]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/mm.h
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 #include <linux/bit_spinlock.h>
18
19 struct mempolicy;
20 struct anon_vma;
21 struct file_ra_state;
22 struct user_struct;
23 struct writeback_control;
24
25 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26 extern unsigned long max_mapnr;
27 #endif
28
29 extern unsigned long num_physpages;
30 extern unsigned long totalram_pages;
31 extern void * high_memory;
32 extern int page_cluster;
33
34 #ifdef CONFIG_SYSCTL
35 extern int sysctl_legacy_va_layout;
36 #else
37 #define sysctl_legacy_va_layout 0
38 #endif
39
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/processor.h>
43
44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
46 /* to align the pointer to the (next) page boundary */
47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48
49 /*
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
56 */
57
58 extern struct kmem_cache *vm_area_cachep;
59
60 #ifndef CONFIG_MMU
61 extern struct rb_root nommu_region_tree;
62 extern struct rw_semaphore nommu_region_sem;
63
64 extern unsigned int kobjsize(const void *objp);
65 #endif
66
67 /*
68 * vm_flags in vm_area_struct, see mm_types.h.
69 */
70 #define VM_READ 0x00000001 /* currently active flags */
71 #define VM_WRITE 0x00000002
72 #define VM_EXEC 0x00000004
73 #define VM_SHARED 0x00000008
74
75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
76 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77 #define VM_MAYWRITE 0x00000020
78 #define VM_MAYEXEC 0x00000040
79 #define VM_MAYSHARE 0x00000080
80
81 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
83 #define VM_GROWSUP 0x00000200
84 #else
85 #define VM_GROWSUP 0x00000000
86 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
87 #endif
88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90
91 #define VM_EXECUTABLE 0x00001000
92 #define VM_LOCKED 0x00002000
93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94
95 /* Used by sys_madvise() */
96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98
99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
106 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
107 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
108 #else
109 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
110 #endif
111 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
112 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
113
114 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
115 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
116 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
117 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
118 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
119
120 /* Bits set in the VMA until the stack is in its final location */
121 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
122
123 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
124 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
125 #endif
126
127 #ifdef CONFIG_STACK_GROWSUP
128 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129 #else
130 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
131 #endif
132
133 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
134 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
135 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
136 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
137 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
138
139 /*
140 * special vmas that are non-mergable, non-mlock()able
141 */
142 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
143
144 /*
145 * mapping from the currently active vm_flags protection bits (the
146 * low four bits) to a page protection mask..
147 */
148 extern pgprot_t protection_map[16];
149
150 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
151 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
152 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
153 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
154 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
155
156 /*
157 * This interface is used by x86 PAT code to identify a pfn mapping that is
158 * linear over entire vma. This is to optimize PAT code that deals with
159 * marking the physical region with a particular prot. This is not for generic
160 * mm use. Note also that this check will not work if the pfn mapping is
161 * linear for a vma starting at physical address 0. In which case PAT code
162 * falls back to slow path of reserving physical range page by page.
163 */
164 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
165 {
166 return (vma->vm_flags & VM_PFN_AT_MMAP);
167 }
168
169 static inline int is_pfn_mapping(struct vm_area_struct *vma)
170 {
171 return (vma->vm_flags & VM_PFNMAP);
172 }
173
174 /*
175 * vm_fault is filled by the the pagefault handler and passed to the vma's
176 * ->fault function. The vma's ->fault is responsible for returning a bitmask
177 * of VM_FAULT_xxx flags that give details about how the fault was handled.
178 *
179 * pgoff should be used in favour of virtual_address, if possible. If pgoff
180 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
181 * mapping support.
182 */
183 struct vm_fault {
184 unsigned int flags; /* FAULT_FLAG_xxx flags */
185 pgoff_t pgoff; /* Logical page offset based on vma */
186 void __user *virtual_address; /* Faulting virtual address */
187
188 struct page *page; /* ->fault handlers should return a
189 * page here, unless VM_FAULT_NOPAGE
190 * is set (which is also implied by
191 * VM_FAULT_ERROR).
192 */
193 };
194
195 /*
196 * These are the virtual MM functions - opening of an area, closing and
197 * unmapping it (needed to keep files on disk up-to-date etc), pointer
198 * to the functions called when a no-page or a wp-page exception occurs.
199 */
200 struct vm_operations_struct {
201 void (*open)(struct vm_area_struct * area);
202 void (*close)(struct vm_area_struct * area);
203 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
204
205 /* notification that a previously read-only page is about to become
206 * writable, if an error is returned it will cause a SIGBUS */
207 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
208
209 /* called by access_process_vm when get_user_pages() fails, typically
210 * for use by special VMAs that can switch between memory and hardware
211 */
212 int (*access)(struct vm_area_struct *vma, unsigned long addr,
213 void *buf, int len, int write);
214 #ifdef CONFIG_NUMA
215 /*
216 * set_policy() op must add a reference to any non-NULL @new mempolicy
217 * to hold the policy upon return. Caller should pass NULL @new to
218 * remove a policy and fall back to surrounding context--i.e. do not
219 * install a MPOL_DEFAULT policy, nor the task or system default
220 * mempolicy.
221 */
222 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
223
224 /*
225 * get_policy() op must add reference [mpol_get()] to any policy at
226 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
227 * in mm/mempolicy.c will do this automatically.
228 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
229 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
230 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
231 * must return NULL--i.e., do not "fallback" to task or system default
232 * policy.
233 */
234 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
235 unsigned long addr);
236 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
237 const nodemask_t *to, unsigned long flags);
238 #endif
239 };
240
241 struct mmu_gather;
242 struct inode;
243
244 #define page_private(page) ((page)->private)
245 #define set_page_private(page, v) ((page)->private = (v))
246
247 /*
248 * FIXME: take this include out, include page-flags.h in
249 * files which need it (119 of them)
250 */
251 #include <linux/page-flags.h>
252 #include <linux/huge_mm.h>
253
254 /*
255 * Methods to modify the page usage count.
256 *
257 * What counts for a page usage:
258 * - cache mapping (page->mapping)
259 * - private data (page->private)
260 * - page mapped in a task's page tables, each mapping
261 * is counted separately
262 *
263 * Also, many kernel routines increase the page count before a critical
264 * routine so they can be sure the page doesn't go away from under them.
265 */
266
267 /*
268 * Drop a ref, return true if the refcount fell to zero (the page has no users)
269 */
270 static inline int put_page_testzero(struct page *page)
271 {
272 VM_BUG_ON(atomic_read(&page->_count) == 0);
273 return atomic_dec_and_test(&page->_count);
274 }
275
276 /*
277 * Try to grab a ref unless the page has a refcount of zero, return false if
278 * that is the case.
279 */
280 static inline int get_page_unless_zero(struct page *page)
281 {
282 return atomic_inc_not_zero(&page->_count);
283 }
284
285 extern int page_is_ram(unsigned long pfn);
286
287 /* Support for virtually mapped pages */
288 struct page *vmalloc_to_page(const void *addr);
289 unsigned long vmalloc_to_pfn(const void *addr);
290
291 /*
292 * Determine if an address is within the vmalloc range
293 *
294 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
295 * is no special casing required.
296 */
297 static inline int is_vmalloc_addr(const void *x)
298 {
299 #ifdef CONFIG_MMU
300 unsigned long addr = (unsigned long)x;
301
302 return addr >= VMALLOC_START && addr < VMALLOC_END;
303 #else
304 return 0;
305 #endif
306 }
307 #ifdef CONFIG_MMU
308 extern int is_vmalloc_or_module_addr(const void *x);
309 #else
310 static inline int is_vmalloc_or_module_addr(const void *x)
311 {
312 return 0;
313 }
314 #endif
315
316 static inline void compound_lock(struct page *page)
317 {
318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
319 bit_spin_lock(PG_compound_lock, &page->flags);
320 #endif
321 }
322
323 static inline void compound_unlock(struct page *page)
324 {
325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
326 bit_spin_unlock(PG_compound_lock, &page->flags);
327 #endif
328 }
329
330 static inline unsigned long compound_lock_irqsave(struct page *page)
331 {
332 unsigned long uninitialized_var(flags);
333 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 local_irq_save(flags);
335 compound_lock(page);
336 #endif
337 return flags;
338 }
339
340 static inline void compound_unlock_irqrestore(struct page *page,
341 unsigned long flags)
342 {
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 compound_unlock(page);
345 local_irq_restore(flags);
346 #endif
347 }
348
349 static inline struct page *compound_head(struct page *page)
350 {
351 if (unlikely(PageTail(page)))
352 return page->first_page;
353 return page;
354 }
355
356 static inline int page_count(struct page *page)
357 {
358 return atomic_read(&compound_head(page)->_count);
359 }
360
361 static inline void get_page(struct page *page)
362 {
363 /*
364 * Getting a normal page or the head of a compound page
365 * requires to already have an elevated page->_count. Only if
366 * we're getting a tail page, the elevated page->_count is
367 * required only in the head page, so for tail pages the
368 * bugcheck only verifies that the page->_count isn't
369 * negative.
370 */
371 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
372 atomic_inc(&page->_count);
373 /*
374 * Getting a tail page will elevate both the head and tail
375 * page->_count(s).
376 */
377 if (unlikely(PageTail(page))) {
378 /*
379 * This is safe only because
380 * __split_huge_page_refcount can't run under
381 * get_page().
382 */
383 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
384 atomic_inc(&page->first_page->_count);
385 }
386 }
387
388 static inline struct page *virt_to_head_page(const void *x)
389 {
390 struct page *page = virt_to_page(x);
391 return compound_head(page);
392 }
393
394 /*
395 * Setup the page count before being freed into the page allocator for
396 * the first time (boot or memory hotplug)
397 */
398 static inline void init_page_count(struct page *page)
399 {
400 atomic_set(&page->_count, 1);
401 }
402
403 /*
404 * PageBuddy() indicate that the page is free and in the buddy system
405 * (see mm/page_alloc.c).
406 *
407 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
408 * -2 so that an underflow of the page_mapcount() won't be mistaken
409 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
410 * efficiently by most CPU architectures.
411 */
412 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
413
414 static inline int PageBuddy(struct page *page)
415 {
416 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
417 }
418
419 static inline void __SetPageBuddy(struct page *page)
420 {
421 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
422 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
423 }
424
425 static inline void __ClearPageBuddy(struct page *page)
426 {
427 VM_BUG_ON(!PageBuddy(page));
428 atomic_set(&page->_mapcount, -1);
429 }
430
431 void put_page(struct page *page);
432 void put_pages_list(struct list_head *pages);
433
434 void split_page(struct page *page, unsigned int order);
435 int split_free_page(struct page *page);
436
437 /*
438 * Compound pages have a destructor function. Provide a
439 * prototype for that function and accessor functions.
440 * These are _only_ valid on the head of a PG_compound page.
441 */
442 typedef void compound_page_dtor(struct page *);
443
444 static inline void set_compound_page_dtor(struct page *page,
445 compound_page_dtor *dtor)
446 {
447 page[1].lru.next = (void *)dtor;
448 }
449
450 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
451 {
452 return (compound_page_dtor *)page[1].lru.next;
453 }
454
455 static inline int compound_order(struct page *page)
456 {
457 if (!PageHead(page))
458 return 0;
459 return (unsigned long)page[1].lru.prev;
460 }
461
462 static inline int compound_trans_order(struct page *page)
463 {
464 int order;
465 unsigned long flags;
466
467 if (!PageHead(page))
468 return 0;
469
470 flags = compound_lock_irqsave(page);
471 order = compound_order(page);
472 compound_unlock_irqrestore(page, flags);
473 return order;
474 }
475
476 static inline void set_compound_order(struct page *page, unsigned long order)
477 {
478 page[1].lru.prev = (void *)order;
479 }
480
481 #ifdef CONFIG_MMU
482 /*
483 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
484 * servicing faults for write access. In the normal case, do always want
485 * pte_mkwrite. But get_user_pages can cause write faults for mappings
486 * that do not have writing enabled, when used by access_process_vm.
487 */
488 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
489 {
490 if (likely(vma->vm_flags & VM_WRITE))
491 pte = pte_mkwrite(pte);
492 return pte;
493 }
494 #endif
495
496 /*
497 * Multiple processes may "see" the same page. E.g. for untouched
498 * mappings of /dev/null, all processes see the same page full of
499 * zeroes, and text pages of executables and shared libraries have
500 * only one copy in memory, at most, normally.
501 *
502 * For the non-reserved pages, page_count(page) denotes a reference count.
503 * page_count() == 0 means the page is free. page->lru is then used for
504 * freelist management in the buddy allocator.
505 * page_count() > 0 means the page has been allocated.
506 *
507 * Pages are allocated by the slab allocator in order to provide memory
508 * to kmalloc and kmem_cache_alloc. In this case, the management of the
509 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
510 * unless a particular usage is carefully commented. (the responsibility of
511 * freeing the kmalloc memory is the caller's, of course).
512 *
513 * A page may be used by anyone else who does a __get_free_page().
514 * In this case, page_count still tracks the references, and should only
515 * be used through the normal accessor functions. The top bits of page->flags
516 * and page->virtual store page management information, but all other fields
517 * are unused and could be used privately, carefully. The management of this
518 * page is the responsibility of the one who allocated it, and those who have
519 * subsequently been given references to it.
520 *
521 * The other pages (we may call them "pagecache pages") are completely
522 * managed by the Linux memory manager: I/O, buffers, swapping etc.
523 * The following discussion applies only to them.
524 *
525 * A pagecache page contains an opaque `private' member, which belongs to the
526 * page's address_space. Usually, this is the address of a circular list of
527 * the page's disk buffers. PG_private must be set to tell the VM to call
528 * into the filesystem to release these pages.
529 *
530 * A page may belong to an inode's memory mapping. In this case, page->mapping
531 * is the pointer to the inode, and page->index is the file offset of the page,
532 * in units of PAGE_CACHE_SIZE.
533 *
534 * If pagecache pages are not associated with an inode, they are said to be
535 * anonymous pages. These may become associated with the swapcache, and in that
536 * case PG_swapcache is set, and page->private is an offset into the swapcache.
537 *
538 * In either case (swapcache or inode backed), the pagecache itself holds one
539 * reference to the page. Setting PG_private should also increment the
540 * refcount. The each user mapping also has a reference to the page.
541 *
542 * The pagecache pages are stored in a per-mapping radix tree, which is
543 * rooted at mapping->page_tree, and indexed by offset.
544 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
545 * lists, we instead now tag pages as dirty/writeback in the radix tree.
546 *
547 * All pagecache pages may be subject to I/O:
548 * - inode pages may need to be read from disk,
549 * - inode pages which have been modified and are MAP_SHARED may need
550 * to be written back to the inode on disk,
551 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
552 * modified may need to be swapped out to swap space and (later) to be read
553 * back into memory.
554 */
555
556 /*
557 * The zone field is never updated after free_area_init_core()
558 * sets it, so none of the operations on it need to be atomic.
559 */
560
561
562 /*
563 * page->flags layout:
564 *
565 * There are three possibilities for how page->flags get
566 * laid out. The first is for the normal case, without
567 * sparsemem. The second is for sparsemem when there is
568 * plenty of space for node and section. The last is when
569 * we have run out of space and have to fall back to an
570 * alternate (slower) way of determining the node.
571 *
572 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
573 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
574 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
575 */
576 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
577 #define SECTIONS_WIDTH SECTIONS_SHIFT
578 #else
579 #define SECTIONS_WIDTH 0
580 #endif
581
582 #define ZONES_WIDTH ZONES_SHIFT
583
584 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
585 #define NODES_WIDTH NODES_SHIFT
586 #else
587 #ifdef CONFIG_SPARSEMEM_VMEMMAP
588 #error "Vmemmap: No space for nodes field in page flags"
589 #endif
590 #define NODES_WIDTH 0
591 #endif
592
593 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
594 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
595 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
596 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
597
598 /*
599 * We are going to use the flags for the page to node mapping if its in
600 * there. This includes the case where there is no node, so it is implicit.
601 */
602 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
603 #define NODE_NOT_IN_PAGE_FLAGS
604 #endif
605
606 #ifndef PFN_SECTION_SHIFT
607 #define PFN_SECTION_SHIFT 0
608 #endif
609
610 /*
611 * Define the bit shifts to access each section. For non-existent
612 * sections we define the shift as 0; that plus a 0 mask ensures
613 * the compiler will optimise away reference to them.
614 */
615 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
616 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
617 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
618
619 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
620 #ifdef NODE_NOT_IN_PAGE_FLAGS
621 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
622 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
623 SECTIONS_PGOFF : ZONES_PGOFF)
624 #else
625 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
626 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
627 NODES_PGOFF : ZONES_PGOFF)
628 #endif
629
630 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
631
632 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
633 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
634 #endif
635
636 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
637 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
638 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
639 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
640
641 static inline enum zone_type page_zonenum(struct page *page)
642 {
643 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
644 }
645
646 /*
647 * The identification function is only used by the buddy allocator for
648 * determining if two pages could be buddies. We are not really
649 * identifying a zone since we could be using a the section number
650 * id if we have not node id available in page flags.
651 * We guarantee only that it will return the same value for two
652 * combinable pages in a zone.
653 */
654 static inline int page_zone_id(struct page *page)
655 {
656 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
657 }
658
659 static inline int zone_to_nid(struct zone *zone)
660 {
661 #ifdef CONFIG_NUMA
662 return zone->node;
663 #else
664 return 0;
665 #endif
666 }
667
668 #ifdef NODE_NOT_IN_PAGE_FLAGS
669 extern int page_to_nid(struct page *page);
670 #else
671 static inline int page_to_nid(struct page *page)
672 {
673 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
674 }
675 #endif
676
677 static inline struct zone *page_zone(struct page *page)
678 {
679 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
680 }
681
682 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
683 static inline unsigned long page_to_section(struct page *page)
684 {
685 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
686 }
687 #endif
688
689 static inline void set_page_zone(struct page *page, enum zone_type zone)
690 {
691 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
692 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
693 }
694
695 static inline void set_page_node(struct page *page, unsigned long node)
696 {
697 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
698 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
699 }
700
701 static inline void set_page_section(struct page *page, unsigned long section)
702 {
703 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
704 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
705 }
706
707 static inline void set_page_links(struct page *page, enum zone_type zone,
708 unsigned long node, unsigned long pfn)
709 {
710 set_page_zone(page, zone);
711 set_page_node(page, node);
712 set_page_section(page, pfn_to_section_nr(pfn));
713 }
714
715 /*
716 * Some inline functions in vmstat.h depend on page_zone()
717 */
718 #include <linux/vmstat.h>
719
720 static __always_inline void *lowmem_page_address(struct page *page)
721 {
722 return __va(PFN_PHYS(page_to_pfn(page)));
723 }
724
725 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
726 #define HASHED_PAGE_VIRTUAL
727 #endif
728
729 #if defined(WANT_PAGE_VIRTUAL)
730 #define page_address(page) ((page)->virtual)
731 #define set_page_address(page, address) \
732 do { \
733 (page)->virtual = (address); \
734 } while(0)
735 #define page_address_init() do { } while(0)
736 #endif
737
738 #if defined(HASHED_PAGE_VIRTUAL)
739 void *page_address(struct page *page);
740 void set_page_address(struct page *page, void *virtual);
741 void page_address_init(void);
742 #endif
743
744 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
745 #define page_address(page) lowmem_page_address(page)
746 #define set_page_address(page, address) do { } while(0)
747 #define page_address_init() do { } while(0)
748 #endif
749
750 /*
751 * On an anonymous page mapped into a user virtual memory area,
752 * page->mapping points to its anon_vma, not to a struct address_space;
753 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
754 *
755 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
756 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
757 * and then page->mapping points, not to an anon_vma, but to a private
758 * structure which KSM associates with that merged page. See ksm.h.
759 *
760 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
761 *
762 * Please note that, confusingly, "page_mapping" refers to the inode
763 * address_space which maps the page from disk; whereas "page_mapped"
764 * refers to user virtual address space into which the page is mapped.
765 */
766 #define PAGE_MAPPING_ANON 1
767 #define PAGE_MAPPING_KSM 2
768 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
769
770 extern struct address_space swapper_space;
771 static inline struct address_space *page_mapping(struct page *page)
772 {
773 struct address_space *mapping = page->mapping;
774
775 VM_BUG_ON(PageSlab(page));
776 if (unlikely(PageSwapCache(page)))
777 mapping = &swapper_space;
778 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
779 mapping = NULL;
780 return mapping;
781 }
782
783 /* Neutral page->mapping pointer to address_space or anon_vma or other */
784 static inline void *page_rmapping(struct page *page)
785 {
786 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
787 }
788
789 static inline int PageAnon(struct page *page)
790 {
791 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
792 }
793
794 /*
795 * Return the pagecache index of the passed page. Regular pagecache pages
796 * use ->index whereas swapcache pages use ->private
797 */
798 static inline pgoff_t page_index(struct page *page)
799 {
800 if (unlikely(PageSwapCache(page)))
801 return page_private(page);
802 return page->index;
803 }
804
805 /*
806 * The atomic page->_mapcount, like _count, starts from -1:
807 * so that transitions both from it and to it can be tracked,
808 * using atomic_inc_and_test and atomic_add_negative(-1).
809 */
810 static inline void reset_page_mapcount(struct page *page)
811 {
812 atomic_set(&(page)->_mapcount, -1);
813 }
814
815 static inline int page_mapcount(struct page *page)
816 {
817 return atomic_read(&(page)->_mapcount) + 1;
818 }
819
820 /*
821 * Return true if this page is mapped into pagetables.
822 */
823 static inline int page_mapped(struct page *page)
824 {
825 return atomic_read(&(page)->_mapcount) >= 0;
826 }
827
828 /*
829 * Different kinds of faults, as returned by handle_mm_fault().
830 * Used to decide whether a process gets delivered SIGBUS or
831 * just gets major/minor fault counters bumped up.
832 */
833
834 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
835
836 #define VM_FAULT_OOM 0x0001
837 #define VM_FAULT_SIGBUS 0x0002
838 #define VM_FAULT_MAJOR 0x0004
839 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
840 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
841 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
842
843 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
844 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
845 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
846
847 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
848
849 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
850 VM_FAULT_HWPOISON_LARGE)
851
852 /* Encode hstate index for a hwpoisoned large page */
853 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
854 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
855
856 /*
857 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
858 */
859 extern void pagefault_out_of_memory(void);
860
861 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
862
863 /*
864 * Flags passed to show_mem() and __show_free_areas() to suppress output in
865 * various contexts.
866 */
867 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
868
869 extern void show_free_areas(void);
870 extern void __show_free_areas(unsigned int flags);
871
872 int shmem_lock(struct file *file, int lock, struct user_struct *user);
873 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
874 int shmem_zero_setup(struct vm_area_struct *);
875
876 #ifndef CONFIG_MMU
877 extern unsigned long shmem_get_unmapped_area(struct file *file,
878 unsigned long addr,
879 unsigned long len,
880 unsigned long pgoff,
881 unsigned long flags);
882 #endif
883
884 extern int can_do_mlock(void);
885 extern int user_shm_lock(size_t, struct user_struct *);
886 extern void user_shm_unlock(size_t, struct user_struct *);
887
888 /*
889 * Parameter block passed down to zap_pte_range in exceptional cases.
890 */
891 struct zap_details {
892 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
893 struct address_space *check_mapping; /* Check page->mapping if set */
894 pgoff_t first_index; /* Lowest page->index to unmap */
895 pgoff_t last_index; /* Highest page->index to unmap */
896 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
897 unsigned long truncate_count; /* Compare vm_truncate_count */
898 };
899
900 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
901 pte_t pte);
902
903 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
904 unsigned long size);
905 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
906 unsigned long size, struct zap_details *);
907 unsigned long unmap_vmas(struct mmu_gather **tlb,
908 struct vm_area_struct *start_vma, unsigned long start_addr,
909 unsigned long end_addr, unsigned long *nr_accounted,
910 struct zap_details *);
911
912 /**
913 * mm_walk - callbacks for walk_page_range
914 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
915 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
916 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
917 * this handler is required to be able to handle
918 * pmd_trans_huge() pmds. They may simply choose to
919 * split_huge_page() instead of handling it explicitly.
920 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
921 * @pte_hole: if set, called for each hole at all levels
922 * @hugetlb_entry: if set, called for each hugetlb entry
923 *
924 * (see walk_page_range for more details)
925 */
926 struct mm_walk {
927 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
928 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
929 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
930 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
931 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
932 int (*hugetlb_entry)(pte_t *, unsigned long,
933 unsigned long, unsigned long, struct mm_walk *);
934 struct mm_struct *mm;
935 void *private;
936 };
937
938 int walk_page_range(unsigned long addr, unsigned long end,
939 struct mm_walk *walk);
940 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
941 unsigned long end, unsigned long floor, unsigned long ceiling);
942 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
943 struct vm_area_struct *vma);
944 void unmap_mapping_range(struct address_space *mapping,
945 loff_t const holebegin, loff_t const holelen, int even_cows);
946 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
947 unsigned long *pfn);
948 int follow_phys(struct vm_area_struct *vma, unsigned long address,
949 unsigned int flags, unsigned long *prot, resource_size_t *phys);
950 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
951 void *buf, int len, int write);
952
953 static inline void unmap_shared_mapping_range(struct address_space *mapping,
954 loff_t const holebegin, loff_t const holelen)
955 {
956 unmap_mapping_range(mapping, holebegin, holelen, 0);
957 }
958
959 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
960 extern void truncate_setsize(struct inode *inode, loff_t newsize);
961 extern int vmtruncate(struct inode *inode, loff_t offset);
962 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
963
964 int truncate_inode_page(struct address_space *mapping, struct page *page);
965 int generic_error_remove_page(struct address_space *mapping, struct page *page);
966
967 int invalidate_inode_page(struct page *page);
968
969 #ifdef CONFIG_MMU
970 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
971 unsigned long address, unsigned int flags);
972 #else
973 static inline int handle_mm_fault(struct mm_struct *mm,
974 struct vm_area_struct *vma, unsigned long address,
975 unsigned int flags)
976 {
977 /* should never happen if there's no MMU */
978 BUG();
979 return VM_FAULT_SIGBUS;
980 }
981 #endif
982
983 extern int make_pages_present(unsigned long addr, unsigned long end);
984 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
985 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
986 void *buf, int len, int write);
987
988 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
989 unsigned long start, int len, unsigned int foll_flags,
990 struct page **pages, struct vm_area_struct **vmas,
991 int *nonblocking);
992 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
993 unsigned long start, int nr_pages, int write, int force,
994 struct page **pages, struct vm_area_struct **vmas);
995 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
996 struct page **pages);
997 struct page *get_dump_page(unsigned long addr);
998
999 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1000 extern void do_invalidatepage(struct page *page, unsigned long offset);
1001
1002 int __set_page_dirty_nobuffers(struct page *page);
1003 int __set_page_dirty_no_writeback(struct page *page);
1004 int redirty_page_for_writepage(struct writeback_control *wbc,
1005 struct page *page);
1006 void account_page_dirtied(struct page *page, struct address_space *mapping);
1007 void account_page_writeback(struct page *page);
1008 int set_page_dirty(struct page *page);
1009 int set_page_dirty_lock(struct page *page);
1010 int clear_page_dirty_for_io(struct page *page);
1011
1012 /* Is the vma a continuation of the stack vma above it? */
1013 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
1014 {
1015 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1016 }
1017
1018 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1019 unsigned long old_addr, struct vm_area_struct *new_vma,
1020 unsigned long new_addr, unsigned long len);
1021 extern unsigned long do_mremap(unsigned long addr,
1022 unsigned long old_len, unsigned long new_len,
1023 unsigned long flags, unsigned long new_addr);
1024 extern int mprotect_fixup(struct vm_area_struct *vma,
1025 struct vm_area_struct **pprev, unsigned long start,
1026 unsigned long end, unsigned long newflags);
1027
1028 /*
1029 * doesn't attempt to fault and will return short.
1030 */
1031 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1032 struct page **pages);
1033 /*
1034 * per-process(per-mm_struct) statistics.
1035 */
1036 #if defined(SPLIT_RSS_COUNTING)
1037 /*
1038 * The mm counters are not protected by its page_table_lock,
1039 * so must be incremented atomically.
1040 */
1041 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1042 {
1043 atomic_long_set(&mm->rss_stat.count[member], value);
1044 }
1045
1046 unsigned long get_mm_counter(struct mm_struct *mm, int member);
1047
1048 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1049 {
1050 atomic_long_add(value, &mm->rss_stat.count[member]);
1051 }
1052
1053 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1054 {
1055 atomic_long_inc(&mm->rss_stat.count[member]);
1056 }
1057
1058 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1059 {
1060 atomic_long_dec(&mm->rss_stat.count[member]);
1061 }
1062
1063 #else /* !USE_SPLIT_PTLOCKS */
1064 /*
1065 * The mm counters are protected by its page_table_lock,
1066 * so can be incremented directly.
1067 */
1068 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1069 {
1070 mm->rss_stat.count[member] = value;
1071 }
1072
1073 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1074 {
1075 return mm->rss_stat.count[member];
1076 }
1077
1078 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1079 {
1080 mm->rss_stat.count[member] += value;
1081 }
1082
1083 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1084 {
1085 mm->rss_stat.count[member]++;
1086 }
1087
1088 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1089 {
1090 mm->rss_stat.count[member]--;
1091 }
1092
1093 #endif /* !USE_SPLIT_PTLOCKS */
1094
1095 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1096 {
1097 return get_mm_counter(mm, MM_FILEPAGES) +
1098 get_mm_counter(mm, MM_ANONPAGES);
1099 }
1100
1101 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1102 {
1103 return max(mm->hiwater_rss, get_mm_rss(mm));
1104 }
1105
1106 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1107 {
1108 return max(mm->hiwater_vm, mm->total_vm);
1109 }
1110
1111 static inline void update_hiwater_rss(struct mm_struct *mm)
1112 {
1113 unsigned long _rss = get_mm_rss(mm);
1114
1115 if ((mm)->hiwater_rss < _rss)
1116 (mm)->hiwater_rss = _rss;
1117 }
1118
1119 static inline void update_hiwater_vm(struct mm_struct *mm)
1120 {
1121 if (mm->hiwater_vm < mm->total_vm)
1122 mm->hiwater_vm = mm->total_vm;
1123 }
1124
1125 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1126 struct mm_struct *mm)
1127 {
1128 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1129
1130 if (*maxrss < hiwater_rss)
1131 *maxrss = hiwater_rss;
1132 }
1133
1134 #if defined(SPLIT_RSS_COUNTING)
1135 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1136 #else
1137 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1138 {
1139 }
1140 #endif
1141
1142 /*
1143 * A callback you can register to apply pressure to ageable caches.
1144 *
1145 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1146 * look through the least-recently-used 'nr_to_scan' entries and
1147 * attempt to free them up. It should return the number of objects
1148 * which remain in the cache. If it returns -1, it means it cannot do
1149 * any scanning at this time (eg. there is a risk of deadlock).
1150 *
1151 * The 'gfpmask' refers to the allocation we are currently trying to
1152 * fulfil.
1153 *
1154 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1155 * querying the cache size, so a fastpath for that case is appropriate.
1156 */
1157 struct shrinker {
1158 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
1159 int seeks; /* seeks to recreate an obj */
1160
1161 /* These are for internal use */
1162 struct list_head list;
1163 long nr; /* objs pending delete */
1164 };
1165 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1166 extern void register_shrinker(struct shrinker *);
1167 extern void unregister_shrinker(struct shrinker *);
1168
1169 int vma_wants_writenotify(struct vm_area_struct *vma);
1170
1171 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1172 spinlock_t **ptl);
1173 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1174 spinlock_t **ptl)
1175 {
1176 pte_t *ptep;
1177 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1178 return ptep;
1179 }
1180
1181 #ifdef __PAGETABLE_PUD_FOLDED
1182 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1183 unsigned long address)
1184 {
1185 return 0;
1186 }
1187 #else
1188 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1189 #endif
1190
1191 #ifdef __PAGETABLE_PMD_FOLDED
1192 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1193 unsigned long address)
1194 {
1195 return 0;
1196 }
1197 #else
1198 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1199 #endif
1200
1201 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1202 pmd_t *pmd, unsigned long address);
1203 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1204
1205 /*
1206 * The following ifdef needed to get the 4level-fixup.h header to work.
1207 * Remove it when 4level-fixup.h has been removed.
1208 */
1209 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1210 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1211 {
1212 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1213 NULL: pud_offset(pgd, address);
1214 }
1215
1216 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1217 {
1218 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1219 NULL: pmd_offset(pud, address);
1220 }
1221 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1222
1223 #if USE_SPLIT_PTLOCKS
1224 /*
1225 * We tuck a spinlock to guard each pagetable page into its struct page,
1226 * at page->private, with BUILD_BUG_ON to make sure that this will not
1227 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1228 * When freeing, reset page->mapping so free_pages_check won't complain.
1229 */
1230 #define __pte_lockptr(page) &((page)->ptl)
1231 #define pte_lock_init(_page) do { \
1232 spin_lock_init(__pte_lockptr(_page)); \
1233 } while (0)
1234 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1235 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1236 #else /* !USE_SPLIT_PTLOCKS */
1237 /*
1238 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1239 */
1240 #define pte_lock_init(page) do {} while (0)
1241 #define pte_lock_deinit(page) do {} while (0)
1242 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1243 #endif /* USE_SPLIT_PTLOCKS */
1244
1245 static inline void pgtable_page_ctor(struct page *page)
1246 {
1247 pte_lock_init(page);
1248 inc_zone_page_state(page, NR_PAGETABLE);
1249 }
1250
1251 static inline void pgtable_page_dtor(struct page *page)
1252 {
1253 pte_lock_deinit(page);
1254 dec_zone_page_state(page, NR_PAGETABLE);
1255 }
1256
1257 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1258 ({ \
1259 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1260 pte_t *__pte = pte_offset_map(pmd, address); \
1261 *(ptlp) = __ptl; \
1262 spin_lock(__ptl); \
1263 __pte; \
1264 })
1265
1266 #define pte_unmap_unlock(pte, ptl) do { \
1267 spin_unlock(ptl); \
1268 pte_unmap(pte); \
1269 } while (0)
1270
1271 #define pte_alloc_map(mm, vma, pmd, address) \
1272 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1273 pmd, address))? \
1274 NULL: pte_offset_map(pmd, address))
1275
1276 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1277 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1278 pmd, address))? \
1279 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1280
1281 #define pte_alloc_kernel(pmd, address) \
1282 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1283 NULL: pte_offset_kernel(pmd, address))
1284
1285 extern void free_area_init(unsigned long * zones_size);
1286 extern void free_area_init_node(int nid, unsigned long * zones_size,
1287 unsigned long zone_start_pfn, unsigned long *zholes_size);
1288 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1289 /*
1290 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1291 * zones, allocate the backing mem_map and account for memory holes in a more
1292 * architecture independent manner. This is a substitute for creating the
1293 * zone_sizes[] and zholes_size[] arrays and passing them to
1294 * free_area_init_node()
1295 *
1296 * An architecture is expected to register range of page frames backed by
1297 * physical memory with add_active_range() before calling
1298 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1299 * usage, an architecture is expected to do something like
1300 *
1301 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1302 * max_highmem_pfn};
1303 * for_each_valid_physical_page_range()
1304 * add_active_range(node_id, start_pfn, end_pfn)
1305 * free_area_init_nodes(max_zone_pfns);
1306 *
1307 * If the architecture guarantees that there are no holes in the ranges
1308 * registered with add_active_range(), free_bootmem_active_regions()
1309 * will call free_bootmem_node() for each registered physical page range.
1310 * Similarly sparse_memory_present_with_active_regions() calls
1311 * memory_present() for each range when SPARSEMEM is enabled.
1312 *
1313 * See mm/page_alloc.c for more information on each function exposed by
1314 * CONFIG_ARCH_POPULATES_NODE_MAP
1315 */
1316 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1317 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1318 unsigned long end_pfn);
1319 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1320 unsigned long end_pfn);
1321 extern void remove_all_active_ranges(void);
1322 void sort_node_map(void);
1323 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1324 unsigned long end_pfn);
1325 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1326 unsigned long end_pfn);
1327 extern void get_pfn_range_for_nid(unsigned int nid,
1328 unsigned long *start_pfn, unsigned long *end_pfn);
1329 extern unsigned long find_min_pfn_with_active_regions(void);
1330 extern void free_bootmem_with_active_regions(int nid,
1331 unsigned long max_low_pfn);
1332 int add_from_early_node_map(struct range *range, int az,
1333 int nr_range, int nid);
1334 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1335 u64 goal, u64 limit);
1336 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1337 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1338 extern void sparse_memory_present_with_active_regions(int nid);
1339 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1340
1341 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1342 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1343 static inline int __early_pfn_to_nid(unsigned long pfn)
1344 {
1345 return 0;
1346 }
1347 #else
1348 /* please see mm/page_alloc.c */
1349 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1350 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1351 /* there is a per-arch backend function. */
1352 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1353 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1354 #endif
1355
1356 extern void set_dma_reserve(unsigned long new_dma_reserve);
1357 extern void memmap_init_zone(unsigned long, int, unsigned long,
1358 unsigned long, enum memmap_context);
1359 extern void setup_per_zone_wmarks(void);
1360 extern void calculate_zone_inactive_ratio(struct zone *zone);
1361 extern void mem_init(void);
1362 extern void __init mmap_init(void);
1363 extern void show_mem(unsigned int flags);
1364 extern void si_meminfo(struct sysinfo * val);
1365 extern void si_meminfo_node(struct sysinfo *val, int nid);
1366 extern int after_bootmem;
1367
1368 extern void setup_per_cpu_pageset(void);
1369
1370 extern void zone_pcp_update(struct zone *zone);
1371
1372 /* nommu.c */
1373 extern atomic_long_t mmap_pages_allocated;
1374 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1375
1376 /* prio_tree.c */
1377 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1378 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1379 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1380 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1381 struct prio_tree_iter *iter);
1382
1383 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1384 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1385 (vma = vma_prio_tree_next(vma, iter)); )
1386
1387 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1388 struct list_head *list)
1389 {
1390 vma->shared.vm_set.parent = NULL;
1391 list_add_tail(&vma->shared.vm_set.list, list);
1392 }
1393
1394 /* mmap.c */
1395 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1396 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1397 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1398 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1399 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1400 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1401 struct mempolicy *);
1402 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1403 extern int split_vma(struct mm_struct *,
1404 struct vm_area_struct *, unsigned long addr, int new_below);
1405 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1406 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1407 struct rb_node **, struct rb_node *);
1408 extern void unlink_file_vma(struct vm_area_struct *);
1409 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1410 unsigned long addr, unsigned long len, pgoff_t pgoff);
1411 extern void exit_mmap(struct mm_struct *);
1412
1413 extern int mm_take_all_locks(struct mm_struct *mm);
1414 extern void mm_drop_all_locks(struct mm_struct *mm);
1415
1416 #ifdef CONFIG_PROC_FS
1417 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1418 extern void added_exe_file_vma(struct mm_struct *mm);
1419 extern void removed_exe_file_vma(struct mm_struct *mm);
1420 #else
1421 static inline void added_exe_file_vma(struct mm_struct *mm)
1422 {}
1423
1424 static inline void removed_exe_file_vma(struct mm_struct *mm)
1425 {}
1426 #endif /* CONFIG_PROC_FS */
1427
1428 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1429 extern int install_special_mapping(struct mm_struct *mm,
1430 unsigned long addr, unsigned long len,
1431 unsigned long flags, struct page **pages);
1432
1433 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1434
1435 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1436 unsigned long len, unsigned long prot,
1437 unsigned long flag, unsigned long pgoff);
1438 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1439 unsigned long len, unsigned long flags,
1440 unsigned int vm_flags, unsigned long pgoff);
1441
1442 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1443 unsigned long len, unsigned long prot,
1444 unsigned long flag, unsigned long offset)
1445 {
1446 unsigned long ret = -EINVAL;
1447 if ((offset + PAGE_ALIGN(len)) < offset)
1448 goto out;
1449 if (!(offset & ~PAGE_MASK))
1450 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1451 out:
1452 return ret;
1453 }
1454
1455 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1456
1457 extern unsigned long do_brk(unsigned long, unsigned long);
1458
1459 /* filemap.c */
1460 extern unsigned long page_unuse(struct page *);
1461 extern void truncate_inode_pages(struct address_space *, loff_t);
1462 extern void truncate_inode_pages_range(struct address_space *,
1463 loff_t lstart, loff_t lend);
1464
1465 /* generic vm_area_ops exported for stackable file systems */
1466 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1467
1468 /* mm/page-writeback.c */
1469 int write_one_page(struct page *page, int wait);
1470 void task_dirty_inc(struct task_struct *tsk);
1471
1472 /* readahead.c */
1473 #define VM_MAX_READAHEAD 128 /* kbytes */
1474 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1475
1476 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1477 pgoff_t offset, unsigned long nr_to_read);
1478
1479 void page_cache_sync_readahead(struct address_space *mapping,
1480 struct file_ra_state *ra,
1481 struct file *filp,
1482 pgoff_t offset,
1483 unsigned long size);
1484
1485 void page_cache_async_readahead(struct address_space *mapping,
1486 struct file_ra_state *ra,
1487 struct file *filp,
1488 struct page *pg,
1489 pgoff_t offset,
1490 unsigned long size);
1491
1492 unsigned long max_sane_readahead(unsigned long nr);
1493 unsigned long ra_submit(struct file_ra_state *ra,
1494 struct address_space *mapping,
1495 struct file *filp);
1496
1497 /* Do stack extension */
1498 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1499 #if VM_GROWSUP
1500 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1501 #else
1502 #define expand_upwards(vma, address) do { } while (0)
1503 #endif
1504 extern int expand_stack_downwards(struct vm_area_struct *vma,
1505 unsigned long address);
1506
1507 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1508 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1509 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1510 struct vm_area_struct **pprev);
1511
1512 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1513 NULL if none. Assume start_addr < end_addr. */
1514 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1515 {
1516 struct vm_area_struct * vma = find_vma(mm,start_addr);
1517
1518 if (vma && end_addr <= vma->vm_start)
1519 vma = NULL;
1520 return vma;
1521 }
1522
1523 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1524 {
1525 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1526 }
1527
1528 #ifdef CONFIG_MMU
1529 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1530 #else
1531 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1532 {
1533 return __pgprot(0);
1534 }
1535 #endif
1536
1537 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1538 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1539 unsigned long pfn, unsigned long size, pgprot_t);
1540 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1541 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1542 unsigned long pfn);
1543 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1544 unsigned long pfn);
1545
1546 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1547 unsigned int foll_flags);
1548 #define FOLL_WRITE 0x01 /* check pte is writable */
1549 #define FOLL_TOUCH 0x02 /* mark page accessed */
1550 #define FOLL_GET 0x04 /* do get_page on page */
1551 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1552 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1553 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1554 * and return without waiting upon it */
1555 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1556 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1557 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1558
1559 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1560 void *data);
1561 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1562 unsigned long size, pte_fn_t fn, void *data);
1563
1564 #ifdef CONFIG_PROC_FS
1565 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1566 #else
1567 static inline void vm_stat_account(struct mm_struct *mm,
1568 unsigned long flags, struct file *file, long pages)
1569 {
1570 }
1571 #endif /* CONFIG_PROC_FS */
1572
1573 #ifdef CONFIG_DEBUG_PAGEALLOC
1574 extern int debug_pagealloc_enabled;
1575
1576 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1577
1578 static inline void enable_debug_pagealloc(void)
1579 {
1580 debug_pagealloc_enabled = 1;
1581 }
1582 #ifdef CONFIG_HIBERNATION
1583 extern bool kernel_page_present(struct page *page);
1584 #endif /* CONFIG_HIBERNATION */
1585 #else
1586 static inline void
1587 kernel_map_pages(struct page *page, int numpages, int enable) {}
1588 static inline void enable_debug_pagealloc(void)
1589 {
1590 }
1591 #ifdef CONFIG_HIBERNATION
1592 static inline bool kernel_page_present(struct page *page) { return true; }
1593 #endif /* CONFIG_HIBERNATION */
1594 #endif
1595
1596 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1597 #ifdef __HAVE_ARCH_GATE_AREA
1598 int in_gate_area_no_mm(unsigned long addr);
1599 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1600 #else
1601 int in_gate_area_no_mm(unsigned long addr);
1602 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1603 #endif /* __HAVE_ARCH_GATE_AREA */
1604
1605 int drop_caches_sysctl_handler(struct ctl_table *, int,
1606 void __user *, size_t *, loff_t *);
1607 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1608 unsigned long lru_pages);
1609
1610 #ifndef CONFIG_MMU
1611 #define randomize_va_space 0
1612 #else
1613 extern int randomize_va_space;
1614 #endif
1615
1616 const char * arch_vma_name(struct vm_area_struct *vma);
1617 void print_vma_addr(char *prefix, unsigned long rip);
1618
1619 void sparse_mem_maps_populate_node(struct page **map_map,
1620 unsigned long pnum_begin,
1621 unsigned long pnum_end,
1622 unsigned long map_count,
1623 int nodeid);
1624
1625 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1626 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1627 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1628 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1629 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1630 void *vmemmap_alloc_block(unsigned long size, int node);
1631 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1632 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1633 int vmemmap_populate_basepages(struct page *start_page,
1634 unsigned long pages, int node);
1635 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1636 void vmemmap_populate_print_last(void);
1637
1638
1639 enum mf_flags {
1640 MF_COUNT_INCREASED = 1 << 0,
1641 };
1642 extern void memory_failure(unsigned long pfn, int trapno);
1643 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1644 extern int unpoison_memory(unsigned long pfn);
1645 extern int sysctl_memory_failure_early_kill;
1646 extern int sysctl_memory_failure_recovery;
1647 extern void shake_page(struct page *p, int access);
1648 extern atomic_long_t mce_bad_pages;
1649 extern int soft_offline_page(struct page *page, int flags);
1650
1651 extern void dump_page(struct page *page);
1652
1653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1654 extern void clear_huge_page(struct page *page,
1655 unsigned long addr,
1656 unsigned int pages_per_huge_page);
1657 extern void copy_user_huge_page(struct page *dst, struct page *src,
1658 unsigned long addr, struct vm_area_struct *vma,
1659 unsigned int pages_per_huge_page);
1660 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1661
1662 #endif /* __KERNEL__ */
1663 #endif /* _LINUX_MM_H */