct *vma, unsigned long addr,
369 void *buf, int len, int write);
370
371 /* Called by the /proc/PID/maps code to ask the vma whether it
372 * has a special name. Returning non-NULL will also cause this
373 * vma to be dumped unconditionally. */
374 const char *(*name)(struct vm_area_struct *vma);
375
376 #ifdef CONFIG_NUMA
377 /*
378 * set_policy() op must add a reference to any non-NULL @new mempolicy
379 * to hold the policy upon return. Caller should pass NULL @new to
380 * remove a policy and fall back to surrounding context--i.e. do not
381 * install a MPOL_DEFAULT policy, nor the task or system default
382 * mempolicy.
383 */
384 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
385
386 /*
387 * get_policy() op must add reference [mpol_get()] to any policy at
388 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
389 * in mm/mempolicy.c will do this automatically.
390 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
391 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
392 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
393 * must return NULL--i.e., do not "fallback" to task or system default
394 * policy.
395 */
396 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
397 unsigned long addr);
398 #endif
399 /*
400 * Called by vm_normal_page() for special PTEs to find the
401 * page for @addr. This is useful if the default behavior
402 * (using pte_page()) would not find the correct page.
403 */
404 struct page *(*find_special_page)(struct vm_area_struct *vma,
405 unsigned long addr);
406 };
407
408 struct mmu_gather;
409 struct inode;
410
411 #define page_private(page) ((page)->private)
412 #define set_page_private(page, v) ((page)->private = (v))
413
414 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
415 static inline int pmd_devmap(pmd_t pmd)
416 {
417 return 0;
418 }
419 #endif
420
421 /*
422 * FIXME: take this include out, include page-flags.h in
423 * files which need it (119 of them)
424 */
425 #include <linux/page-flags.h>
426 #include <linux/huge_mm.h>
427
428 /*
429 * Methods to modify the page usage count.
430 *
431 * What counts for a page usage:
432 * - cache mapping (page->mapping)
433 * - private data (page->private)
434 * - page mapped in a task's page tables, each mapping
435 * is counted separately
436 *
437 * Also, many kernel routines increase the page count before a critical
438 * routine so they can be sure the page doesn't go away from under them.
439 */
440
441 /*
442 * Drop a ref, return true if the refcount fell to zero (the page has no users)
443 */
444 static inline int put_page_testzero(struct page *page)
445 {
446 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
447 return page_ref_dec_and_test(page);
448 }
449
450 /*
451 * Try to grab a ref unless the page has a refcount of zero, return false if
452 * that is the case.
453 * This can be called when MMU is off so it must not access
454 * any of the virtual mappings.
455 */
456 static inline int get_page_unless_zero(struct page *page)
457 {
458 return page_ref_add_unless(page, 1, 0);
459 }
460
461 extern int page_is_ram(unsigned long pfn);
462
463 enum {
464 REGION_INTERSECTS,
465 REGION_DISJOINT,
466 REGION_MIXED,
467 };
468
469 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
470 unsigned long desc);
471
472 /* Support for virtually mapped pages */
473 struct page *vmalloc_to_page(const void *addr);
474 unsigned long vmalloc_to_pfn(const void *addr);
475
476 /*
477 * Determine if an address is within the vmalloc range
478 *
479 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
480 * is no special casing required.
481 */
482 static inline bool is_vmalloc_addr(const void *x)
483 {
484 #ifdef CONFIG_MMU
485 unsigned long addr = (unsigned long)x;
486
487 return addr >= VMALLOC_START && addr < VMALLOC_END;
488 #else
489 return false;
490 #endif
491 }
492 #ifdef CONFIG_MMU
493 extern int is_vmalloc_or_module_addr(const void *x);
494 #else
495 static inline int is_vmalloc_or_module_addr(const void *x)
496 {
497 return 0;
498 }
499 #endif
500
501 extern void kvfree(const void *addr);
502
503 static inline atomic_t *compound_mapcount_ptr(struct page *page)
504 {
505 return &page[1].compound_mapcount;
506 }
507
508 static inline int compound_mapcount(struct page *page)
509 {
510 VM_BUG_ON_PAGE(!PageCompound(page), page);
511 page = compound_head(page);
512 return atomic_read(compound_mapcount_ptr(page)) + 1;
513 }
514
515 /*
516 * The atomic page->_mapcount, starts from -1: so that transitions
517 * both from it and to it can be tracked, using atomic_inc_and_test
518 * and atomic_add_negative(-1).
519 */
520 static inline void page_mapcount_reset(struct page *page)
521 {
522 atomic_set(&(page)->_mapcount, -1);
523 }
524
525 int __page_mapcount(struct page *page);
526
527 static inline int page_mapcount(struct page *page)
528 {
529 VM_BUG_ON_PAGE(PageSlab(page), page);
530
531 if (unlikely(PageCompound(page)))
532 return __page_mapcount(page);
533 return atomic_read(&page->_mapcount) + 1;
534 }
535
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
537 int total_mapcount(struct page *page);
538 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
539 #else
540 static inline int total_mapcount(struct page *page)
541 {
542 return page_mapcount(page);
543 }
544 static inline int page_trans_huge_mapcount(struct page *page,
545 int *total_mapcount)
546 {
547 int mapcount = page_mapcount(page);
548 if (total_mapcount)
549 *total_mapcount = mapcount;
550 return mapcount;
551 }
552 #endif
553
554 static inline struct page *virt_to_head_page(const void *x)
555 {
556 struct page *page = virt_to_page(x);
557
558 return compound_head(page);
559 }
560
561 void __put_page(struct page *page);
562
563 void put_pages_list(struct list_head *pages);
564
565 void split_page(struct page *page, unsigned int order);
566
567 /*
568 * Compound pages have a destructor function. Provide a
569 * prototype for that function and accessor functions.
570 * These are _only_ valid on the head of a compound page.
571 */
572 typedef void compound_page_dtor(struct page *);
573
574 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
575 enum compound_dtor_id {
576 NULL_COMPOUND_DTOR,
577 COMPOUND_PAGE_DTOR,
578 #ifdef CONFIG_HUGETLB_PAGE
579 HUGETLB_PAGE_DTOR,
580 #endif
581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
582 TRANSHUGE_PAGE_DTOR,
583 #endif
584 NR_COMPOUND_DTORS,
585 };
586 extern compound_page_dtor * const compound_page_dtors[];
587
588 static inline void set_compound_page_dtor(struct page *page,
589 enum compound_dtor_id compound_dtor)
590 {
591 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
592 page[1].compound_dtor = compound_dtor;
593 }
594
595 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
596 {
597 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
598 return compound_page_dtors[page[1].compound_dtor];
599 }
600
601 static inline unsigned int compound_order(struct page *page)
602 {
603 if (!PageHead(page))
604 return 0;
605 return page[1].compound_order;
606 }
607
608 static inline void set_compound_order(struct page *page, unsigned int order)
609 {
610 page[1].compound_order = order;
611 }
612
613 void free_compound_page(struct page *page);
614
615 #ifdef CONFIG_MMU
616 /*
617 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
618 * servicing faults for write access. In the normal case, do always want
619 * pte_mkwrite. But get_user_pages can cause write faults for mappings
620 * that do not have writing enabled, when used by access_process_vm.
621 */
622 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
623 {
624 if (likely(vma->vm_flags & VM_WRITE))
625 pte = pte_mkwrite(pte);
626 return pte;
627 }
628
629 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
630 struct page *page);
631 int finish_fault(struct vm_fault *vmf);
632 int finish_mkwrite_fault(struct vm_fault *vmf);
633 #endif
634
635 /*
636 * Multiple processes may "see" the same page. E.g. for untouched
637 * mappings of /dev/null, all processes see the same page full of
638 * zeroes, and text pages of executables and shared libraries have
639 * only one copy in memory, at most, normally.
640 *
641 * For the non-reserved pages, page_count(page) denotes a reference count.
642 * page_count() == 0 means the page is free. page->lru is then used for
643 * freelist management in the buddy allocator.
644 * page_count() > 0 means the page has been allocated.
645 *
646 * Pages are allocated by the slab allocator in order to provide memory
647 * to kmalloc and kmem_cache_alloc. In this case, the management of the
648 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
649 * unless a particular usage is carefully commented. (the responsibility of
650 * freeing the kmalloc memory is the caller's, of course).
651 *
652 * A page may be used by anyone else who does a __get_free_page().
653 * In this case, page_count still tracks the references, and should only
654 * be used through the normal accessor functions. The top bits of page->flags
655 * and page->virtual store page management information, but all other fields
656 * are unused and could be used privately, carefully. The management of this
657 * page is the responsibility of the one who allocated it, and those who have
658 * subsequently been given references to it.
659 *
660 * The other pages (we may call them "pagecache pages") are completely
661 * managed by the Linux memory manager: I/O, buffers, swapping etc.
662 * The following discussion applies only to them.
663 *
664 * A pagecache page contains an opaque `private' member, which belongs to the
665 * page's address_space. Usually, this is the address of a circular list of
666 * the page's disk buffers. PG_private must be set to tell the VM to call
667 * into the filesystem to release these pages.
668 *
669 * A page may belong to an inode's memory mapping. In this case, page->mapping
670 * is the pointer to the inode, and page->index is the file offset of the page,
671 * in units of PAGE_SIZE.
672 *
673 * If pagecache pages are not associated with an inode, they are said to be
674 * anonymous pages. These may become associated with the swapcache, and in that
675 * case PG_swapcache is set, and page->private is an offset into the swapcache.
676 *
677 * In either case (swapcache or inode backed), the pagecache itself holds one
678 * reference to the page. Setting PG_private should also increment the
679 * refcount. The each user mapping also has a reference to the page.
680 *
681 * The pagecache pages are stored in a per-mapping radix tree, which is
682 * rooted at mapping->page_tree, and indexed by offset.
683 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
684 * lists, we instead now tag pages as dirty/writeback in the radix tree.
685 *
686 * All pagecache pages may be subject to I/O:
687 * - inode pages may need to be read from disk,
688 * - inode pages which have been modified and are MAP_SHARED may need
689 * to be written back to the inode on disk,
690 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
691 * modified may need to be swapped out to swap space and (later) to be read
692 * back into memory.
693 */
694
695 /*
696 * The zone field is never updated after free_area_init_core()
697 * sets it, so none of the operations on it need to be atomic.
698 */
699
700 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
701 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
702 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
703 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
704 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
705
706 /*
707 * Define the bit shifts to access each section. For non-existent
708 * sections we define the shift as 0; that plus a 0 mask ensures
709 * the compiler will optimise away reference to them.
710 */
711 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
712 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
713 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
714 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
715
716 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
717 #ifdef NODE_NOT_IN_PAGE_FLAGS
718 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
719 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
720 SECTIONS_PGOFF : ZONES_PGOFF)
721 #else
722 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
723 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
724 NODES_PGOFF : ZONES_PGOFF)
725 #endif
726
727 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
728
729 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
730 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
731 #endif
732
733 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
734 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
735 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
736 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
737 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
738
739 static inline enum zone_type page_zonenum(const struct page *page)
740 {
741 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
742 }
743
744 #ifdef CONFIG_ZONE_DEVICE
745 void get_zone_device_page(struct page *page);
746 void put_zone_device_page(struct page *page);
747 static inline bool is_zone_device_page(const struct page *page)
748 {
749 return page_zonenum(page) == ZONE_DEVICE;
750 }
751 #else
752 static inline void get_zone_device_page(struct page *page)
753 {
754 }
755 static inline void put_zone_device_page(struct page *page)
756 {
757 }
758 static inline bool is_zone_device_page(const struct page *page)
759 {
760 return false;
761 }
762 #endif
763
764 static inline void get_page(struct page *page)
765 {
766 page = compound_head(page);
767 /*
768 * Getting a normal page or the head of a compound page
769 * requires to already have an elevated page->_refcount.
770 */
771 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
772 page_ref_inc(page);
773
774 if (unlikely(is_zone_device_page(page)))
775 get_zone_device_page(page);
776 }
777
778 static inline void put_page(struct page *page)
779 {
780 page = compound_head(page);
781
782 if (put_page_testzero(page))
783 __put_page(page);
784
785 if (unlikely(is_zone_device_page(page)))
786 put_zone_device_page(page);
787 }
788
789 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
790 #define SECTION_IN_PAGE_FLAGS
791 #endif
792
793 /*
794 * The identification function is mainly used by the buddy allocator for
795 * determining if two pages could be buddies. We are not really identifying
796 * the zone since we could be using the section number id if we do not have
797 * node id available in page flags.
798 * We only guarantee that it will return the same value for two combinable
799 * pages in a zone.
800 */
801 static inline int page_zone_id(struct page *page)
802 {
803 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
804 }
805
806 static inline int zone_to_nid(struct zone *zone)
807 {
808 #ifdef CONFIG_NUMA
809 return zone->node;
810 #else
811 return 0;
812 #endif
813 }
814
815 #ifdef NODE_NOT_IN_PAGE_FLAGS
816 extern int page_to_nid(const struct page *page);
817 #else
818 static inline int page_to_nid(const struct page *page)
819 {
820 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
821 }
822 #endif
823
824 #ifdef CONFIG_NUMA_BALANCING
825 static inline int cpu_pid_to_cpupid(int cpu, int pid)
826 {
827 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
828 }
829
830 static inline int cpupid_to_pid(int cpupid)
831 {
832 return cpupid & LAST__PID_MASK;
833 }
834
835 static inline int cpupid_to_cpu(int cpupid)
836 {
837 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
838 }
839
840 static inline int cpupid_to_nid(int cpupid)
841 {
842 return cpu_to_node(cpupid_to_cpu(cpupid));
843 }
844
845 static inline bool cpupid_pid_unset(int cpupid)
846 {
847 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
848 }
849
850 static inline bool cpupid_cpu_unset(int cpupid)
851 {
852 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
853 }
854
855 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
856 {
857 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
858 }
859
860 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
861 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
862 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
863 {
864 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
865 }
866
867 static inline int page_cpupid_last(struct page *page)
868 {
869 return page->_last_cpupid;
870 }
871 static inline void page_cpupid_reset_last(struct page *page)
872 {
873 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
874 }
875 #else
876 static inline int page_cpupid_last(struct page *page)
877 {
878 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
879 }
880
881 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
882
883 static inline void page_cpupid_reset_last(struct page *page)
884 {
885 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
886 }
887 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
888 #else /* !CONFIG_NUMA_BALANCING */
889 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
890 {
891 return page_to_nid(page); /* XXX */
892 }
893
894 static inline int page_cpupid_last(struct page *page)
895 {
896 return page_to_nid(page); /* XXX */
897 }
898
899 static inline int cpupid_to_nid(int cpupid)
900 {
901 return -1;
902 }
903
904 static inline int cpupid_to_pid(int cpupid)
905 {
906 return -1;
907 }
908
909 static inline int cpupid_to_cpu(int cpupid)
910 {
911 return -1;
912 }
913
914 static inline int cpu_pid_to_cpupid(int nid, int pid)
915 {
916 return -1;
917 }
918
919 static inline bool cpupid_pid_unset(int cpupid)
920 {
921 return 1;
922 }
923
924 static inline void page_cpupid_reset_last(struct page *page)
925 {
926 }
927
928 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
929 {
930 return false;
931 }
932 #endif /* CONFIG_NUMA_BALANCING */
933
934 static inline struct zone *page_zone(const struct page *page)
935 {
936 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
937 }
938
939 static inline pg_data_t *page_pgdat(const struct page *page)
940 {
941 return NODE_DATA(page_to_nid(page));
942 }
943
944 #ifdef SECTION_IN_PAGE_FLAGS
945 static inline void set_page_section(struct page *page, unsigned long section)
946 {
947 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
948 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
949 }
950
951 static inline unsigned long page_to_section(const struct page *page)
952 {
953 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
954 }
955 #endif
956
957 static inline void set_page_zone(struct page *page, enum zone_type zone)
958 {
959 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
960 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
961 }
962
963 static inline void set_page_node(struct page *page, unsigned long node)
964 {
965 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
966 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
967 }
968
969 static inline void set_page_links(struct page *page, enum zone_type zone,
970 unsigned long node, unsigned long pfn)
971 {
972 set_page_zone(page, zone);
973 set_page_node(page, node);
974 #ifdef SECTION_IN_PAGE_FLAGS
975 set_page_section(page, pfn_to_section_nr(pfn));
976 #endif
977 }
978
979 #ifdef CONFIG_MEMCG
980 static inline struct mem_cgroup *page_memcg(struct page *page)
981 {
982 return page->mem_cgroup;
983 }
984 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
985 {
986 WARN_ON_ONCE(!rcu_read_lock_held());
987 return READ_ONCE(page->mem_cgroup);
988 }
989 #else
990 static inline struct mem_cgroup *page_memcg(struct page *page)
991 {
992 return NULL;
993 }
994 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
995 {
996 WARN_ON_ONCE(!rcu_read_lock_held());
997 return NULL;
998 }
999 #endif
1000
1001 /*
1002 * Some inline functions in vmstat.h depend on page_zone()
1003 */
1004 #include <linux/vmstat.h>
1005
1006 static __always_inline void *lowmem_page_address(const struct page *page)
1007 {
1008 return page_to_virt(page);
1009 }
1010
1011 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1012 #define HASHED_PAGE_VIRTUAL
1013 #endif
1014
1015 #if defined(WANT_PAGE_VIRTUAL)
1016 static inline void *page_address(const struct page *page)
1017 {
1018 return page->virtual;
1019 }
1020 static inline void set_page_address(struct page *page, void *address)
1021 {
1022 page->virtual = address;
1023 }
1024 #define page_address_init() do { } while(0)
1025 #endif
1026
1027 #if defined(HASHED_PAGE_VIRTUAL)
1028 void *page_address(const struct page *page);
1029 void set_page_address(struct page *page, void *virtual);
1030 void page_address_init(void);
1031 #endif
1032
1033 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1034 #define page_address(page) lowmem_page_address(page)
1035 #define set_page_address(page, address) do { } while(0)
1036 #define page_address_init() do { } while(0)
1037 #endif
1038
1039 extern void *page_rmapping(struct page *page);
1040 extern struct anon_vma *page_anon_vma(struct page *page);
1041 extern struct address_space *page_mapping(struct page *page);
1042
1043 extern struct address_space *__page_file_mapping(struct page *);
1044
1045 static inline
1046 struct address_space *page_file_mapping(struct page *page)
1047 {
1048 if (unlikely(PageSwapCache(page)))
1049 return __page_file_mapping(page);
1050
1051 return page->mapping;
1052 }
1053
1054 extern pgoff_t __page_file_index(struct page *page);
1055
1056 /*
1057 * Return the pagecache index of the passed page. Regular pagecache pages
1058 * use ->index whereas swapcache pages use swp_offset(->private)
1059 */
1060 static inline pgoff_t page_index(struct page *page)
1061 {
1062 if (unlikely(PageSwapCache(page)))
1063 return __page_file_index(page);
1064 return page->index;
1065 }
1066
1067 bool page_mapped(struct page *page);
1068 struct address_space *page_mapping(struct page *page);
1069
1070 /*
1071 * Return true only if the page has been allocated with
1072 * ALLOC_NO_WATERMARKS and the low watermark was not
1073 * met implying that the system is under some pressure.
1074 */
1075 static inline bool page_is_pfmemalloc(struct page *page)
1076 {
1077 /*
1078 * Page index cannot be this large so this must be
1079 * a pfmemalloc page.
1080 */
1081 return page->index == -1UL;
1082 }
1083
1084 /*
1085 * Only to be called by the page allocator on a freshly allocated
1086 * page.
1087 */
1088 static inline void set_page_pfmemalloc(struct page *page)
1089 {
1090 page->index = -1UL;
1091 }
1092
1093 static inline void clear_page_pfmemalloc(struct page *page)
1094 {
1095 page->index = 0;
1096 }
1097
1098 /*
1099 * Different kinds of faults, as returned by handle_mm_fault().
1100 * Used to decide whether a process gets delivered SIGBUS or
1101 * just gets major/minor fault counters bumped up.
1102 */
1103
1104 #define VM_FAULT_OOM 0x0001
1105 #define VM_FAULT_SIGBUS 0x0002
1106 #define VM_FAULT_MAJOR 0x0004
1107 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1108 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1109 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1110 #define VM_FAULT_SIGSEGV 0x0040
1111
1112 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1113 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1114 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1115 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1116 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1117
1118 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1119
1120 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1121 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1122 VM_FAULT_FALLBACK)
1123
1124 #define VM_FAULT_RESULT_TRACE \
1125 { VM_FAULT_OOM, "OOM" }, \
1126 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1127 { VM_FAULT_MAJOR, "MAJOR" }, \
1128 { VM_FAULT_WRITE, "WRITE" }, \
1129 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1130 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1131 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1132 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1133 { VM_FAULT_LOCKED, "LOCKED" }, \
1134 { VM_FAULT_RETRY, "RETRY" }, \
1135 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1136 { VM_FAULT_DONE_COW, "DONE_COW" }
1137
1138 /* Encode hstate index for a hwpoisoned large page */
1139 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1140 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1141
1142 /*
1143 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1144 */
1145 extern void pagefault_out_of_memory(void);
1146
1147 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1148
1149 /*
1150 * Flags passed to show_mem() and show_free_areas() to suppress output in
1151 * various contexts.
1152 */
1153 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1154
1155 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1156
1157 int shmem_zero_setup(struct vm_area_struct *);
1158 #ifdef CONFIG_SHMEM
1159 bool shmem_mapping(struct address_space *mapping);
1160 #else
1161 static inline bool shmem_mapping(struct address_space *mapping)
1162 {
1163 return false;
1164 }
1165 #endif
1166
1167 extern bool can_do_mlock(void);
1168 extern int user_shm_lock(size_t, struct user_struct *);
1169 extern void user_shm_unlock(size_t, struct user_struct *);
1170
1171 /*
1172 * Parameter block passed down to zap_pte_range in exceptional cases.
1173 */
1174 struct zap_details {
1175 struct address_space *check_mapping; /* Check page->mapping if set */
1176 pgoff_t first_index; /* Lowest page->index to unmap */
1177 pgoff_t last_index; /* Highest page->index to unmap */
1178 };
1179
1180 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1181 pte_t pte);
1182 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1183 pmd_t pmd);
1184
1185 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1186 unsigned long size);
1187 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1188 unsigned long size);
1189 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1190 unsigned long start, unsigned long end);
1191
1192 /**
1193 * mm_walk - callbacks for walk_page_range
1194 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1195 * this handler is required to be able to handle
1196 * pmd_trans_huge() pmds. They may simply choose to
1197 * split_huge_page() instead of handling it explicitly.
1198 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1199 * @pte_hole: if set, called for each hole at all levels
1200 * @hugetlb_entry: if set, called for each hugetlb entry
1201 * @test_walk: caller specific callback function to determine whether
1202 * we walk over the current vma or not. Returning 0
1203 * value means "do page table walk over the current vma,"
1204 * and a negative one means "abort current page table walk
1205 * right now." 1 means "skip the current vma."
1206 * @mm: mm_struct representing the target process of page table walk
1207 * @vma: vma currently walked (NULL if walking outside vmas)
1208 * @private: private data for callbacks' usage
1209 *
1210 * (see the comment on walk_page_range() for more details)
1211 */
1212 struct mm_walk {
1213 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1214 unsigned long next, struct mm_walk *walk);
1215 int (*pte_entry)(pte_t *pte, unsigned long addr,
1216 unsigned long next, struct mm_walk *walk);
1217 int (*pte_hole)(unsigned long addr, unsigned long next,
1218 struct mm_walk *walk);
1219 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1220 unsigned long addr, unsigned long next,
1221 struct mm_walk *walk);
1222 int (*test_walk)(unsigned long addr, unsigned long next,
1223 struct mm_walk *walk);
1224 struct mm_struct *mm;
1225 struct vm_area_struct *vma;
1226 void *private;
1227 };
1228
1229 int walk_page_range(unsigned long addr, unsigned long end,
1230 struct mm_walk *walk);
1231 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1232 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1233 unsigned long end, unsigned long floor, unsigned long ceiling);
1234 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1235 struct vm_area_struct *vma);
1236 void unmap_mapping_range(struct address_space *mapping,
1237 loff_t const holebegin, loff_t const holelen, int even_cows);
1238 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1239 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1240 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1241 unsigned long *pfn);
1242 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1243 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1244 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1245 void *buf, int len, int write);
1246
1247 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1248 loff_t const holebegin, loff_t const holelen)
1249 {
1250 unmap_mapping_range(mapping, holebegin, holelen, 0);
1251 }
1252
1253 extern void truncate_pagecache(struct inode *inode, loff_t new);
1254 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1255 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1256 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1257 int truncate_inode_page(struct address_space *mapping, struct page *page);
1258 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1259 int invalidate_inode_page(struct page *page);
1260
1261 #ifdef CONFIG_MMU
1262 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1263 unsigned int flags);
1264 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1265 unsigned long address, unsigned int fault_flags,
1266 bool *unlocked);
1267 #else
1268 static inline int handle_mm_fault(struct vm_area_struct *vma,
1269 unsigned long address, unsigned int flags)
1270 {
1271 /* should never happen if there's no MMU */
1272 BUG();
1273 return VM_FAULT_SIGBUS;
1274 }
1275 static inline int fixup_user_fault(struct task_struct *tsk,
1276 struct mm_struct *mm, unsigned long address,
1277 unsigned int fault_flags, bool *unlocked)
1278 {
1279 /* should never happen if there's no MMU */
1280 BUG();
1281 return -EFAULT;
1282 }
1283 #endif
1284
1285 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1286 unsigned int gup_flags);
1287 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1288 void *buf, int len, unsigned int gup_flags);
1289 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1290 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1291
1292 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1293 unsigned long start, unsigned long nr_pages,
1294 unsigned int gup_flags, struct page **pages,
1295 struct vm_area_struct **vmas, int *locked);
1296 long get_user_pages(unsigned long start, unsigned long nr_pages,
1297 unsigned int gup_flags, struct page **pages,
1298 struct vm_area_struct **vmas);
1299 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1300 unsigned int gup_flags, struct page **pages, int *locked);
1301 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1302 struct page **pages, unsigned int gup_flags);
1303 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1304 struct page **pages);
1305
1306 /* Container for pinned pfns / pages */
1307 struct frame_vector {
1308 unsigned int nr_allocated; /* Number of frames we have space for */
1309 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1310 bool got_ref; /* Did we pin pages by getting page ref? */
1311 bool is_pfns; /* Does array contain pages or pfns? */
1312 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1313 * pfns_vector_pages() or pfns_vector_pfns()
1314 * for access */
1315 };
1316
1317 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1318 void frame_vector_destroy(struct frame_vector *vec);
1319 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1320 unsigned int gup_flags, struct frame_vector *vec);
1321 void put_vaddr_frames(struct frame_vector *vec);
1322 int frame_vector_to_pages(struct frame_vector *vec);
1323 void frame_vector_to_pfns(struct frame_vector *vec);
1324
1325 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1326 {
1327 return vec->nr_frames;
1328 }
1329
1330 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1331 {
1332 if (vec->is_pfns) {
1333 int err = frame_vector_to_pages(vec);
1334
1335 if (err)
1336 return ERR_PTR(err);
1337 }
1338 return (struct page **)(vec->ptrs);
1339 }
1340
1341 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1342 {
1343 if (!vec->is_pfns)
1344 frame_vector_to_pfns(vec);
1345 return (unsigned long *)(vec->ptrs);
1346 }
1347
1348 struct kvec;
1349 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1350 struct page **pages);
1351 int get_kernel_page(unsigned long start, int write, struct page **pages);
1352 struct page *get_dump_page(unsigned long addr);
1353
1354 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1355 extern void do_invalidatepage(struct page *page, unsigned int offset,
1356 unsigned int length);
1357
1358 int __set_page_dirty_nobuffers(struct page *page);
1359 int __set_page_dirty_no_writeback(struct page *page);
1360 int redirty_page_for_writepage(struct writeback_control *wbc,
1361 struct page *page);
1362 void account_page_dirtied(struct page *page, struct address_space *mapping);
1363 void account_page_cleaned(struct page *page, struct address_space *mapping,
1364 struct bdi_writeback *wb);
1365 int set_page_dirty(struct page *page);
1366 int set_page_dirty_lock(struct page *page);
1367 void cancel_dirty_page(struct page *page);
1368 int clear_page_dirty_for_io(struct page *page);
1369
1370 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1371
1372 /* Is the vma a continuation of the stack vma above it? */
1373 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1374 {
1375 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1376 }
1377
1378 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1379 {
1380 return !vma->vm_ops;
1381 }
1382
1383 #ifdef CONFIG_SHMEM
1384 /*
1385 * The vma_is_shmem is not inline because it is used only by slow
1386 * paths in userfault.
1387 */
1388 bool vma_is_shmem(struct vm_area_struct *vma);
1389 #else
1390 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1391 #endif
1392
1393 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1394 unsigned long addr)
1395 {
1396 return (vma->vm_flags & VM_GROWSDOWN) &&
1397 (vma->vm_start == addr) &&
1398 !vma_growsdown(vma->vm_prev, addr);
1399 }
1400
1401 /* Is the vma a continuation of the stack vma below it? */
1402 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1403 {
1404 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1405 }
1406
1407 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1408 unsigned long addr)
1409 {
1410 return (vma->vm_flags & VM_GROWSUP) &&
1411 (vma->vm_end == addr) &&
1412 !vma_growsup(vma->vm_next, addr);
1413 }
1414
1415 int vma_is_stack_for_current(struct vm_area_struct *vma);
1416
1417 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1418 unsigned long old_addr, struct vm_area_struct *new_vma,
1419 unsigned long new_addr, unsigned long len,
1420 bool need_rmap_locks);
1421 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1422 unsigned long end, pgprot_t newprot,
1423 int dirty_accountable, int prot_numa);
1424 extern int mprotect_fixup(struct vm_area_struct *vma,
1425 struct vm_area_struct **pprev, unsigned long start,
1426 unsigned long end, unsigned long newflags);
1427
1428 /*
1429 * doesn't attempt to fault and will return short.
1430 */
1431 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1432 struct page **pages);
1433 /*
1434 * per-process(per-mm_struct) statistics.
1435 */
1436 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1437 {
1438 long val = atomic_long_read(&mm->rss_stat.count[member]);
1439
1440 #ifdef SPLIT_RSS_COUNTING
1441 /*
1442 * counter is updated in asynchronous manner and may go to minus.
1443 * But it's never be expected number for users.
1444 */
1445 if (val < 0)
1446 val = 0;
1447 #endif
1448 return (unsigned long)val;
1449 }
1450
1451 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1452 {
1453 atomic_long_add(value, &mm->rss_stat.count[member]);
1454 }
1455
1456 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1457 {
1458 atomic_long_inc(&mm->rss_stat.count[member]);
1459 }
1460
1461 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1462 {
1463 atomic_long_dec(&mm->rss_stat.count[member]);
1464 }
1465
1466 /* Optimized variant when page is already known not to be PageAnon */
1467 static inline int mm_counter_file(struct page *page)
1468 {
1469 if (PageSwapBacked(page))
1470 return MM_SHMEMPAGES;
1471 return MM_FILEPAGES;
1472 }
1473
1474 static inline int mm_counter(struct page *page)
1475 {
1476 if (PageAnon(page))
1477 return MM_ANONPAGES;
1478 return mm_counter_file(page);
1479 }
1480
1481 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1482 {
1483 return get_mm_counter(mm, MM_FILEPAGES) +
1484 get_mm_counter(mm, MM_ANONPAGES) +
1485 get_mm_counter(mm, MM_SHMEMPAGES);
1486 }
1487
1488 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1489 {
1490 return max(mm->hiwater_rss, get_mm_rss(mm));
1491 }
1492
1493 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1494 {
1495 return max(mm->hiwater_vm, mm->total_vm);
1496 }
1497
1498 static inline void update_hiwater_rss(struct mm_struct *mm)
1499 {
1500 unsigned long _rss = get_mm_rss(mm);
1501
1502 if ((mm)->hiwater_rss < _rss)
1503 (mm)->hiwater_rss = _rss;
1504 }
1505
1506 static inline void update_hiwater_vm(struct mm_struct *mm)
1507 {
1508 if (mm->hiwater_vm < mm->total_vm)
1509 mm->hiwater_vm = mm->total_vm;
1510 }
1511
1512 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1513 {
1514 mm->hiwater_rss = get_mm_rss(mm);
1515 }
1516
1517 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1518 struct mm_struct *mm)
1519 {
1520 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1521
1522 if (*maxrss < hiwater_rss)
1523 *maxrss = hiwater_rss;
1524 }
1525
1526 #if defined(SPLIT_RSS_COUNTING)
1527 void sync_mm_rss(struct mm_struct *mm);
1528 #else
1529 static inline void sync_mm_rss(struct mm_struct *mm)
1530 {
1531 }
1532 #endif
1533
1534 #ifndef __HAVE_ARCH_PTE_DEVMAP
1535 static inline int pte_devmap(pte_t pte)
1536 {
1537 return 0;
1538 }
1539 #endif
1540
1541 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1542
1543 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1544 spinlock_t **ptl);
1545 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1546 spinlock_t **ptl)
1547 {
1548 pte_t *ptep;
1549 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1550 return ptep;
1551 }
1552
1553 #ifdef __PAGETABLE_PUD_FOLDED
1554 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1555 unsigned long address)
1556 {
1557 return 0;
1558 }
1559 #else
1560 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1561 #endif
1562
1563 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1564 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1565 unsigned long address)
1566 {
1567 return 0;
1568 }
1569
1570 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1571
1572 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1573 {
1574 return 0;
1575 }
1576
1577 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1578 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1579
1580 #else
1581 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1582
1583 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1584 {
1585 atomic_long_set(&mm->nr_pmds, 0);
1586 }
1587
1588 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1589 {
1590 return atomic_long_read(&mm->nr_pmds);
1591 }
1592
1593 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1594 {
1595 atomic_long_inc(&mm->nr_pmds);
1596 }
1597
1598 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1599 {
1600 atomic_long_dec(&mm->nr_pmds);
1601 }
1602 #endif
1603
1604 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1605 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1606
1607 /*
1608 * The following ifdef needed to get the 4level-fixup.h header to work.
1609 * Remove it when 4level-fixup.h has been removed.
1610 */
1611 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1612 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1613 {
1614 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1615 NULL: pud_offset(pgd, address);
1616 }
1617
1618 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1619 {
1620 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1621 NULL: pmd_offset(pud, address);
1622 }
1623 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1624
1625 #if USE_SPLIT_PTE_PTLOCKS
1626 #if ALLOC_SPLIT_PTLOCKS
1627 void __init ptlock_cache_init(void);
1628 extern bool ptlock_alloc(struct page *page);
1629 extern void ptlock_free(struct page *page);
1630
1631 static inline spinlock_t *ptlock_ptr(struct page *page)
1632 {
1633 return page->ptl;
1634 }
1635 #else /* ALLOC_SPLIT_PTLOCKS */
1636 static inline void ptlock_cache_init(void)
1637 {
1638 }
1639
1640 static inline bool ptlock_alloc(struct page *page)
1641 {
1642 return true;
1643 }
1644
1645 static inline void ptlock_free(struct page *page)
1646 {
1647 }
1648
1649 static inline spinlock_t *ptlock_ptr(struct page *page)
1650 {
1651 return &page->ptl;
1652 }
1653 #endif /* ALLOC_SPLIT_PTLOCKS */
1654
1655 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1656 {
1657 return ptlock_ptr(pmd_page(*pmd));
1658 }
1659
1660 static inline bool ptlock_init(struct page *page)
1661 {
1662 /*
1663 * prep_new_page() initialize page->private (and therefore page->ptl)
1664 * with 0. Make sure nobody took it in use in between.
1665 *
1666 * It can happen if arch try to use slab for page table allocation:
1667 * slab code uses page->slab_cache, which share storage with page->ptl.
1668 */
1669 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1670 if (!ptlock_alloc(page))
1671 return false;
1672 spin_lock_init(ptlock_ptr(page));
1673 return true;
1674 }
1675
1676 /* Reset page->mapping so free_pages_check won't complain. */
1677 static inline void pte_lock_deinit(struct page *page)
1678 {
1679 page->mapping = NULL;
1680 ptlock_free(page);
1681 }
1682
1683 #else /* !USE_SPLIT_PTE_PTLOCKS */
1684 /*
1685 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1686 */
1687 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1688 {
1689 return &mm->page_table_lock;
1690 }
1691 static inline void ptlock_cache_init(void) {}
1692 static inline bool ptlock_init(struct page *page) { return true; }
1693 static inline void pte_lock_deinit(struct page *page) {}
1694 #endif /* USE_SPLIT_PTE_PTLOCKS */
1695
1696 static inline void pgtable_init(void)
1697 {
1698 ptlock_cache_init();
1699 pgtable_cache_init();
1700 }
1701
1702 static inline bool pgtable_page_ctor(struct page *page)
1703 {
1704 if (!ptlock_init(page))
1705 return false;
1706 inc_zone_page_state(page, NR_PAGETABLE);
1707 return true;
1708 }
1709
1710 static inline void pgtable_page_dtor(struct page *page)
1711 {
1712 pte_lock_deinit(page);
1713 dec_zone_page_state(page, NR_PAGETABLE);
1714 }
1715
1716 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1717 ({ \
1718 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1719 pte_t *__pte = pte_offset_map(pmd, address); \
1720 *(ptlp) = __ptl; \
1721 spin_lock(__ptl); \
1722 __pte; \
1723 })
1724
1725 #define pte_unmap_unlock(pte, ptl) do { \
1726 spin_unlock(ptl); \
1727 pte_unmap(pte); \
1728 } while (0)
1729
1730 #define pte_alloc(mm, pmd, address) \
1731 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1732
1733 #define pte_alloc_map(mm, pmd, address) \
1734 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1735
1736 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1737 (pte_alloc(mm, pmd, address) ? \
1738 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1739
1740 #define pte_alloc_kernel(pmd, address) \
1741 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1742 NULL: pte_offset_kernel(pmd, address))
1743
1744 #if USE_SPLIT_PMD_PTLOCKS
1745
1746 static struct page *pmd_to_page(pmd_t *pmd)
1747 {
1748 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1749 return virt_to_page((void *)((unsigned long) pmd & mask));
1750 }
1751
1752 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1753 {
1754 return ptlock_ptr(pmd_to_page(pmd));
1755 }
1756
1757 static inline bool pgtable_pmd_page_ctor(struct page *page)
1758 {
1759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1760 page->pmd_huge_pte = NULL;
1761 #endif
1762 return ptlock_init(page);
1763 }
1764
1765 static inline void pgtable_pmd_page_dtor(struct page *page)
1766 {
1767 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1768 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1769 #endif
1770 ptlock_free(page);
1771 }
1772
1773 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1774
1775 #else
1776
1777 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1778 {
1779 return &mm->page_table_lock;
1780 }
1781
1782 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1783 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1784
1785 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1786
1787 #endif
1788
1789 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1790 {
1791 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1792 spin_lock(ptl);
1793 return ptl;
1794 }
1795
1796 extern void __init pagecache_init(void);
1797
1798 extern void free_area_init(unsigned long * zones_size);
1799 extern void free_area_init_node(int nid, unsigned long * zones_size,
1800 unsigned long zone_start_pfn, unsigned long *zholes_size);
1801 extern void free_initmem(void);
1802
1803 /*
1804 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1805 * into the buddy system. The freed pages will be poisoned with pattern
1806 * "poison" if it's within range [0, UCHAR_MAX].
1807 * Return pages freed into the buddy system.
1808 */
1809 extern unsigned long free_reserved_area(void *start, void *end,
1810 int poison, char *s);
1811
1812 #ifdef CONFIG_HIGHMEM
1813 /*
1814 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1815 * and totalram_pages.
1816 */
1817 extern void free_highmem_page(struct page *page);
1818 #endif
1819
1820 extern void adjust_managed_page_count(struct page *page, long count);
1821 extern void mem_init_print_info(const char *str);
1822
1823 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1824
1825 /* Free the reserved page into the buddy system, so it gets managed. */
1826 static inline void __free_reserved_page(struct page *page)
1827 {
1828 ClearPageReserved(page);
1829 init_page_count(page);
1830 __free_page(page);
1831 }
1832
1833 static inline void free_reserved_page(struct page *page)
1834 {
1835 __free_reserved_page(page);
1836 adjust_managed_page_count(page, 1);
1837 }
1838
1839 static inline void mark_page_reserved(struct page *page)
1840 {
1841 SetPageReserved(page);
1842 adjust_managed_page_count(page, -1);
1843 }
1844
1845 /*
1846 * Default method to free all the __init memory into the buddy system.
1847 * The freed pages will be poisoned with pattern "poison" if it's within
1848 * range [0, UCHAR_MAX].
1849 * Return pages freed into the buddy system.
1850 */
1851 static inline unsigned long free_initmem_default(int poison)
1852 {
1853 extern char __init_begin[], __init_end[];
1854
1855 return free_reserved_area(&__init_begin, &__init_end,
1856 poison, "unused kernel");
1857 }
1858
1859 static inline unsigned long get_num_physpages(void)
1860 {
1861 int nid;
1862 unsigned long phys_pages = 0;
1863
1864 for_each_online_node(nid)
1865 phys_pages += node_present_pages(nid);
1866
1867 return phys_pages;
1868 }
1869
1870 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1871 /*
1872 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1873 * zones, allocate the backing mem_map and account for memory holes in a more
1874 * architecture independent manner. This is a substitute for creating the
1875 * zone_sizes[] and zholes_size[] arrays and passing them to
1876 * free_area_init_node()
1877 *
1878 * An architecture is expected to register range of page frames backed by
1879 * physical memory with memblock_add[_node]() before calling
1880 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1881 * usage, an architecture is expected to do something like
1882 *
1883 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1884 * max_highmem_pfn};
1885 * for_each_valid_physical_page_range()
1886 * memblock_add_node(base, size, nid)
1887 * free_area_init_nodes(max_zone_pfns);
1888 *
1889 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1890 * registered physical page range. Similarly
1891 * sparse_memory_present_with_active_regions() calls memory_present() for
1892 * each range when SPARSEMEM is enabled.
1893 *
1894 * See mm/page_alloc.c for more information on each function exposed by
1895 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1896 */
1897 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1898 unsigned long node_map_pfn_alignment(void);
1899 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1900 unsigned long end_pfn);
1901 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1902 unsigned long end_pfn);
1903 extern void get_pfn_range_for_nid(unsigned int nid,
1904 unsigned long *start_pfn, unsigned long *end_pfn);
1905 extern unsigned long find_min_pfn_with_active_regions(void);
1906 extern void free_bootmem_with_active_regions(int nid,
1907 unsigned long max_low_pfn);
1908 extern void sparse_memory_present_with_active_regions(int nid);
1909
1910 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1911
1912 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1913 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1914 static inline int __early_pfn_to_nid(unsigned long pfn,
1915 struct mminit_pfnnid_cache *state)
1916 {
1917 return 0;
1918 }
1919 #else
1920 /* please see mm/page_alloc.c */
1921 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1922 /* there is a per-arch backend function. */
1923 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1924 struct mminit_pfnnid_cache *state);
1925 #endif
1926
1927 extern void set_dma_reserve(unsigned long new_dma_reserve);
1928 extern void memmap_init_zone(unsigned long, int, unsigned long,
1929 unsigned long, enum memmap_context);
1930 extern void setup_per_zone_wmarks(void);
1931 extern int __meminit init_per_zone_wmark_min(void);
1932 extern void mem_init(void);
1933 extern void __init mmap_init(void);
1934 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
1935 extern long si_mem_available(void);
1936 extern void si_meminfo(struct sysinfo * val);
1937 extern void si_meminfo_node(struct sysinfo *val, int nid);
1938 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1939 extern unsigned long arch_reserved_kernel_pages(void);
1940 #endif
1941
1942 extern __printf(3, 4)
1943 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
1944
1945 extern void setup_per_cpu_pageset(void);
1946
1947 extern void zone_pcp_update(struct zone *zone);
1948 extern void zone_pcp_reset(struct zone *zone);
1949
1950 /* page_alloc.c */
1951 extern int min_free_kbytes;
1952 extern int watermark_scale_factor;
1953
1954 /* nommu.c */
1955 extern atomic_long_t mmap_pages_allocated;
1956 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1957
1958 /* interval_tree.c */
1959 void vma_interval_tree_insert(struct vm_area_struct *node,
1960 struct rb_root *root);
1961 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1962 struct vm_area_struct *prev,
1963 struct rb_root *root);
1964 void vma_interval_tree_remove(struct vm_area_struct *node,
1965 struct rb_root *root);
1966 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1967 unsigned long start, unsigned long last);
1968 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1969 unsigned long start, unsigned long last);
1970
1971 #define vma_interval_tree_foreach(vma, root, start, last) \
1972 for (vma = vma_interval_tree_iter_first(root, start, last); \
1973 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1974
1975 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1976 struct rb_root *root);
1977 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1978 struct rb_root *root);
1979 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1980 struct rb_root *root, unsigned long start, unsigned long last);
1981 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1982 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1983 #ifdef CONFIG_DEBUG_VM_RB
1984 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1985 #endif
1986
1987 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1988 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1989 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1990
1991 /* mmap.c */
1992 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1993 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
1994 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
1995 struct vm_area_struct *expand);
1996 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1997 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
1998 {
1999 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2000 }
2001 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2002 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2003 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2004 struct mempolicy *, struct vm_userfaultfd_ctx);
2005 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2006 extern int split_vma(struct mm_struct *,
2007 struct vm_area_struct *, unsigned long addr, int new_below);
2008 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2009 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2010 struct rb_node **, struct rb_node *);
2011 extern void unlink_file_vma(struct vm_area_struct *);
2012 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2013 unsigned long addr, unsigned long len, pgoff_t pgoff,
2014 bool *need_rmap_locks);
2015 extern void exit_mmap(struct mm_struct *);
2016
2017 static inline int check_data_rlimit(unsigned long rlim,
2018 unsigned long new,
2019 unsigned long start,
2020 unsigned long end_data,
2021 unsigned long start_data)
2022 {
2023 if (rlim < RLIM_INFINITY) {
2024 if (((new - start) + (end_data - start_data)) > rlim)
2025 return -ENOSPC;
2026 }
2027
2028 return 0;
2029 }
2030
2031 extern int mm_take_all_locks(struct mm_struct *mm);
2032 extern void mm_drop_all_locks(struct mm_struct *mm);
2033
2034 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2035 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2036 extern struct file *get_task_exe_file(struct task_struct *task);
2037
2038 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2039 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2040
2041 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2042 const struct vm_special_mapping *sm);
2043 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2044 unsigned long addr, unsigned long len,
2045 unsigned long flags,
2046 const struct vm_special_mapping *spec);
2047 /* This is an obsolete alternative to _install_special_mapping. */
2048 extern int install_special_mapping(struct mm_struct *mm,
2049 unsigned long addr, unsigned long len,
2050 unsigned long flags, struct page **pages);
2051
2052 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2053
2054 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2055 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2056 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2057 unsigned long len, unsigned long prot, unsigned long flags,
2058 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2059 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2060
2061 static inline unsigned long
2062 do_mmap_pgoff(struct file *file, unsigned long addr,
2063 unsigned long len, unsigned long prot, unsigned long flags,
2064 unsigned long pgoff, unsigned long *populate)
2065 {
2066 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2067 }
2068
2069 #ifdef CONFIG_MMU
2070 extern int __mm_populate(unsigned long addr, unsigned long len,
2071 int ignore_errors);
2072 static inline void mm_populate(unsigned long addr, unsigned long len)
2073 {
2074 /* Ignore errors */
2075 (void) __mm_populate(addr, len, 1);
2076 }
2077 #else
2078 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2079 #endif
2080
2081 /* These take the mm semaphore themselves */
2082 extern int __must_check vm_brk(unsigned long, unsigned long);
2083 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2084 extern int vm_munmap(unsigned long, size_t);
2085 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2086 unsigned long, unsigned long,
2087 unsigned long, unsigned long);
2088
2089 struct vm_unmapped_area_info {
2090 #define VM_UNMAPPED_AREA_TOPDOWN 1
2091 unsigned long flags;
2092 unsigned long length;
2093 unsigned long low_limit;
2094 unsigned long high_limit;
2095 unsigned long align_mask;
2096 unsigned long align_offset;
2097 };
2098
2099 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2100 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2101
2102 /*
2103 * Search for an unmapped address range.
2104 *
2105 * We are looking for a range that:
2106 * - does not intersect with any VMA;
2107 * - is contained within the [low_limit, high_limit) interval;
2108 * - is at least the desired size.
2109 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2110 */
2111 static inline unsigned long
2112 vm_unmapped_area(struct vm_unmapped_area_info *info)
2113 {
2114 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2115 return unmapped_area_topdown(info);
2116 else
2117 return unmapped_area(info);
2118 }
2119
2120 /* truncate.c */
2121 extern void truncate_inode_pages(struct address_space *, loff_t);
2122 extern void truncate_inode_pages_range(struct address_space *,
2123 loff_t lstart, loff_t lend);
2124 extern void truncate_inode_pages_final(struct address_space *);
2125
2126 /* generic vm_area_ops exported for stackable file systems */
2127 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2128 extern void filemap_map_pages(struct vm_fault *vmf,
2129 pgoff_t start_pgoff, pgoff_t end_pgoff);
2130 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2131
2132 /* mm/page-writeback.c */
2133 int write_one_page(struct page *page, int wait);
2134 void task_dirty_inc(struct task_struct *tsk);
2135
2136 /* readahead.c */
2137 #define VM_MAX_READAHEAD 128 /* kbytes */
2138 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2139
2140 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2141 pgoff_t offset, unsigned long nr_to_read);
2142
2143 void page_cache_sync_readahead(struct address_space *mapping,
2144 struct file_ra_state *ra,
2145 struct file *filp,
2146 pgoff_t offset,
2147 unsigned long size);
2148
2149 void page_cache_async_readahead(struct address_space *mapping,
2150 struct file_ra_state *ra,
2151 struct file *filp,
2152 struct page *pg,
2153 pgoff_t offset,
2154 unsigned long size);
2155
2156 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2157 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2158
2159 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2160 extern int expand_downwards(struct vm_area_struct *vma,
2161 unsigned long address);
2162 #if VM_GROWSUP
2163 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2164 #else
2165 #define expand_upwards(vma, address) (0)
2166 #endif
2167
2168 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2169 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2170 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2171 struct vm_area_struct **pprev);
2172
2173 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2174 NULL if none. Assume start_addr < end_addr. */
2175 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2176 {
2177 struct vm_area_struct * vma = find_vma(mm,start_addr);
2178
2179 if (vma && end_addr <= vma->vm_start)
2180 vma = NULL;
2181 return vma;
2182 }
2183
2184 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2185 {
2186 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2187 }
2188
2189 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2190 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2191 unsigned long vm_start, unsigned long vm_end)
2192 {
2193 struct vm_area_struct *vma = find_vma(mm, vm_start);
2194
2195 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2196 vma = NULL;
2197
2198 return vma;
2199 }
2200
2201 #ifdef CONFIG_MMU
2202 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2203 void vma_set_page_prot(struct vm_area_struct *vma);
2204 #else
2205 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2206 {
2207 return __pgprot(0);
2208 }
2209 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2210 {
2211 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2212 }
2213 #endif
2214
2215 #ifdef CONFIG_NUMA_BALANCING
2216 unsigned long change_prot_numa(struct vm_area_struct *vma,
2217 unsigned long start, unsigned long end);
2218 #endif
2219
2220 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2221 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2222 unsigned long pfn, unsigned long size, pgprot_t);
2223 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2224 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2225 unsigned long pfn);
2226 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2227 unsigned long pfn, pgprot_t pgprot);
2228 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2229 pfn_t pfn);
2230 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2231
2232
2233 struct page *follow_page_mask(struct vm_area_struct *vma,
2234 unsigned long address, unsigned int foll_flags,
2235 unsigned int *page_mask);
2236
2237 static inline struct page *follow_page(struct vm_area_struct *vma,
2238 unsigned long address, unsigned int foll_flags)
2239 {
2240 unsigned int unused_page_mask;
2241 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2242 }
2243
2244 #define FOLL_WRITE 0x01 /* check pte is writable */
2245 #define FOLL_TOUCH 0x02 /* mark page accessed */
2246 #define FOLL_GET 0x04 /* do get_page on page */
2247 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2248 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2249 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2250 * and return without waiting upon it */
2251 #define FOLL_POPULATE 0x40 /* fault in page */
2252 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2253 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2254 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2255 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2256 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2257 #define FOLL_MLOCK 0x1000 /* lock present pages */
2258 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2259 #define FOLL_COW 0x4000 /* internal GUP flag */
2260
2261 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2262 void *data);
2263 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2264 unsigned long size, pte_fn_t fn, void *data);
2265
2266
2267 #ifdef CONFIG_PAGE_POISONING
2268 extern bool page_poisoning_enabled(void);
2269 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2270 extern bool page_is_poisoned(struct page *page);
2271 #else
2272 static inline bool page_poisoning_enabled(void) { return false; }
2273 static inline void kernel_poison_pages(struct page *page, int numpages,
2274 int enable) { }
2275 static inline bool page_is_poisoned(struct page *page) { return false; }
2276 #endif
2277
2278 #ifdef CONFIG_DEBUG_PAGEALLOC
2279 extern bool _debug_pagealloc_enabled;
2280 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2281
2282 static inline bool debug_pagealloc_enabled(void)
2283 {
2284 return _debug_pagealloc_enabled;
2285 }
2286
2287 static inline void
2288 kernel_map_pages(struct page *page, int numpages, int enable)
2289 {
2290 if (!debug_pagealloc_enabled())
2291 return;
2292
2293 __kernel_map_pages(page, numpages, enable);
2294 }
2295 #ifdef CONFIG_HIBERNATION
2296 extern bool kernel_page_present(struct page *page);
2297 #endif /* CONFIG_HIBERNATION */
2298 #else /* CONFIG_DEBUG_PAGEALLOC */
2299 static inline void
2300 kernel_map_pages(struct page *page, int numpages, int enable) {}
2301 #ifdef CONFIG_HIBERNATION
2302 static inline bool kernel_page_present(struct page *page) { return true; }
2303 #endif /* CONFIG_HIBERNATION */
2304 static inline bool debug_pagealloc_enabled(void)
2305 {
2306 return false;
2307 }
2308 #endif /* CONFIG_DEBUG_PAGEALLOC */
2309
2310 #ifdef __HAVE_ARCH_GATE_AREA
2311 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2312 extern int in_gate_area_no_mm(unsigned long addr);
2313 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2314 #else
2315 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2316 {
2317 return NULL;
2318 }
2319 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2320 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2321 {
2322 return 0;
2323 }
2324 #endif /* __HAVE_ARCH_GATE_AREA */
2325
2326 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2327
2328 #ifdef CONFIG_SYSCTL
2329 extern int sysctl_drop_caches;
2330 int drop_caches_sysctl_handler(struct ctl_table *, int,
2331 void __user *, size_t *, loff_t *);
2332 #endif
2333
2334 void drop_slab(void);
2335 void drop_slab_node(int nid);
2336
2337 #ifndef CONFIG_MMU
2338 #define randomize_va_space 0
2339 #else
2340 extern int randomize_va_space;
2341 #endif
2342
2343 const char * arch_vma_name(struct vm_area_struct *vma);
2344 void print_vma_addr(char *prefix, unsigned long rip);
2345
2346 void sparse_mem_maps_populate_node(struct page **map_map,
2347 unsigned long pnum_begin,
2348 unsigned long pnum_end,
2349 unsigned long map_count,
2350 int nodeid);
2351
2352 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2353 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2354 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2355 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2356 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2357 void *vmemmap_alloc_block(unsigned long size, int node);
2358 struct vmem_altmap;
2359 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2360 struct vmem_altmap *altmap);
2361 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2362 {
2363 return __vmemmap_alloc_block_buf(size, node, NULL);
2364 }
2365
2366 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2367 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2368 int node);
2369 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2370 void vmemmap_populate_print_last(void);
2371 #ifdef CONFIG_MEMORY_HOTPLUG
2372 void vmemmap_free(unsigned long start, unsigned long end);
2373 #endif
2374 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2375 unsigned long size);
2376
2377 enum mf_flags {
2378 MF_COUNT_INCREASED = 1 << 0,
2379 MF_ACTION_REQUIRED = 1 << 1,
2380 MF_MUST_KILL = 1 << 2,
2381 MF_SOFT_OFFLINE = 1 << 3,
2382 };
2383 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2384 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2385 extern int unpoison_memory(unsigned long pfn);
2386 extern int get_hwpoison_page(struct page *page);
2387 #define put_hwpoison_page(page) put_page(page)
2388 extern int sysctl_memory_failure_early_kill;
2389 extern int sysctl_memory_failure_recovery;
2390 extern void shake_page(struct page *p, int access);
2391 extern atomic_long_t num_poisoned_pages;
2392 extern int soft_offline_page(struct page *page, int flags);
2393
2394
2395 /*
2396 * Error handlers for various types of pages.
2397 */
2398 enum mf_result {
2399 MF_IGNORED, /* Error: cannot be handled */
2400 MF_FAILED, /* Error: handling failed */
2401 MF_DELAYED, /* Will be handled later */
2402 MF_RECOVERED, /* Successfully recovered */
2403 };
2404
2405 enum mf_action_page_type {
2406 MF_MSG_KERNEL,
2407 MF_MSG_KERNEL_HIGH_ORDER,
2408 MF_MSG_SLAB,
2409 MF_MSG_DIFFERENT_COMPOUND,
2410 MF_MSG_POISONED_HUGE,
2411 MF_MSG_HUGE,
2412 MF_MSG_FREE_HUGE,
2413 MF_MSG_UNMAP_FAILED,
2414 MF_MSG_DIRTY_SWAPCACHE,
2415 MF_MSG_CLEAN_SWAPCACHE,
2416 MF_MSG_DIRTY_MLOCKED_LRU,
2417 MF_MSG_CLEAN_MLOCKED_LRU,
2418 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2419 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2420 MF_MSG_DIRTY_LRU,
2421 MF_MSG_CLEAN_LRU,
2422 MF_MSG_TRUNCATED_LRU,
2423 MF_MSG_BUDDY,
2424 MF_MSG_BUDDY_2ND,
2425 MF_MSG_UNKNOWN,
2426 };
2427
2428 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2429 extern void clear_huge_page(struct page *page,
2430 unsigned long addr,
2431 unsigned int pages_per_huge_page);
2432 extern void copy_user_huge_page(struct page *dst, struct page *src,
2433 unsigned long addr, struct vm_area_struct *vma,
2434 unsigned int pages_per_huge_page);
2435 extern long copy_huge_page_from_user(struct page *dst_page,
2436 const void __user *usr_src,
2437 unsigned int pages_per_huge_page,
2438 bool allow_pagefault);
2439 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2440
2441 extern struct page_ext_operations debug_guardpage_ops;
2442 extern struct page_ext_operations page_poisoning_ops;
2443
2444 #ifdef CONFIG_DEBUG_PAGEALLOC
2445 extern unsigned int _debug_guardpage_minorder;
2446 extern bool _debug_guardpage_enabled;
2447
2448 static inline unsigned int debug_guardpage_minorder(void)
2449 {
2450 return _debug_guardpage_minorder;
2451 }
2452
2453 static inline bool debug_guardpage_enabled(void)
2454 {
2455 return _debug_guardpage_enabled;
2456 }
2457
2458 static inline bool page_is_guard(struct page *page)
2459 {
2460 struct page_ext *page_ext;
2461
2462 if (!debug_guardpage_enabled())
2463 return false;
2464
2465 page_ext = lookup_page_ext(page);
2466 if (unlikely(!page_ext))
2467 return false;
2468
2469 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2470 }
2471 #else
2472 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2473 static inline bool debug_guardpage_enabled(void) { return false; }
2474 static inline bool page_is_guard(struct page *page) { return false; }
2475 #endif /* CONFIG_DEBUG_PAGEALLOC */
2476
2477 #if MAX_NUMNODES > 1
2478 void __init setup_nr_node_ids(void);
2479 #else
2480 static inline void setup_nr_node_ids(void) {}
2481 #endif
2482
2483 #endif /* __KERNEL__ */
2484 #endif /* _LINUX_MM_H */