]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/linux/mm.h
move mm_struct and vm_area_struct
[mirror_ubuntu-focal-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/mutex.h>
14 #include <linux/debug_locks.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mm_types.h>
17
18 struct mempolicy;
19 struct anon_vma;
20 struct file_ra_state;
21 struct user_struct;
22 struct writeback_control;
23
24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
27
28 extern unsigned long num_physpages;
29 extern void * high_memory;
30 extern int page_cluster;
31
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
37
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44 /*
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
51 */
52
53 extern struct kmem_cache *vm_area_cachep;
54
55 /*
56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
57 * disabled, then there's a single shared list of VMAs maintained by the
58 * system, and mm's subscribe to these individually
59 */
60 struct vm_list_struct {
61 struct vm_list_struct *next;
62 struct vm_area_struct *vma;
63 };
64
65 #ifndef CONFIG_MMU
66 extern struct rb_root nommu_vma_tree;
67 extern struct rw_semaphore nommu_vma_sem;
68
69 extern unsigned int kobjsize(const void *objp);
70 #endif
71
72 /*
73 * vm_flags..
74 */
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_GROWSUP 0x00000200
88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90
91 #define VM_EXECUTABLE 0x00001000
92 #define VM_LOCKED 0x00002000
93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94
95 /* Used by sys_madvise() */
96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98
99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
105 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
106 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
107 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
108
109 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
110
111 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
113 #endif
114
115 #ifdef CONFIG_STACK_GROWSUP
116 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #else
118 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #endif
120
121 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
122 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
123 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
124 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
125 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
126
127 /*
128 * mapping from the currently active vm_flags protection bits (the
129 * low four bits) to a page protection mask..
130 */
131 extern pgprot_t protection_map[16];
132
133 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
134 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
135
136
137 /*
138 * vm_fault is filled by the the pagefault handler and passed to the vma's
139 * ->fault function. The vma's ->fault is responsible for returning a bitmask
140 * of VM_FAULT_xxx flags that give details about how the fault was handled.
141 *
142 * pgoff should be used in favour of virtual_address, if possible. If pgoff
143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
144 * mapping support.
145 */
146 struct vm_fault {
147 unsigned int flags; /* FAULT_FLAG_xxx flags */
148 pgoff_t pgoff; /* Logical page offset based on vma */
149 void __user *virtual_address; /* Faulting virtual address */
150
151 struct page *page; /* ->fault handlers should return a
152 * page here, unless VM_FAULT_NOPAGE
153 * is set (which is also implied by
154 * VM_FAULT_ERROR).
155 */
156 };
157
158 /*
159 * These are the virtual MM functions - opening of an area, closing and
160 * unmapping it (needed to keep files on disk up-to-date etc), pointer
161 * to the functions called when a no-page or a wp-page exception occurs.
162 */
163 struct vm_operations_struct {
164 void (*open)(struct vm_area_struct * area);
165 void (*close)(struct vm_area_struct * area);
166 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
167 struct page *(*nopage)(struct vm_area_struct *area,
168 unsigned long address, int *type);
169 unsigned long (*nopfn)(struct vm_area_struct *area,
170 unsigned long address);
171
172 /* notification that a previously read-only page is about to become
173 * writable, if an error is returned it will cause a SIGBUS */
174 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
175 #ifdef CONFIG_NUMA
176 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
177 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
178 unsigned long addr);
179 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
180 const nodemask_t *to, unsigned long flags);
181 #endif
182 };
183
184 struct mmu_gather;
185 struct inode;
186
187 #define page_private(page) ((page)->private)
188 #define set_page_private(page, v) ((page)->private = (v))
189
190 /*
191 * FIXME: take this include out, include page-flags.h in
192 * files which need it (119 of them)
193 */
194 #include <linux/page-flags.h>
195
196 #ifdef CONFIG_DEBUG_VM
197 #define VM_BUG_ON(cond) BUG_ON(cond)
198 #else
199 #define VM_BUG_ON(condition) do { } while(0)
200 #endif
201
202 /*
203 * Methods to modify the page usage count.
204 *
205 * What counts for a page usage:
206 * - cache mapping (page->mapping)
207 * - private data (page->private)
208 * - page mapped in a task's page tables, each mapping
209 * is counted separately
210 *
211 * Also, many kernel routines increase the page count before a critical
212 * routine so they can be sure the page doesn't go away from under them.
213 */
214
215 /*
216 * Drop a ref, return true if the refcount fell to zero (the page has no users)
217 */
218 static inline int put_page_testzero(struct page *page)
219 {
220 VM_BUG_ON(atomic_read(&page->_count) == 0);
221 return atomic_dec_and_test(&page->_count);
222 }
223
224 /*
225 * Try to grab a ref unless the page has a refcount of zero, return false if
226 * that is the case.
227 */
228 static inline int get_page_unless_zero(struct page *page)
229 {
230 VM_BUG_ON(PageCompound(page));
231 return atomic_inc_not_zero(&page->_count);
232 }
233
234 static inline struct page *compound_head(struct page *page)
235 {
236 if (unlikely(PageTail(page)))
237 return page->first_page;
238 return page;
239 }
240
241 static inline int page_count(struct page *page)
242 {
243 return atomic_read(&compound_head(page)->_count);
244 }
245
246 static inline void get_page(struct page *page)
247 {
248 page = compound_head(page);
249 VM_BUG_ON(atomic_read(&page->_count) == 0);
250 atomic_inc(&page->_count);
251 }
252
253 static inline struct page *virt_to_head_page(const void *x)
254 {
255 struct page *page = virt_to_page(x);
256 return compound_head(page);
257 }
258
259 /*
260 * Setup the page count before being freed into the page allocator for
261 * the first time (boot or memory hotplug)
262 */
263 static inline void init_page_count(struct page *page)
264 {
265 atomic_set(&page->_count, 1);
266 }
267
268 void put_page(struct page *page);
269 void put_pages_list(struct list_head *pages);
270
271 void split_page(struct page *page, unsigned int order);
272
273 /*
274 * Compound pages have a destructor function. Provide a
275 * prototype for that function and accessor functions.
276 * These are _only_ valid on the head of a PG_compound page.
277 */
278 typedef void compound_page_dtor(struct page *);
279
280 static inline void set_compound_page_dtor(struct page *page,
281 compound_page_dtor *dtor)
282 {
283 page[1].lru.next = (void *)dtor;
284 }
285
286 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
287 {
288 return (compound_page_dtor *)page[1].lru.next;
289 }
290
291 static inline int compound_order(struct page *page)
292 {
293 if (!PageHead(page))
294 return 0;
295 return (unsigned long)page[1].lru.prev;
296 }
297
298 static inline void set_compound_order(struct page *page, unsigned long order)
299 {
300 page[1].lru.prev = (void *)order;
301 }
302
303 /*
304 * Multiple processes may "see" the same page. E.g. for untouched
305 * mappings of /dev/null, all processes see the same page full of
306 * zeroes, and text pages of executables and shared libraries have
307 * only one copy in memory, at most, normally.
308 *
309 * For the non-reserved pages, page_count(page) denotes a reference count.
310 * page_count() == 0 means the page is free. page->lru is then used for
311 * freelist management in the buddy allocator.
312 * page_count() > 0 means the page has been allocated.
313 *
314 * Pages are allocated by the slab allocator in order to provide memory
315 * to kmalloc and kmem_cache_alloc. In this case, the management of the
316 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
317 * unless a particular usage is carefully commented. (the responsibility of
318 * freeing the kmalloc memory is the caller's, of course).
319 *
320 * A page may be used by anyone else who does a __get_free_page().
321 * In this case, page_count still tracks the references, and should only
322 * be used through the normal accessor functions. The top bits of page->flags
323 * and page->virtual store page management information, but all other fields
324 * are unused and could be used privately, carefully. The management of this
325 * page is the responsibility of the one who allocated it, and those who have
326 * subsequently been given references to it.
327 *
328 * The other pages (we may call them "pagecache pages") are completely
329 * managed by the Linux memory manager: I/O, buffers, swapping etc.
330 * The following discussion applies only to them.
331 *
332 * A pagecache page contains an opaque `private' member, which belongs to the
333 * page's address_space. Usually, this is the address of a circular list of
334 * the page's disk buffers. PG_private must be set to tell the VM to call
335 * into the filesystem to release these pages.
336 *
337 * A page may belong to an inode's memory mapping. In this case, page->mapping
338 * is the pointer to the inode, and page->index is the file offset of the page,
339 * in units of PAGE_CACHE_SIZE.
340 *
341 * If pagecache pages are not associated with an inode, they are said to be
342 * anonymous pages. These may become associated with the swapcache, and in that
343 * case PG_swapcache is set, and page->private is an offset into the swapcache.
344 *
345 * In either case (swapcache or inode backed), the pagecache itself holds one
346 * reference to the page. Setting PG_private should also increment the
347 * refcount. The each user mapping also has a reference to the page.
348 *
349 * The pagecache pages are stored in a per-mapping radix tree, which is
350 * rooted at mapping->page_tree, and indexed by offset.
351 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
352 * lists, we instead now tag pages as dirty/writeback in the radix tree.
353 *
354 * All pagecache pages may be subject to I/O:
355 * - inode pages may need to be read from disk,
356 * - inode pages which have been modified and are MAP_SHARED may need
357 * to be written back to the inode on disk,
358 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
359 * modified may need to be swapped out to swap space and (later) to be read
360 * back into memory.
361 */
362
363 /*
364 * The zone field is never updated after free_area_init_core()
365 * sets it, so none of the operations on it need to be atomic.
366 */
367
368
369 /*
370 * page->flags layout:
371 *
372 * There are three possibilities for how page->flags get
373 * laid out. The first is for the normal case, without
374 * sparsemem. The second is for sparsemem when there is
375 * plenty of space for node and section. The last is when
376 * we have run out of space and have to fall back to an
377 * alternate (slower) way of determining the node.
378 *
379 * No sparsemem: | NODE | ZONE | ... | FLAGS |
380 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
381 * no space for node: | SECTION | ZONE | ... | FLAGS |
382 */
383 #ifdef CONFIG_SPARSEMEM
384 #define SECTIONS_WIDTH SECTIONS_SHIFT
385 #else
386 #define SECTIONS_WIDTH 0
387 #endif
388
389 #define ZONES_WIDTH ZONES_SHIFT
390
391 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
392 #define NODES_WIDTH NODES_SHIFT
393 #else
394 #define NODES_WIDTH 0
395 #endif
396
397 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
398 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
399 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
400 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
401
402 /*
403 * We are going to use the flags for the page to node mapping if its in
404 * there. This includes the case where there is no node, so it is implicit.
405 */
406 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
407 #define NODE_NOT_IN_PAGE_FLAGS
408 #endif
409
410 #ifndef PFN_SECTION_SHIFT
411 #define PFN_SECTION_SHIFT 0
412 #endif
413
414 /*
415 * Define the bit shifts to access each section. For non-existant
416 * sections we define the shift as 0; that plus a 0 mask ensures
417 * the compiler will optimise away reference to them.
418 */
419 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
420 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
421 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
422
423 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
424 #ifdef NODE_NOT_IN_PAGEFLAGS
425 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
426 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
427 SECTIONS_PGOFF : ZONES_PGOFF)
428 #else
429 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
430 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
431 NODES_PGOFF : ZONES_PGOFF)
432 #endif
433
434 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
435
436 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
437 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
438 #endif
439
440 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
441 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
442 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
443 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
444
445 static inline enum zone_type page_zonenum(struct page *page)
446 {
447 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
448 }
449
450 /*
451 * The identification function is only used by the buddy allocator for
452 * determining if two pages could be buddies. We are not really
453 * identifying a zone since we could be using a the section number
454 * id if we have not node id available in page flags.
455 * We guarantee only that it will return the same value for two
456 * combinable pages in a zone.
457 */
458 static inline int page_zone_id(struct page *page)
459 {
460 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
461 }
462
463 static inline int zone_to_nid(struct zone *zone)
464 {
465 #ifdef CONFIG_NUMA
466 return zone->node;
467 #else
468 return 0;
469 #endif
470 }
471
472 #ifdef NODE_NOT_IN_PAGE_FLAGS
473 extern int page_to_nid(struct page *page);
474 #else
475 static inline int page_to_nid(struct page *page)
476 {
477 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
478 }
479 #endif
480
481 static inline struct zone *page_zone(struct page *page)
482 {
483 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
484 }
485
486 static inline unsigned long page_to_section(struct page *page)
487 {
488 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
489 }
490
491 static inline void set_page_zone(struct page *page, enum zone_type zone)
492 {
493 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
494 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
495 }
496
497 static inline void set_page_node(struct page *page, unsigned long node)
498 {
499 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
500 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
501 }
502
503 static inline void set_page_section(struct page *page, unsigned long section)
504 {
505 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
506 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
507 }
508
509 static inline void set_page_links(struct page *page, enum zone_type zone,
510 unsigned long node, unsigned long pfn)
511 {
512 set_page_zone(page, zone);
513 set_page_node(page, node);
514 set_page_section(page, pfn_to_section_nr(pfn));
515 }
516
517 /*
518 * Some inline functions in vmstat.h depend on page_zone()
519 */
520 #include <linux/vmstat.h>
521
522 static __always_inline void *lowmem_page_address(struct page *page)
523 {
524 return __va(page_to_pfn(page) << PAGE_SHIFT);
525 }
526
527 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
528 #define HASHED_PAGE_VIRTUAL
529 #endif
530
531 #if defined(WANT_PAGE_VIRTUAL)
532 #define page_address(page) ((page)->virtual)
533 #define set_page_address(page, address) \
534 do { \
535 (page)->virtual = (address); \
536 } while(0)
537 #define page_address_init() do { } while(0)
538 #endif
539
540 #if defined(HASHED_PAGE_VIRTUAL)
541 void *page_address(struct page *page);
542 void set_page_address(struct page *page, void *virtual);
543 void page_address_init(void);
544 #endif
545
546 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
547 #define page_address(page) lowmem_page_address(page)
548 #define set_page_address(page, address) do { } while(0)
549 #define page_address_init() do { } while(0)
550 #endif
551
552 /*
553 * On an anonymous page mapped into a user virtual memory area,
554 * page->mapping points to its anon_vma, not to a struct address_space;
555 * with the PAGE_MAPPING_ANON bit set to distinguish it.
556 *
557 * Please note that, confusingly, "page_mapping" refers to the inode
558 * address_space which maps the page from disk; whereas "page_mapped"
559 * refers to user virtual address space into which the page is mapped.
560 */
561 #define PAGE_MAPPING_ANON 1
562
563 extern struct address_space swapper_space;
564 static inline struct address_space *page_mapping(struct page *page)
565 {
566 struct address_space *mapping = page->mapping;
567
568 VM_BUG_ON(PageSlab(page));
569 if (unlikely(PageSwapCache(page)))
570 mapping = &swapper_space;
571 #ifdef CONFIG_SLUB
572 else if (unlikely(PageSlab(page)))
573 mapping = NULL;
574 #endif
575 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
576 mapping = NULL;
577 return mapping;
578 }
579
580 static inline int PageAnon(struct page *page)
581 {
582 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
583 }
584
585 /*
586 * Return the pagecache index of the passed page. Regular pagecache pages
587 * use ->index whereas swapcache pages use ->private
588 */
589 static inline pgoff_t page_index(struct page *page)
590 {
591 if (unlikely(PageSwapCache(page)))
592 return page_private(page);
593 return page->index;
594 }
595
596 /*
597 * The atomic page->_mapcount, like _count, starts from -1:
598 * so that transitions both from it and to it can be tracked,
599 * using atomic_inc_and_test and atomic_add_negative(-1).
600 */
601 static inline void reset_page_mapcount(struct page *page)
602 {
603 atomic_set(&(page)->_mapcount, -1);
604 }
605
606 static inline int page_mapcount(struct page *page)
607 {
608 return atomic_read(&(page)->_mapcount) + 1;
609 }
610
611 /*
612 * Return true if this page is mapped into pagetables.
613 */
614 static inline int page_mapped(struct page *page)
615 {
616 return atomic_read(&(page)->_mapcount) >= 0;
617 }
618
619 /*
620 * Error return values for the *_nopage functions
621 */
622 #define NOPAGE_SIGBUS (NULL)
623 #define NOPAGE_OOM ((struct page *) (-1))
624
625 /*
626 * Error return values for the *_nopfn functions
627 */
628 #define NOPFN_SIGBUS ((unsigned long) -1)
629 #define NOPFN_OOM ((unsigned long) -2)
630 #define NOPFN_REFAULT ((unsigned long) -3)
631
632 /*
633 * Different kinds of faults, as returned by handle_mm_fault().
634 * Used to decide whether a process gets delivered SIGBUS or
635 * just gets major/minor fault counters bumped up.
636 */
637
638 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
639
640 #define VM_FAULT_OOM 0x0001
641 #define VM_FAULT_SIGBUS 0x0002
642 #define VM_FAULT_MAJOR 0x0004
643 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
644
645 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
646 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
647
648 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
649
650 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
651
652 extern void show_free_areas(void);
653
654 #ifdef CONFIG_SHMEM
655 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
656 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
657 unsigned long addr);
658 int shmem_lock(struct file *file, int lock, struct user_struct *user);
659 #else
660 static inline int shmem_lock(struct file *file, int lock,
661 struct user_struct *user)
662 {
663 return 0;
664 }
665
666 static inline int shmem_set_policy(struct vm_area_struct *vma,
667 struct mempolicy *new)
668 {
669 return 0;
670 }
671
672 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
673 unsigned long addr)
674 {
675 return NULL;
676 }
677 #endif
678 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
679
680 int shmem_zero_setup(struct vm_area_struct *);
681
682 #ifndef CONFIG_MMU
683 extern unsigned long shmem_get_unmapped_area(struct file *file,
684 unsigned long addr,
685 unsigned long len,
686 unsigned long pgoff,
687 unsigned long flags);
688 #endif
689
690 extern int can_do_mlock(void);
691 extern int user_shm_lock(size_t, struct user_struct *);
692 extern void user_shm_unlock(size_t, struct user_struct *);
693
694 /*
695 * Parameter block passed down to zap_pte_range in exceptional cases.
696 */
697 struct zap_details {
698 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
699 struct address_space *check_mapping; /* Check page->mapping if set */
700 pgoff_t first_index; /* Lowest page->index to unmap */
701 pgoff_t last_index; /* Highest page->index to unmap */
702 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
703 unsigned long truncate_count; /* Compare vm_truncate_count */
704 };
705
706 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
707 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
708 unsigned long size, struct zap_details *);
709 unsigned long unmap_vmas(struct mmu_gather **tlb,
710 struct vm_area_struct *start_vma, unsigned long start_addr,
711 unsigned long end_addr, unsigned long *nr_accounted,
712 struct zap_details *);
713 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
714 unsigned long end, unsigned long floor, unsigned long ceiling);
715 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
716 unsigned long floor, unsigned long ceiling);
717 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
718 struct vm_area_struct *vma);
719 void unmap_mapping_range(struct address_space *mapping,
720 loff_t const holebegin, loff_t const holelen, int even_cows);
721
722 static inline void unmap_shared_mapping_range(struct address_space *mapping,
723 loff_t const holebegin, loff_t const holelen)
724 {
725 unmap_mapping_range(mapping, holebegin, holelen, 0);
726 }
727
728 extern int vmtruncate(struct inode * inode, loff_t offset);
729 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
730
731 #ifdef CONFIG_MMU
732 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
733 unsigned long address, int write_access);
734 #else
735 static inline int handle_mm_fault(struct mm_struct *mm,
736 struct vm_area_struct *vma, unsigned long address,
737 int write_access)
738 {
739 /* should never happen if there's no MMU */
740 BUG();
741 return VM_FAULT_SIGBUS;
742 }
743 #endif
744
745 extern int make_pages_present(unsigned long addr, unsigned long end);
746 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
747
748 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
749 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
750 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
751
752 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
753 extern void do_invalidatepage(struct page *page, unsigned long offset);
754
755 int __set_page_dirty_nobuffers(struct page *page);
756 int __set_page_dirty_no_writeback(struct page *page);
757 int redirty_page_for_writepage(struct writeback_control *wbc,
758 struct page *page);
759 int FASTCALL(set_page_dirty(struct page *page));
760 int set_page_dirty_lock(struct page *page);
761 int clear_page_dirty_for_io(struct page *page);
762
763 extern unsigned long move_page_tables(struct vm_area_struct *vma,
764 unsigned long old_addr, struct vm_area_struct *new_vma,
765 unsigned long new_addr, unsigned long len);
766 extern unsigned long do_mremap(unsigned long addr,
767 unsigned long old_len, unsigned long new_len,
768 unsigned long flags, unsigned long new_addr);
769 extern int mprotect_fixup(struct vm_area_struct *vma,
770 struct vm_area_struct **pprev, unsigned long start,
771 unsigned long end, unsigned long newflags);
772
773 /*
774 * A callback you can register to apply pressure to ageable caches.
775 *
776 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
777 * look through the least-recently-used 'nr_to_scan' entries and
778 * attempt to free them up. It should return the number of objects
779 * which remain in the cache. If it returns -1, it means it cannot do
780 * any scanning at this time (eg. there is a risk of deadlock).
781 *
782 * The 'gfpmask' refers to the allocation we are currently trying to
783 * fulfil.
784 *
785 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
786 * querying the cache size, so a fastpath for that case is appropriate.
787 */
788 struct shrinker {
789 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
790 int seeks; /* seeks to recreate an obj */
791
792 /* These are for internal use */
793 struct list_head list;
794 long nr; /* objs pending delete */
795 };
796 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
797 extern void register_shrinker(struct shrinker *);
798 extern void unregister_shrinker(struct shrinker *);
799
800 int vma_wants_writenotify(struct vm_area_struct *vma);
801
802 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
803
804 #ifdef __PAGETABLE_PUD_FOLDED
805 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
806 unsigned long address)
807 {
808 return 0;
809 }
810 #else
811 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
812 #endif
813
814 #ifdef __PAGETABLE_PMD_FOLDED
815 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
816 unsigned long address)
817 {
818 return 0;
819 }
820 #else
821 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
822 #endif
823
824 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
825 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
826
827 /*
828 * The following ifdef needed to get the 4level-fixup.h header to work.
829 * Remove it when 4level-fixup.h has been removed.
830 */
831 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
832 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
833 {
834 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
835 NULL: pud_offset(pgd, address);
836 }
837
838 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
839 {
840 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
841 NULL: pmd_offset(pud, address);
842 }
843 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
844
845 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
846 /*
847 * We tuck a spinlock to guard each pagetable page into its struct page,
848 * at page->private, with BUILD_BUG_ON to make sure that this will not
849 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
850 * When freeing, reset page->mapping so free_pages_check won't complain.
851 */
852 #define __pte_lockptr(page) &((page)->ptl)
853 #define pte_lock_init(_page) do { \
854 spin_lock_init(__pte_lockptr(_page)); \
855 } while (0)
856 #define pte_lock_deinit(page) ((page)->mapping = NULL)
857 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
858 #else
859 /*
860 * We use mm->page_table_lock to guard all pagetable pages of the mm.
861 */
862 #define pte_lock_init(page) do {} while (0)
863 #define pte_lock_deinit(page) do {} while (0)
864 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
865 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
866
867 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
868 ({ \
869 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
870 pte_t *__pte = pte_offset_map(pmd, address); \
871 *(ptlp) = __ptl; \
872 spin_lock(__ptl); \
873 __pte; \
874 })
875
876 #define pte_unmap_unlock(pte, ptl) do { \
877 spin_unlock(ptl); \
878 pte_unmap(pte); \
879 } while (0)
880
881 #define pte_alloc_map(mm, pmd, address) \
882 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
883 NULL: pte_offset_map(pmd, address))
884
885 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
886 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
887 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
888
889 #define pte_alloc_kernel(pmd, address) \
890 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
891 NULL: pte_offset_kernel(pmd, address))
892
893 extern void free_area_init(unsigned long * zones_size);
894 extern void free_area_init_node(int nid, pg_data_t *pgdat,
895 unsigned long * zones_size, unsigned long zone_start_pfn,
896 unsigned long *zholes_size);
897 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
898 /*
899 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
900 * zones, allocate the backing mem_map and account for memory holes in a more
901 * architecture independent manner. This is a substitute for creating the
902 * zone_sizes[] and zholes_size[] arrays and passing them to
903 * free_area_init_node()
904 *
905 * An architecture is expected to register range of page frames backed by
906 * physical memory with add_active_range() before calling
907 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
908 * usage, an architecture is expected to do something like
909 *
910 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
911 * max_highmem_pfn};
912 * for_each_valid_physical_page_range()
913 * add_active_range(node_id, start_pfn, end_pfn)
914 * free_area_init_nodes(max_zone_pfns);
915 *
916 * If the architecture guarantees that there are no holes in the ranges
917 * registered with add_active_range(), free_bootmem_active_regions()
918 * will call free_bootmem_node() for each registered physical page range.
919 * Similarly sparse_memory_present_with_active_regions() calls
920 * memory_present() for each range when SPARSEMEM is enabled.
921 *
922 * See mm/page_alloc.c for more information on each function exposed by
923 * CONFIG_ARCH_POPULATES_NODE_MAP
924 */
925 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
926 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
927 unsigned long end_pfn);
928 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
929 unsigned long new_end_pfn);
930 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
931 unsigned long end_pfn);
932 extern void remove_all_active_ranges(void);
933 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
934 unsigned long end_pfn);
935 extern void get_pfn_range_for_nid(unsigned int nid,
936 unsigned long *start_pfn, unsigned long *end_pfn);
937 extern unsigned long find_min_pfn_with_active_regions(void);
938 extern unsigned long find_max_pfn_with_active_regions(void);
939 extern void free_bootmem_with_active_regions(int nid,
940 unsigned long max_low_pfn);
941 extern void sparse_memory_present_with_active_regions(int nid);
942 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
943 extern int early_pfn_to_nid(unsigned long pfn);
944 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
945 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
946 extern void set_dma_reserve(unsigned long new_dma_reserve);
947 extern void memmap_init_zone(unsigned long, int, unsigned long,
948 unsigned long, enum memmap_context);
949 extern void setup_per_zone_pages_min(void);
950 extern void mem_init(void);
951 extern void show_mem(void);
952 extern void si_meminfo(struct sysinfo * val);
953 extern void si_meminfo_node(struct sysinfo *val, int nid);
954
955 #ifdef CONFIG_NUMA
956 extern void setup_per_cpu_pageset(void);
957 #else
958 static inline void setup_per_cpu_pageset(void) {}
959 #endif
960
961 /* prio_tree.c */
962 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
963 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
964 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
965 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
966 struct prio_tree_iter *iter);
967
968 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
969 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
970 (vma = vma_prio_tree_next(vma, iter)); )
971
972 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
973 struct list_head *list)
974 {
975 vma->shared.vm_set.parent = NULL;
976 list_add_tail(&vma->shared.vm_set.list, list);
977 }
978
979 /* mmap.c */
980 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
981 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
982 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
983 extern struct vm_area_struct *vma_merge(struct mm_struct *,
984 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
985 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
986 struct mempolicy *);
987 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
988 extern int split_vma(struct mm_struct *,
989 struct vm_area_struct *, unsigned long addr, int new_below);
990 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
991 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
992 struct rb_node **, struct rb_node *);
993 extern void unlink_file_vma(struct vm_area_struct *);
994 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
995 unsigned long addr, unsigned long len, pgoff_t pgoff);
996 extern void exit_mmap(struct mm_struct *);
997 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
998 extern int install_special_mapping(struct mm_struct *mm,
999 unsigned long addr, unsigned long len,
1000 unsigned long flags, struct page **pages);
1001
1002 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1003
1004 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1005 unsigned long len, unsigned long prot,
1006 unsigned long flag, unsigned long pgoff);
1007 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1008 unsigned long len, unsigned long flags,
1009 unsigned int vm_flags, unsigned long pgoff,
1010 int accountable);
1011
1012 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1013 unsigned long len, unsigned long prot,
1014 unsigned long flag, unsigned long offset)
1015 {
1016 unsigned long ret = -EINVAL;
1017 if ((offset + PAGE_ALIGN(len)) < offset)
1018 goto out;
1019 if (!(offset & ~PAGE_MASK))
1020 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1021 out:
1022 return ret;
1023 }
1024
1025 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1026
1027 extern unsigned long do_brk(unsigned long, unsigned long);
1028
1029 /* filemap.c */
1030 extern unsigned long page_unuse(struct page *);
1031 extern void truncate_inode_pages(struct address_space *, loff_t);
1032 extern void truncate_inode_pages_range(struct address_space *,
1033 loff_t lstart, loff_t lend);
1034
1035 /* generic vm_area_ops exported for stackable file systems */
1036 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1037
1038 /* mm/page-writeback.c */
1039 int write_one_page(struct page *page, int wait);
1040
1041 /* readahead.c */
1042 #define VM_MAX_READAHEAD 128 /* kbytes */
1043 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1044
1045 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1046 pgoff_t offset, unsigned long nr_to_read);
1047 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1048 pgoff_t offset, unsigned long nr_to_read);
1049
1050 void page_cache_sync_readahead(struct address_space *mapping,
1051 struct file_ra_state *ra,
1052 struct file *filp,
1053 pgoff_t offset,
1054 unsigned long size);
1055
1056 void page_cache_async_readahead(struct address_space *mapping,
1057 struct file_ra_state *ra,
1058 struct file *filp,
1059 struct page *pg,
1060 pgoff_t offset,
1061 unsigned long size);
1062
1063 unsigned long max_sane_readahead(unsigned long nr);
1064
1065 /* Do stack extension */
1066 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1067 #ifdef CONFIG_IA64
1068 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1069 #endif
1070 extern int expand_stack_downwards(struct vm_area_struct *vma,
1071 unsigned long address);
1072
1073 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1074 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1075 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1076 struct vm_area_struct **pprev);
1077
1078 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1079 NULL if none. Assume start_addr < end_addr. */
1080 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1081 {
1082 struct vm_area_struct * vma = find_vma(mm,start_addr);
1083
1084 if (vma && end_addr <= vma->vm_start)
1085 vma = NULL;
1086 return vma;
1087 }
1088
1089 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1090 {
1091 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1092 }
1093
1094 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1095 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1096 struct page *vmalloc_to_page(void *addr);
1097 unsigned long vmalloc_to_pfn(void *addr);
1098 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1099 unsigned long pfn, unsigned long size, pgprot_t);
1100 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1101 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1102 unsigned long pfn);
1103
1104 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1105 unsigned int foll_flags);
1106 #define FOLL_WRITE 0x01 /* check pte is writable */
1107 #define FOLL_TOUCH 0x02 /* mark page accessed */
1108 #define FOLL_GET 0x04 /* do get_page on page */
1109 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1110
1111 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1112 void *data);
1113 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1114 unsigned long size, pte_fn_t fn, void *data);
1115
1116 #ifdef CONFIG_PROC_FS
1117 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1118 #else
1119 static inline void vm_stat_account(struct mm_struct *mm,
1120 unsigned long flags, struct file *file, long pages)
1121 {
1122 }
1123 #endif /* CONFIG_PROC_FS */
1124
1125 #ifndef CONFIG_DEBUG_PAGEALLOC
1126 static inline void
1127 kernel_map_pages(struct page *page, int numpages, int enable) {}
1128 #endif
1129
1130 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1131 #ifdef __HAVE_ARCH_GATE_AREA
1132 int in_gate_area_no_task(unsigned long addr);
1133 int in_gate_area(struct task_struct *task, unsigned long addr);
1134 #else
1135 int in_gate_area_no_task(unsigned long addr);
1136 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1137 #endif /* __HAVE_ARCH_GATE_AREA */
1138
1139 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1140 void __user *, size_t *, loff_t *);
1141 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1142 unsigned long lru_pages);
1143 void drop_pagecache(void);
1144 void drop_slab(void);
1145
1146 #ifndef CONFIG_MMU
1147 #define randomize_va_space 0
1148 #else
1149 extern int randomize_va_space;
1150 #endif
1151
1152 const char * arch_vma_name(struct vm_area_struct *vma);
1153
1154 struct page *sparse_early_mem_map_populate(unsigned long pnum, int nid);
1155 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1156 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1157 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1158 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1159 void *vmemmap_alloc_block(unsigned long size, int node);
1160 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1161 int vmemmap_populate_basepages(struct page *start_page,
1162 unsigned long pages, int node);
1163 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1164
1165 #endif /* __KERNEL__ */
1166 #endif /* _LINUX_MM_H */