]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/mm.h
mm: use vmf->address instead of of vmf->virtual_address
[mirror_ubuntu-hirsute-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70
71 #ifndef __pa_symbol
72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74
75 #ifndef page_to_virt
76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77 #endif
78
79 /*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86 #ifndef mm_forbids_zeropage
87 #define mm_forbids_zeropage(X) (0)
88 #endif
89
90 /*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106 #define MAPCOUNT_ELF_CORE_MARGIN (5)
107 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109 extern int sysctl_max_map_count;
110
111 extern unsigned long sysctl_user_reserve_kbytes;
112 extern unsigned long sysctl_admin_reserve_kbytes;
113
114 extern int sysctl_overcommit_memory;
115 extern int sysctl_overcommit_ratio;
116 extern unsigned long sysctl_overcommit_kbytes;
117
118 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
123 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
125 /* to align the pointer to the (next) page boundary */
126 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
128 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
130
131 /*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
140 extern struct kmem_cache *vm_area_cachep;
141
142 #ifndef CONFIG_MMU
143 extern struct rb_root nommu_region_tree;
144 extern struct rw_semaphore nommu_region_sem;
145
146 extern unsigned int kobjsize(const void *objp);
147 #endif
148
149 /*
150 * vm_flags in vm_area_struct, see mm_types.h.
151 * When changing, update also include/trace/events/mmflags.h
152 */
153 #define VM_NONE 0x00000000
154
155 #define VM_READ 0x00000001 /* currently active flags */
156 #define VM_WRITE 0x00000002
157 #define VM_EXEC 0x00000004
158 #define VM_SHARED 0x00000008
159
160 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
161 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162 #define VM_MAYWRITE 0x00000020
163 #define VM_MAYEXEC 0x00000040
164 #define VM_MAYSHARE 0x00000080
165
166 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
167 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
168 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
169 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
170 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
171
172 #define VM_LOCKED 0x00002000
173 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
181 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
182 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
183 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
184 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
185 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
186 #define VM_ARCH_2 0x02000000
187 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
188
189 #ifdef CONFIG_MEM_SOFT_DIRTY
190 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191 #else
192 # define VM_SOFTDIRTY 0
193 #endif
194
195 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
196 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
198 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
199
200 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
211 #if defined(CONFIG_X86)
212 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
213 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219 #endif
220 #elif defined(CONFIG_PPC)
221 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222 #elif defined(CONFIG_PARISC)
223 # define VM_GROWSUP VM_ARCH_1
224 #elif defined(CONFIG_METAG)
225 # define VM_GROWSUP VM_ARCH_1
226 #elif defined(CONFIG_IA64)
227 # define VM_GROWSUP VM_ARCH_1
228 #elif !defined(CONFIG_MMU)
229 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230 #endif
231
232 #if defined(CONFIG_X86)
233 /* MPX specific bounds table or bounds directory */
234 # define VM_MPX VM_ARCH_2
235 #endif
236
237 #ifndef VM_GROWSUP
238 # define VM_GROWSUP VM_NONE
239 #endif
240
241 /* Bits set in the VMA until the stack is in its final location */
242 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
244 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246 #endif
247
248 #ifdef CONFIG_STACK_GROWSUP
249 #define VM_STACK VM_GROWSUP
250 #else
251 #define VM_STACK VM_GROWSDOWN
252 #endif
253
254 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
256 /*
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
259 */
260 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
261
262 /* This mask defines which mm->def_flags a process can inherit its parent */
263 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
265 /* This mask is used to clear all the VMA flags used by mlock */
266 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
268 /*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272 extern pgprot_t protection_map[16];
273
274 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
275 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279 #define FAULT_FLAG_TRIED 0x20 /* Second try */
280 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
281 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
282 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
283
284 /*
285 * vm_fault is filled by the the pagefault handler and passed to the vma's
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
288 *
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
292 * pgoff should be used in favour of virtual_address, if possible.
293 */
294 struct vm_fault {
295 struct vm_area_struct *vma; /* Target VMA */
296 unsigned int flags; /* FAULT_FLAG_xxx flags */
297 gfp_t gfp_mask; /* gfp mask to be used for allocations */
298 pgoff_t pgoff; /* Logical page offset based on vma */
299 unsigned long address; /* Faulting virtual address */
300 pmd_t *pmd; /* Pointer to pmd entry matching
301 * the 'address'
302 */
303
304 struct page *cow_page; /* Handler may choose to COW */
305 struct page *page; /* ->fault handlers should return a
306 * page here, unless VM_FAULT_NOPAGE
307 * is set (which is also implied by
308 * VM_FAULT_ERROR).
309 */
310 void *entry; /* ->fault handler can alternatively
311 * return locked DAX entry. In that
312 * case handler should return
313 * VM_FAULT_DAX_LOCKED and fill in
314 * entry here.
315 */
316 /* These three entries are valid only while holding ptl lock */
317 pte_t *pte; /* Pointer to pte entry matching
318 * the 'address'. NULL if the page
319 * table hasn't been allocated.
320 */
321 spinlock_t *ptl; /* Page table lock.
322 * Protects pte page table if 'pte'
323 * is not NULL, otherwise pmd.
324 */
325 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
326 * vm_ops->map_pages() calls
327 * alloc_set_pte() from atomic context.
328 * do_fault_around() pre-allocates
329 * page table to avoid allocation from
330 * atomic context.
331 */
332 };
333
334 /*
335 * These are the virtual MM functions - opening of an area, closing and
336 * unmapping it (needed to keep files on disk up-to-date etc), pointer
337 * to the functions called when a no-page or a wp-page exception occurs.
338 */
339 struct vm_operations_struct {
340 void (*open)(struct vm_area_struct * area);
341 void (*close)(struct vm_area_struct * area);
342 int (*mremap)(struct vm_area_struct * area);
343 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
344 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
345 pmd_t *, unsigned int flags);
346 void (*map_pages)(struct vm_fault *vmf,
347 pgoff_t start_pgoff, pgoff_t end_pgoff);
348
349 /* notification that a previously read-only page is about to become
350 * writable, if an error is returned it will cause a SIGBUS */
351 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
352
353 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
354 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
355
356 /* called by access_process_vm when get_user_pages() fails, typically
357 * for use by special VMAs that can switch between memory and hardware
358 */
359 int (*access)(struct vm_area_struct *vma, unsigned long addr,
360 void *buf, int len, int write);
361
362 /* Called by the /proc/PID/maps code to ask the vma whether it
363 * has a special name. Returning non-NULL will also cause this
364 * vma to be dumped unconditionally. */
365 const char *(*name)(struct vm_area_struct *vma);
366
367 #ifdef CONFIG_NUMA
368 /*
369 * set_policy() op must add a reference to any non-NULL @new mempolicy
370 * to hold the policy upon return. Caller should pass NULL @new to
371 * remove a policy and fall back to surrounding context--i.e. do not
372 * install a MPOL_DEFAULT policy, nor the task or system default
373 * mempolicy.
374 */
375 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
376
377 /*
378 * get_policy() op must add reference [mpol_get()] to any policy at
379 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
380 * in mm/mempolicy.c will do this automatically.
381 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
382 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
383 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
384 * must return NULL--i.e., do not "fallback" to task or system default
385 * policy.
386 */
387 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
388 unsigned long addr);
389 #endif
390 /*
391 * Called by vm_normal_page() for special PTEs to find the
392 * page for @addr. This is useful if the default behavior
393 * (using pte_page()) would not find the correct page.
394 */
395 struct page *(*find_special_page)(struct vm_area_struct *vma,
396 unsigned long addr);
397 };
398
399 struct mmu_gather;
400 struct inode;
401
402 #define page_private(page) ((page)->private)
403 #define set_page_private(page, v) ((page)->private = (v))
404
405 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
406 static inline int pmd_devmap(pmd_t pmd)
407 {
408 return 0;
409 }
410 #endif
411
412 /*
413 * FIXME: take this include out, include page-flags.h in
414 * files which need it (119 of them)
415 */
416 #include <linux/page-flags.h>
417 #include <linux/huge_mm.h>
418
419 /*
420 * Methods to modify the page usage count.
421 *
422 * What counts for a page usage:
423 * - cache mapping (page->mapping)
424 * - private data (page->private)
425 * - page mapped in a task's page tables, each mapping
426 * is counted separately
427 *
428 * Also, many kernel routines increase the page count before a critical
429 * routine so they can be sure the page doesn't go away from under them.
430 */
431
432 /*
433 * Drop a ref, return true if the refcount fell to zero (the page has no users)
434 */
435 static inline int put_page_testzero(struct page *page)
436 {
437 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
438 return page_ref_dec_and_test(page);
439 }
440
441 /*
442 * Try to grab a ref unless the page has a refcount of zero, return false if
443 * that is the case.
444 * This can be called when MMU is off so it must not access
445 * any of the virtual mappings.
446 */
447 static inline int get_page_unless_zero(struct page *page)
448 {
449 return page_ref_add_unless(page, 1, 0);
450 }
451
452 extern int page_is_ram(unsigned long pfn);
453
454 enum {
455 REGION_INTERSECTS,
456 REGION_DISJOINT,
457 REGION_MIXED,
458 };
459
460 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
461 unsigned long desc);
462
463 /* Support for virtually mapped pages */
464 struct page *vmalloc_to_page(const void *addr);
465 unsigned long vmalloc_to_pfn(const void *addr);
466
467 /*
468 * Determine if an address is within the vmalloc range
469 *
470 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
471 * is no special casing required.
472 */
473 static inline bool is_vmalloc_addr(const void *x)
474 {
475 #ifdef CONFIG_MMU
476 unsigned long addr = (unsigned long)x;
477
478 return addr >= VMALLOC_START && addr < VMALLOC_END;
479 #else
480 return false;
481 #endif
482 }
483 #ifdef CONFIG_MMU
484 extern int is_vmalloc_or_module_addr(const void *x);
485 #else
486 static inline int is_vmalloc_or_module_addr(const void *x)
487 {
488 return 0;
489 }
490 #endif
491
492 extern void kvfree(const void *addr);
493
494 static inline atomic_t *compound_mapcount_ptr(struct page *page)
495 {
496 return &page[1].compound_mapcount;
497 }
498
499 static inline int compound_mapcount(struct page *page)
500 {
501 VM_BUG_ON_PAGE(!PageCompound(page), page);
502 page = compound_head(page);
503 return atomic_read(compound_mapcount_ptr(page)) + 1;
504 }
505
506 /*
507 * The atomic page->_mapcount, starts from -1: so that transitions
508 * both from it and to it can be tracked, using atomic_inc_and_test
509 * and atomic_add_negative(-1).
510 */
511 static inline void page_mapcount_reset(struct page *page)
512 {
513 atomic_set(&(page)->_mapcount, -1);
514 }
515
516 int __page_mapcount(struct page *page);
517
518 static inline int page_mapcount(struct page *page)
519 {
520 VM_BUG_ON_PAGE(PageSlab(page), page);
521
522 if (unlikely(PageCompound(page)))
523 return __page_mapcount(page);
524 return atomic_read(&page->_mapcount) + 1;
525 }
526
527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
528 int total_mapcount(struct page *page);
529 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
530 #else
531 static inline int total_mapcount(struct page *page)
532 {
533 return page_mapcount(page);
534 }
535 static inline int page_trans_huge_mapcount(struct page *page,
536 int *total_mapcount)
537 {
538 int mapcount = page_mapcount(page);
539 if (total_mapcount)
540 *total_mapcount = mapcount;
541 return mapcount;
542 }
543 #endif
544
545 static inline struct page *virt_to_head_page(const void *x)
546 {
547 struct page *page = virt_to_page(x);
548
549 return compound_head(page);
550 }
551
552 void __put_page(struct page *page);
553
554 void put_pages_list(struct list_head *pages);
555
556 void split_page(struct page *page, unsigned int order);
557
558 /*
559 * Compound pages have a destructor function. Provide a
560 * prototype for that function and accessor functions.
561 * These are _only_ valid on the head of a compound page.
562 */
563 typedef void compound_page_dtor(struct page *);
564
565 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
566 enum compound_dtor_id {
567 NULL_COMPOUND_DTOR,
568 COMPOUND_PAGE_DTOR,
569 #ifdef CONFIG_HUGETLB_PAGE
570 HUGETLB_PAGE_DTOR,
571 #endif
572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
573 TRANSHUGE_PAGE_DTOR,
574 #endif
575 NR_COMPOUND_DTORS,
576 };
577 extern compound_page_dtor * const compound_page_dtors[];
578
579 static inline void set_compound_page_dtor(struct page *page,
580 enum compound_dtor_id compound_dtor)
581 {
582 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
583 page[1].compound_dtor = compound_dtor;
584 }
585
586 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
587 {
588 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
589 return compound_page_dtors[page[1].compound_dtor];
590 }
591
592 static inline unsigned int compound_order(struct page *page)
593 {
594 if (!PageHead(page))
595 return 0;
596 return page[1].compound_order;
597 }
598
599 static inline void set_compound_order(struct page *page, unsigned int order)
600 {
601 page[1].compound_order = order;
602 }
603
604 void free_compound_page(struct page *page);
605
606 #ifdef CONFIG_MMU
607 /*
608 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
609 * servicing faults for write access. In the normal case, do always want
610 * pte_mkwrite. But get_user_pages can cause write faults for mappings
611 * that do not have writing enabled, when used by access_process_vm.
612 */
613 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
614 {
615 if (likely(vma->vm_flags & VM_WRITE))
616 pte = pte_mkwrite(pte);
617 return pte;
618 }
619
620 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
621 struct page *page);
622 #endif
623
624 /*
625 * Multiple processes may "see" the same page. E.g. for untouched
626 * mappings of /dev/null, all processes see the same page full of
627 * zeroes, and text pages of executables and shared libraries have
628 * only one copy in memory, at most, normally.
629 *
630 * For the non-reserved pages, page_count(page) denotes a reference count.
631 * page_count() == 0 means the page is free. page->lru is then used for
632 * freelist management in the buddy allocator.
633 * page_count() > 0 means the page has been allocated.
634 *
635 * Pages are allocated by the slab allocator in order to provide memory
636 * to kmalloc and kmem_cache_alloc. In this case, the management of the
637 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
638 * unless a particular usage is carefully commented. (the responsibility of
639 * freeing the kmalloc memory is the caller's, of course).
640 *
641 * A page may be used by anyone else who does a __get_free_page().
642 * In this case, page_count still tracks the references, and should only
643 * be used through the normal accessor functions. The top bits of page->flags
644 * and page->virtual store page management information, but all other fields
645 * are unused and could be used privately, carefully. The management of this
646 * page is the responsibility of the one who allocated it, and those who have
647 * subsequently been given references to it.
648 *
649 * The other pages (we may call them "pagecache pages") are completely
650 * managed by the Linux memory manager: I/O, buffers, swapping etc.
651 * The following discussion applies only to them.
652 *
653 * A pagecache page contains an opaque `private' member, which belongs to the
654 * page's address_space. Usually, this is the address of a circular list of
655 * the page's disk buffers. PG_private must be set to tell the VM to call
656 * into the filesystem to release these pages.
657 *
658 * A page may belong to an inode's memory mapping. In this case, page->mapping
659 * is the pointer to the inode, and page->index is the file offset of the page,
660 * in units of PAGE_SIZE.
661 *
662 * If pagecache pages are not associated with an inode, they are said to be
663 * anonymous pages. These may become associated with the swapcache, and in that
664 * case PG_swapcache is set, and page->private is an offset into the swapcache.
665 *
666 * In either case (swapcache or inode backed), the pagecache itself holds one
667 * reference to the page. Setting PG_private should also increment the
668 * refcount. The each user mapping also has a reference to the page.
669 *
670 * The pagecache pages are stored in a per-mapping radix tree, which is
671 * rooted at mapping->page_tree, and indexed by offset.
672 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
673 * lists, we instead now tag pages as dirty/writeback in the radix tree.
674 *
675 * All pagecache pages may be subject to I/O:
676 * - inode pages may need to be read from disk,
677 * - inode pages which have been modified and are MAP_SHARED may need
678 * to be written back to the inode on disk,
679 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
680 * modified may need to be swapped out to swap space and (later) to be read
681 * back into memory.
682 */
683
684 /*
685 * The zone field is never updated after free_area_init_core()
686 * sets it, so none of the operations on it need to be atomic.
687 */
688
689 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
690 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
691 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
692 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
693 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
694
695 /*
696 * Define the bit shifts to access each section. For non-existent
697 * sections we define the shift as 0; that plus a 0 mask ensures
698 * the compiler will optimise away reference to them.
699 */
700 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
701 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
702 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
703 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
704
705 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
706 #ifdef NODE_NOT_IN_PAGE_FLAGS
707 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
708 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
709 SECTIONS_PGOFF : ZONES_PGOFF)
710 #else
711 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
712 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
713 NODES_PGOFF : ZONES_PGOFF)
714 #endif
715
716 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
717
718 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
719 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
720 #endif
721
722 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
723 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
724 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
725 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
726 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
727
728 static inline enum zone_type page_zonenum(const struct page *page)
729 {
730 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
731 }
732
733 #ifdef CONFIG_ZONE_DEVICE
734 void get_zone_device_page(struct page *page);
735 void put_zone_device_page(struct page *page);
736 static inline bool is_zone_device_page(const struct page *page)
737 {
738 return page_zonenum(page) == ZONE_DEVICE;
739 }
740 #else
741 static inline void get_zone_device_page(struct page *page)
742 {
743 }
744 static inline void put_zone_device_page(struct page *page)
745 {
746 }
747 static inline bool is_zone_device_page(const struct page *page)
748 {
749 return false;
750 }
751 #endif
752
753 static inline void get_page(struct page *page)
754 {
755 page = compound_head(page);
756 /*
757 * Getting a normal page or the head of a compound page
758 * requires to already have an elevated page->_refcount.
759 */
760 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
761 page_ref_inc(page);
762
763 if (unlikely(is_zone_device_page(page)))
764 get_zone_device_page(page);
765 }
766
767 static inline void put_page(struct page *page)
768 {
769 page = compound_head(page);
770
771 if (put_page_testzero(page))
772 __put_page(page);
773
774 if (unlikely(is_zone_device_page(page)))
775 put_zone_device_page(page);
776 }
777
778 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
779 #define SECTION_IN_PAGE_FLAGS
780 #endif
781
782 /*
783 * The identification function is mainly used by the buddy allocator for
784 * determining if two pages could be buddies. We are not really identifying
785 * the zone since we could be using the section number id if we do not have
786 * node id available in page flags.
787 * We only guarantee that it will return the same value for two combinable
788 * pages in a zone.
789 */
790 static inline int page_zone_id(struct page *page)
791 {
792 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
793 }
794
795 static inline int zone_to_nid(struct zone *zone)
796 {
797 #ifdef CONFIG_NUMA
798 return zone->node;
799 #else
800 return 0;
801 #endif
802 }
803
804 #ifdef NODE_NOT_IN_PAGE_FLAGS
805 extern int page_to_nid(const struct page *page);
806 #else
807 static inline int page_to_nid(const struct page *page)
808 {
809 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
810 }
811 #endif
812
813 #ifdef CONFIG_NUMA_BALANCING
814 static inline int cpu_pid_to_cpupid(int cpu, int pid)
815 {
816 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
817 }
818
819 static inline int cpupid_to_pid(int cpupid)
820 {
821 return cpupid & LAST__PID_MASK;
822 }
823
824 static inline int cpupid_to_cpu(int cpupid)
825 {
826 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
827 }
828
829 static inline int cpupid_to_nid(int cpupid)
830 {
831 return cpu_to_node(cpupid_to_cpu(cpupid));
832 }
833
834 static inline bool cpupid_pid_unset(int cpupid)
835 {
836 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
837 }
838
839 static inline bool cpupid_cpu_unset(int cpupid)
840 {
841 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
842 }
843
844 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
845 {
846 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
847 }
848
849 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
850 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
851 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
852 {
853 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
854 }
855
856 static inline int page_cpupid_last(struct page *page)
857 {
858 return page->_last_cpupid;
859 }
860 static inline void page_cpupid_reset_last(struct page *page)
861 {
862 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
863 }
864 #else
865 static inline int page_cpupid_last(struct page *page)
866 {
867 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
868 }
869
870 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
871
872 static inline void page_cpupid_reset_last(struct page *page)
873 {
874 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
875 }
876 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
877 #else /* !CONFIG_NUMA_BALANCING */
878 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
879 {
880 return page_to_nid(page); /* XXX */
881 }
882
883 static inline int page_cpupid_last(struct page *page)
884 {
885 return page_to_nid(page); /* XXX */
886 }
887
888 static inline int cpupid_to_nid(int cpupid)
889 {
890 return -1;
891 }
892
893 static inline int cpupid_to_pid(int cpupid)
894 {
895 return -1;
896 }
897
898 static inline int cpupid_to_cpu(int cpupid)
899 {
900 return -1;
901 }
902
903 static inline int cpu_pid_to_cpupid(int nid, int pid)
904 {
905 return -1;
906 }
907
908 static inline bool cpupid_pid_unset(int cpupid)
909 {
910 return 1;
911 }
912
913 static inline void page_cpupid_reset_last(struct page *page)
914 {
915 }
916
917 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
918 {
919 return false;
920 }
921 #endif /* CONFIG_NUMA_BALANCING */
922
923 static inline struct zone *page_zone(const struct page *page)
924 {
925 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
926 }
927
928 static inline pg_data_t *page_pgdat(const struct page *page)
929 {
930 return NODE_DATA(page_to_nid(page));
931 }
932
933 #ifdef SECTION_IN_PAGE_FLAGS
934 static inline void set_page_section(struct page *page, unsigned long section)
935 {
936 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
937 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
938 }
939
940 static inline unsigned long page_to_section(const struct page *page)
941 {
942 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
943 }
944 #endif
945
946 static inline void set_page_zone(struct page *page, enum zone_type zone)
947 {
948 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
949 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
950 }
951
952 static inline void set_page_node(struct page *page, unsigned long node)
953 {
954 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
955 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
956 }
957
958 static inline void set_page_links(struct page *page, enum zone_type zone,
959 unsigned long node, unsigned long pfn)
960 {
961 set_page_zone(page, zone);
962 set_page_node(page, node);
963 #ifdef SECTION_IN_PAGE_FLAGS
964 set_page_section(page, pfn_to_section_nr(pfn));
965 #endif
966 }
967
968 #ifdef CONFIG_MEMCG
969 static inline struct mem_cgroup *page_memcg(struct page *page)
970 {
971 return page->mem_cgroup;
972 }
973 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
974 {
975 WARN_ON_ONCE(!rcu_read_lock_held());
976 return READ_ONCE(page->mem_cgroup);
977 }
978 #else
979 static inline struct mem_cgroup *page_memcg(struct page *page)
980 {
981 return NULL;
982 }
983 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
984 {
985 WARN_ON_ONCE(!rcu_read_lock_held());
986 return NULL;
987 }
988 #endif
989
990 /*
991 * Some inline functions in vmstat.h depend on page_zone()
992 */
993 #include <linux/vmstat.h>
994
995 static __always_inline void *lowmem_page_address(const struct page *page)
996 {
997 return page_to_virt(page);
998 }
999
1000 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1001 #define HASHED_PAGE_VIRTUAL
1002 #endif
1003
1004 #if defined(WANT_PAGE_VIRTUAL)
1005 static inline void *page_address(const struct page *page)
1006 {
1007 return page->virtual;
1008 }
1009 static inline void set_page_address(struct page *page, void *address)
1010 {
1011 page->virtual = address;
1012 }
1013 #define page_address_init() do { } while(0)
1014 #endif
1015
1016 #if defined(HASHED_PAGE_VIRTUAL)
1017 void *page_address(const struct page *page);
1018 void set_page_address(struct page *page, void *virtual);
1019 void page_address_init(void);
1020 #endif
1021
1022 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1023 #define page_address(page) lowmem_page_address(page)
1024 #define set_page_address(page, address) do { } while(0)
1025 #define page_address_init() do { } while(0)
1026 #endif
1027
1028 extern void *page_rmapping(struct page *page);
1029 extern struct anon_vma *page_anon_vma(struct page *page);
1030 extern struct address_space *page_mapping(struct page *page);
1031
1032 extern struct address_space *__page_file_mapping(struct page *);
1033
1034 static inline
1035 struct address_space *page_file_mapping(struct page *page)
1036 {
1037 if (unlikely(PageSwapCache(page)))
1038 return __page_file_mapping(page);
1039
1040 return page->mapping;
1041 }
1042
1043 extern pgoff_t __page_file_index(struct page *page);
1044
1045 /*
1046 * Return the pagecache index of the passed page. Regular pagecache pages
1047 * use ->index whereas swapcache pages use swp_offset(->private)
1048 */
1049 static inline pgoff_t page_index(struct page *page)
1050 {
1051 if (unlikely(PageSwapCache(page)))
1052 return __page_file_index(page);
1053 return page->index;
1054 }
1055
1056 bool page_mapped(struct page *page);
1057 struct address_space *page_mapping(struct page *page);
1058
1059 /*
1060 * Return true only if the page has been allocated with
1061 * ALLOC_NO_WATERMARKS and the low watermark was not
1062 * met implying that the system is under some pressure.
1063 */
1064 static inline bool page_is_pfmemalloc(struct page *page)
1065 {
1066 /*
1067 * Page index cannot be this large so this must be
1068 * a pfmemalloc page.
1069 */
1070 return page->index == -1UL;
1071 }
1072
1073 /*
1074 * Only to be called by the page allocator on a freshly allocated
1075 * page.
1076 */
1077 static inline void set_page_pfmemalloc(struct page *page)
1078 {
1079 page->index = -1UL;
1080 }
1081
1082 static inline void clear_page_pfmemalloc(struct page *page)
1083 {
1084 page->index = 0;
1085 }
1086
1087 /*
1088 * Different kinds of faults, as returned by handle_mm_fault().
1089 * Used to decide whether a process gets delivered SIGBUS or
1090 * just gets major/minor fault counters bumped up.
1091 */
1092
1093 #define VM_FAULT_OOM 0x0001
1094 #define VM_FAULT_SIGBUS 0x0002
1095 #define VM_FAULT_MAJOR 0x0004
1096 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1097 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1098 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1099 #define VM_FAULT_SIGSEGV 0x0040
1100
1101 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1102 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1103 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1104 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1105 #define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
1106
1107 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1108
1109 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1110 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1111 VM_FAULT_FALLBACK)
1112
1113 /* Encode hstate index for a hwpoisoned large page */
1114 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1115 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1116
1117 /*
1118 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1119 */
1120 extern void pagefault_out_of_memory(void);
1121
1122 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1123
1124 /*
1125 * Flags passed to show_mem() and show_free_areas() to suppress output in
1126 * various contexts.
1127 */
1128 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1129
1130 extern void show_free_areas(unsigned int flags);
1131 extern bool skip_free_areas_node(unsigned int flags, int nid);
1132
1133 int shmem_zero_setup(struct vm_area_struct *);
1134 #ifdef CONFIG_SHMEM
1135 bool shmem_mapping(struct address_space *mapping);
1136 #else
1137 static inline bool shmem_mapping(struct address_space *mapping)
1138 {
1139 return false;
1140 }
1141 #endif
1142
1143 extern bool can_do_mlock(void);
1144 extern int user_shm_lock(size_t, struct user_struct *);
1145 extern void user_shm_unlock(size_t, struct user_struct *);
1146
1147 /*
1148 * Parameter block passed down to zap_pte_range in exceptional cases.
1149 */
1150 struct zap_details {
1151 struct address_space *check_mapping; /* Check page->mapping if set */
1152 pgoff_t first_index; /* Lowest page->index to unmap */
1153 pgoff_t last_index; /* Highest page->index to unmap */
1154 bool ignore_dirty; /* Ignore dirty pages */
1155 bool check_swap_entries; /* Check also swap entries */
1156 };
1157
1158 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1159 pte_t pte);
1160 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1161 pmd_t pmd);
1162
1163 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1164 unsigned long size);
1165 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1166 unsigned long size, struct zap_details *);
1167 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1168 unsigned long start, unsigned long end);
1169
1170 /**
1171 * mm_walk - callbacks for walk_page_range
1172 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1173 * this handler is required to be able to handle
1174 * pmd_trans_huge() pmds. They may simply choose to
1175 * split_huge_page() instead of handling it explicitly.
1176 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1177 * @pte_hole: if set, called for each hole at all levels
1178 * @hugetlb_entry: if set, called for each hugetlb entry
1179 * @test_walk: caller specific callback function to determine whether
1180 * we walk over the current vma or not. Returning 0
1181 * value means "do page table walk over the current vma,"
1182 * and a negative one means "abort current page table walk
1183 * right now." 1 means "skip the current vma."
1184 * @mm: mm_struct representing the target process of page table walk
1185 * @vma: vma currently walked (NULL if walking outside vmas)
1186 * @private: private data for callbacks' usage
1187 *
1188 * (see the comment on walk_page_range() for more details)
1189 */
1190 struct mm_walk {
1191 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1192 unsigned long next, struct mm_walk *walk);
1193 int (*pte_entry)(pte_t *pte, unsigned long addr,
1194 unsigned long next, struct mm_walk *walk);
1195 int (*pte_hole)(unsigned long addr, unsigned long next,
1196 struct mm_walk *walk);
1197 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1198 unsigned long addr, unsigned long next,
1199 struct mm_walk *walk);
1200 int (*test_walk)(unsigned long addr, unsigned long next,
1201 struct mm_walk *walk);
1202 struct mm_struct *mm;
1203 struct vm_area_struct *vma;
1204 void *private;
1205 };
1206
1207 int walk_page_range(unsigned long addr, unsigned long end,
1208 struct mm_walk *walk);
1209 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1210 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1211 unsigned long end, unsigned long floor, unsigned long ceiling);
1212 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1213 struct vm_area_struct *vma);
1214 void unmap_mapping_range(struct address_space *mapping,
1215 loff_t const holebegin, loff_t const holelen, int even_cows);
1216 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1217 unsigned long *pfn);
1218 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1219 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1220 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1221 void *buf, int len, int write);
1222
1223 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1224 loff_t const holebegin, loff_t const holelen)
1225 {
1226 unmap_mapping_range(mapping, holebegin, holelen, 0);
1227 }
1228
1229 extern void truncate_pagecache(struct inode *inode, loff_t new);
1230 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1231 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1232 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1233 int truncate_inode_page(struct address_space *mapping, struct page *page);
1234 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1235 int invalidate_inode_page(struct page *page);
1236
1237 #ifdef CONFIG_MMU
1238 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1239 unsigned int flags);
1240 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1241 unsigned long address, unsigned int fault_flags,
1242 bool *unlocked);
1243 #else
1244 static inline int handle_mm_fault(struct vm_area_struct *vma,
1245 unsigned long address, unsigned int flags)
1246 {
1247 /* should never happen if there's no MMU */
1248 BUG();
1249 return VM_FAULT_SIGBUS;
1250 }
1251 static inline int fixup_user_fault(struct task_struct *tsk,
1252 struct mm_struct *mm, unsigned long address,
1253 unsigned int fault_flags, bool *unlocked)
1254 {
1255 /* should never happen if there's no MMU */
1256 BUG();
1257 return -EFAULT;
1258 }
1259 #endif
1260
1261 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1262 unsigned int gup_flags);
1263 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1264 void *buf, int len, unsigned int gup_flags);
1265
1266 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1267 unsigned long start, unsigned long nr_pages,
1268 unsigned int gup_flags, struct page **pages,
1269 struct vm_area_struct **vmas, int *locked);
1270 long get_user_pages(unsigned long start, unsigned long nr_pages,
1271 unsigned int gup_flags, struct page **pages,
1272 struct vm_area_struct **vmas);
1273 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1274 unsigned int gup_flags, struct page **pages, int *locked);
1275 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1276 struct page **pages, unsigned int gup_flags);
1277 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1278 struct page **pages);
1279
1280 /* Container for pinned pfns / pages */
1281 struct frame_vector {
1282 unsigned int nr_allocated; /* Number of frames we have space for */
1283 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1284 bool got_ref; /* Did we pin pages by getting page ref? */
1285 bool is_pfns; /* Does array contain pages or pfns? */
1286 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1287 * pfns_vector_pages() or pfns_vector_pfns()
1288 * for access */
1289 };
1290
1291 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1292 void frame_vector_destroy(struct frame_vector *vec);
1293 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1294 unsigned int gup_flags, struct frame_vector *vec);
1295 void put_vaddr_frames(struct frame_vector *vec);
1296 int frame_vector_to_pages(struct frame_vector *vec);
1297 void frame_vector_to_pfns(struct frame_vector *vec);
1298
1299 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1300 {
1301 return vec->nr_frames;
1302 }
1303
1304 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1305 {
1306 if (vec->is_pfns) {
1307 int err = frame_vector_to_pages(vec);
1308
1309 if (err)
1310 return ERR_PTR(err);
1311 }
1312 return (struct page **)(vec->ptrs);
1313 }
1314
1315 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1316 {
1317 if (!vec->is_pfns)
1318 frame_vector_to_pfns(vec);
1319 return (unsigned long *)(vec->ptrs);
1320 }
1321
1322 struct kvec;
1323 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1324 struct page **pages);
1325 int get_kernel_page(unsigned long start, int write, struct page **pages);
1326 struct page *get_dump_page(unsigned long addr);
1327
1328 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1329 extern void do_invalidatepage(struct page *page, unsigned int offset,
1330 unsigned int length);
1331
1332 int __set_page_dirty_nobuffers(struct page *page);
1333 int __set_page_dirty_no_writeback(struct page *page);
1334 int redirty_page_for_writepage(struct writeback_control *wbc,
1335 struct page *page);
1336 void account_page_dirtied(struct page *page, struct address_space *mapping);
1337 void account_page_cleaned(struct page *page, struct address_space *mapping,
1338 struct bdi_writeback *wb);
1339 int set_page_dirty(struct page *page);
1340 int set_page_dirty_lock(struct page *page);
1341 void cancel_dirty_page(struct page *page);
1342 int clear_page_dirty_for_io(struct page *page);
1343
1344 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1345
1346 /* Is the vma a continuation of the stack vma above it? */
1347 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1348 {
1349 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1350 }
1351
1352 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1353 {
1354 return !vma->vm_ops;
1355 }
1356
1357 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1358 unsigned long addr)
1359 {
1360 return (vma->vm_flags & VM_GROWSDOWN) &&
1361 (vma->vm_start == addr) &&
1362 !vma_growsdown(vma->vm_prev, addr);
1363 }
1364
1365 /* Is the vma a continuation of the stack vma below it? */
1366 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1367 {
1368 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1369 }
1370
1371 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1372 unsigned long addr)
1373 {
1374 return (vma->vm_flags & VM_GROWSUP) &&
1375 (vma->vm_end == addr) &&
1376 !vma_growsup(vma->vm_next, addr);
1377 }
1378
1379 int vma_is_stack_for_current(struct vm_area_struct *vma);
1380
1381 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1382 unsigned long old_addr, struct vm_area_struct *new_vma,
1383 unsigned long new_addr, unsigned long len,
1384 bool need_rmap_locks);
1385 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1386 unsigned long end, pgprot_t newprot,
1387 int dirty_accountable, int prot_numa);
1388 extern int mprotect_fixup(struct vm_area_struct *vma,
1389 struct vm_area_struct **pprev, unsigned long start,
1390 unsigned long end, unsigned long newflags);
1391
1392 /*
1393 * doesn't attempt to fault and will return short.
1394 */
1395 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1396 struct page **pages);
1397 /*
1398 * per-process(per-mm_struct) statistics.
1399 */
1400 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1401 {
1402 long val = atomic_long_read(&mm->rss_stat.count[member]);
1403
1404 #ifdef SPLIT_RSS_COUNTING
1405 /*
1406 * counter is updated in asynchronous manner and may go to minus.
1407 * But it's never be expected number for users.
1408 */
1409 if (val < 0)
1410 val = 0;
1411 #endif
1412 return (unsigned long)val;
1413 }
1414
1415 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1416 {
1417 atomic_long_add(value, &mm->rss_stat.count[member]);
1418 }
1419
1420 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1421 {
1422 atomic_long_inc(&mm->rss_stat.count[member]);
1423 }
1424
1425 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1426 {
1427 atomic_long_dec(&mm->rss_stat.count[member]);
1428 }
1429
1430 /* Optimized variant when page is already known not to be PageAnon */
1431 static inline int mm_counter_file(struct page *page)
1432 {
1433 if (PageSwapBacked(page))
1434 return MM_SHMEMPAGES;
1435 return MM_FILEPAGES;
1436 }
1437
1438 static inline int mm_counter(struct page *page)
1439 {
1440 if (PageAnon(page))
1441 return MM_ANONPAGES;
1442 return mm_counter_file(page);
1443 }
1444
1445 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1446 {
1447 return get_mm_counter(mm, MM_FILEPAGES) +
1448 get_mm_counter(mm, MM_ANONPAGES) +
1449 get_mm_counter(mm, MM_SHMEMPAGES);
1450 }
1451
1452 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1453 {
1454 return max(mm->hiwater_rss, get_mm_rss(mm));
1455 }
1456
1457 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1458 {
1459 return max(mm->hiwater_vm, mm->total_vm);
1460 }
1461
1462 static inline void update_hiwater_rss(struct mm_struct *mm)
1463 {
1464 unsigned long _rss = get_mm_rss(mm);
1465
1466 if ((mm)->hiwater_rss < _rss)
1467 (mm)->hiwater_rss = _rss;
1468 }
1469
1470 static inline void update_hiwater_vm(struct mm_struct *mm)
1471 {
1472 if (mm->hiwater_vm < mm->total_vm)
1473 mm->hiwater_vm = mm->total_vm;
1474 }
1475
1476 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1477 {
1478 mm->hiwater_rss = get_mm_rss(mm);
1479 }
1480
1481 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1482 struct mm_struct *mm)
1483 {
1484 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1485
1486 if (*maxrss < hiwater_rss)
1487 *maxrss = hiwater_rss;
1488 }
1489
1490 #if defined(SPLIT_RSS_COUNTING)
1491 void sync_mm_rss(struct mm_struct *mm);
1492 #else
1493 static inline void sync_mm_rss(struct mm_struct *mm)
1494 {
1495 }
1496 #endif
1497
1498 #ifndef __HAVE_ARCH_PTE_DEVMAP
1499 static inline int pte_devmap(pte_t pte)
1500 {
1501 return 0;
1502 }
1503 #endif
1504
1505 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1506
1507 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1508 spinlock_t **ptl);
1509 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1510 spinlock_t **ptl)
1511 {
1512 pte_t *ptep;
1513 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1514 return ptep;
1515 }
1516
1517 #ifdef __PAGETABLE_PUD_FOLDED
1518 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1519 unsigned long address)
1520 {
1521 return 0;
1522 }
1523 #else
1524 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1525 #endif
1526
1527 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1528 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1529 unsigned long address)
1530 {
1531 return 0;
1532 }
1533
1534 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1535
1536 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1537 {
1538 return 0;
1539 }
1540
1541 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1542 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1543
1544 #else
1545 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1546
1547 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1548 {
1549 atomic_long_set(&mm->nr_pmds, 0);
1550 }
1551
1552 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1553 {
1554 return atomic_long_read(&mm->nr_pmds);
1555 }
1556
1557 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1558 {
1559 atomic_long_inc(&mm->nr_pmds);
1560 }
1561
1562 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1563 {
1564 atomic_long_dec(&mm->nr_pmds);
1565 }
1566 #endif
1567
1568 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1569 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1570
1571 /*
1572 * The following ifdef needed to get the 4level-fixup.h header to work.
1573 * Remove it when 4level-fixup.h has been removed.
1574 */
1575 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1576 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1577 {
1578 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1579 NULL: pud_offset(pgd, address);
1580 }
1581
1582 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1583 {
1584 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1585 NULL: pmd_offset(pud, address);
1586 }
1587 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1588
1589 #if USE_SPLIT_PTE_PTLOCKS
1590 #if ALLOC_SPLIT_PTLOCKS
1591 void __init ptlock_cache_init(void);
1592 extern bool ptlock_alloc(struct page *page);
1593 extern void ptlock_free(struct page *page);
1594
1595 static inline spinlock_t *ptlock_ptr(struct page *page)
1596 {
1597 return page->ptl;
1598 }
1599 #else /* ALLOC_SPLIT_PTLOCKS */
1600 static inline void ptlock_cache_init(void)
1601 {
1602 }
1603
1604 static inline bool ptlock_alloc(struct page *page)
1605 {
1606 return true;
1607 }
1608
1609 static inline void ptlock_free(struct page *page)
1610 {
1611 }
1612
1613 static inline spinlock_t *ptlock_ptr(struct page *page)
1614 {
1615 return &page->ptl;
1616 }
1617 #endif /* ALLOC_SPLIT_PTLOCKS */
1618
1619 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1620 {
1621 return ptlock_ptr(pmd_page(*pmd));
1622 }
1623
1624 static inline bool ptlock_init(struct page *page)
1625 {
1626 /*
1627 * prep_new_page() initialize page->private (and therefore page->ptl)
1628 * with 0. Make sure nobody took it in use in between.
1629 *
1630 * It can happen if arch try to use slab for page table allocation:
1631 * slab code uses page->slab_cache, which share storage with page->ptl.
1632 */
1633 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1634 if (!ptlock_alloc(page))
1635 return false;
1636 spin_lock_init(ptlock_ptr(page));
1637 return true;
1638 }
1639
1640 /* Reset page->mapping so free_pages_check won't complain. */
1641 static inline void pte_lock_deinit(struct page *page)
1642 {
1643 page->mapping = NULL;
1644 ptlock_free(page);
1645 }
1646
1647 #else /* !USE_SPLIT_PTE_PTLOCKS */
1648 /*
1649 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1650 */
1651 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1652 {
1653 return &mm->page_table_lock;
1654 }
1655 static inline void ptlock_cache_init(void) {}
1656 static inline bool ptlock_init(struct page *page) { return true; }
1657 static inline void pte_lock_deinit(struct page *page) {}
1658 #endif /* USE_SPLIT_PTE_PTLOCKS */
1659
1660 static inline void pgtable_init(void)
1661 {
1662 ptlock_cache_init();
1663 pgtable_cache_init();
1664 }
1665
1666 static inline bool pgtable_page_ctor(struct page *page)
1667 {
1668 if (!ptlock_init(page))
1669 return false;
1670 inc_zone_page_state(page, NR_PAGETABLE);
1671 return true;
1672 }
1673
1674 static inline void pgtable_page_dtor(struct page *page)
1675 {
1676 pte_lock_deinit(page);
1677 dec_zone_page_state(page, NR_PAGETABLE);
1678 }
1679
1680 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1681 ({ \
1682 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1683 pte_t *__pte = pte_offset_map(pmd, address); \
1684 *(ptlp) = __ptl; \
1685 spin_lock(__ptl); \
1686 __pte; \
1687 })
1688
1689 #define pte_unmap_unlock(pte, ptl) do { \
1690 spin_unlock(ptl); \
1691 pte_unmap(pte); \
1692 } while (0)
1693
1694 #define pte_alloc(mm, pmd, address) \
1695 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1696
1697 #define pte_alloc_map(mm, pmd, address) \
1698 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1699
1700 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1701 (pte_alloc(mm, pmd, address) ? \
1702 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1703
1704 #define pte_alloc_kernel(pmd, address) \
1705 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1706 NULL: pte_offset_kernel(pmd, address))
1707
1708 #if USE_SPLIT_PMD_PTLOCKS
1709
1710 static struct page *pmd_to_page(pmd_t *pmd)
1711 {
1712 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1713 return virt_to_page((void *)((unsigned long) pmd & mask));
1714 }
1715
1716 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1717 {
1718 return ptlock_ptr(pmd_to_page(pmd));
1719 }
1720
1721 static inline bool pgtable_pmd_page_ctor(struct page *page)
1722 {
1723 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1724 page->pmd_huge_pte = NULL;
1725 #endif
1726 return ptlock_init(page);
1727 }
1728
1729 static inline void pgtable_pmd_page_dtor(struct page *page)
1730 {
1731 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1732 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1733 #endif
1734 ptlock_free(page);
1735 }
1736
1737 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1738
1739 #else
1740
1741 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1742 {
1743 return &mm->page_table_lock;
1744 }
1745
1746 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1747 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1748
1749 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1750
1751 #endif
1752
1753 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1754 {
1755 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1756 spin_lock(ptl);
1757 return ptl;
1758 }
1759
1760 extern void free_area_init(unsigned long * zones_size);
1761 extern void free_area_init_node(int nid, unsigned long * zones_size,
1762 unsigned long zone_start_pfn, unsigned long *zholes_size);
1763 extern void free_initmem(void);
1764
1765 /*
1766 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1767 * into the buddy system. The freed pages will be poisoned with pattern
1768 * "poison" if it's within range [0, UCHAR_MAX].
1769 * Return pages freed into the buddy system.
1770 */
1771 extern unsigned long free_reserved_area(void *start, void *end,
1772 int poison, char *s);
1773
1774 #ifdef CONFIG_HIGHMEM
1775 /*
1776 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1777 * and totalram_pages.
1778 */
1779 extern void free_highmem_page(struct page *page);
1780 #endif
1781
1782 extern void adjust_managed_page_count(struct page *page, long count);
1783 extern void mem_init_print_info(const char *str);
1784
1785 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1786
1787 /* Free the reserved page into the buddy system, so it gets managed. */
1788 static inline void __free_reserved_page(struct page *page)
1789 {
1790 ClearPageReserved(page);
1791 init_page_count(page);
1792 __free_page(page);
1793 }
1794
1795 static inline void free_reserved_page(struct page *page)
1796 {
1797 __free_reserved_page(page);
1798 adjust_managed_page_count(page, 1);
1799 }
1800
1801 static inline void mark_page_reserved(struct page *page)
1802 {
1803 SetPageReserved(page);
1804 adjust_managed_page_count(page, -1);
1805 }
1806
1807 /*
1808 * Default method to free all the __init memory into the buddy system.
1809 * The freed pages will be poisoned with pattern "poison" if it's within
1810 * range [0, UCHAR_MAX].
1811 * Return pages freed into the buddy system.
1812 */
1813 static inline unsigned long free_initmem_default(int poison)
1814 {
1815 extern char __init_begin[], __init_end[];
1816
1817 return free_reserved_area(&__init_begin, &__init_end,
1818 poison, "unused kernel");
1819 }
1820
1821 static inline unsigned long get_num_physpages(void)
1822 {
1823 int nid;
1824 unsigned long phys_pages = 0;
1825
1826 for_each_online_node(nid)
1827 phys_pages += node_present_pages(nid);
1828
1829 return phys_pages;
1830 }
1831
1832 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1833 /*
1834 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1835 * zones, allocate the backing mem_map and account for memory holes in a more
1836 * architecture independent manner. This is a substitute for creating the
1837 * zone_sizes[] and zholes_size[] arrays and passing them to
1838 * free_area_init_node()
1839 *
1840 * An architecture is expected to register range of page frames backed by
1841 * physical memory with memblock_add[_node]() before calling
1842 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1843 * usage, an architecture is expected to do something like
1844 *
1845 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1846 * max_highmem_pfn};
1847 * for_each_valid_physical_page_range()
1848 * memblock_add_node(base, size, nid)
1849 * free_area_init_nodes(max_zone_pfns);
1850 *
1851 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1852 * registered physical page range. Similarly
1853 * sparse_memory_present_with_active_regions() calls memory_present() for
1854 * each range when SPARSEMEM is enabled.
1855 *
1856 * See mm/page_alloc.c for more information on each function exposed by
1857 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1858 */
1859 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1860 unsigned long node_map_pfn_alignment(void);
1861 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1862 unsigned long end_pfn);
1863 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1864 unsigned long end_pfn);
1865 extern void get_pfn_range_for_nid(unsigned int nid,
1866 unsigned long *start_pfn, unsigned long *end_pfn);
1867 extern unsigned long find_min_pfn_with_active_regions(void);
1868 extern void free_bootmem_with_active_regions(int nid,
1869 unsigned long max_low_pfn);
1870 extern void sparse_memory_present_with_active_regions(int nid);
1871
1872 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1873
1874 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1875 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1876 static inline int __early_pfn_to_nid(unsigned long pfn,
1877 struct mminit_pfnnid_cache *state)
1878 {
1879 return 0;
1880 }
1881 #else
1882 /* please see mm/page_alloc.c */
1883 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1884 /* there is a per-arch backend function. */
1885 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1886 struct mminit_pfnnid_cache *state);
1887 #endif
1888
1889 extern void set_dma_reserve(unsigned long new_dma_reserve);
1890 extern void memmap_init_zone(unsigned long, int, unsigned long,
1891 unsigned long, enum memmap_context);
1892 extern void setup_per_zone_wmarks(void);
1893 extern int __meminit init_per_zone_wmark_min(void);
1894 extern void mem_init(void);
1895 extern void __init mmap_init(void);
1896 extern void show_mem(unsigned int flags);
1897 extern long si_mem_available(void);
1898 extern void si_meminfo(struct sysinfo * val);
1899 extern void si_meminfo_node(struct sysinfo *val, int nid);
1900 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1901 extern unsigned long arch_reserved_kernel_pages(void);
1902 #endif
1903
1904 extern __printf(2, 3)
1905 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
1906
1907 extern void setup_per_cpu_pageset(void);
1908
1909 extern void zone_pcp_update(struct zone *zone);
1910 extern void zone_pcp_reset(struct zone *zone);
1911
1912 /* page_alloc.c */
1913 extern int min_free_kbytes;
1914 extern int watermark_scale_factor;
1915
1916 /* nommu.c */
1917 extern atomic_long_t mmap_pages_allocated;
1918 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1919
1920 /* interval_tree.c */
1921 void vma_interval_tree_insert(struct vm_area_struct *node,
1922 struct rb_root *root);
1923 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1924 struct vm_area_struct *prev,
1925 struct rb_root *root);
1926 void vma_interval_tree_remove(struct vm_area_struct *node,
1927 struct rb_root *root);
1928 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1929 unsigned long start, unsigned long last);
1930 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1931 unsigned long start, unsigned long last);
1932
1933 #define vma_interval_tree_foreach(vma, root, start, last) \
1934 for (vma = vma_interval_tree_iter_first(root, start, last); \
1935 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1936
1937 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1938 struct rb_root *root);
1939 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1940 struct rb_root *root);
1941 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1942 struct rb_root *root, unsigned long start, unsigned long last);
1943 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1944 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1945 #ifdef CONFIG_DEBUG_VM_RB
1946 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1947 #endif
1948
1949 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1950 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1951 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1952
1953 /* mmap.c */
1954 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1955 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
1956 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
1957 struct vm_area_struct *expand);
1958 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1959 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
1960 {
1961 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
1962 }
1963 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1964 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1965 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1966 struct mempolicy *, struct vm_userfaultfd_ctx);
1967 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1968 extern int split_vma(struct mm_struct *,
1969 struct vm_area_struct *, unsigned long addr, int new_below);
1970 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1971 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1972 struct rb_node **, struct rb_node *);
1973 extern void unlink_file_vma(struct vm_area_struct *);
1974 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1975 unsigned long addr, unsigned long len, pgoff_t pgoff,
1976 bool *need_rmap_locks);
1977 extern void exit_mmap(struct mm_struct *);
1978
1979 static inline int check_data_rlimit(unsigned long rlim,
1980 unsigned long new,
1981 unsigned long start,
1982 unsigned long end_data,
1983 unsigned long start_data)
1984 {
1985 if (rlim < RLIM_INFINITY) {
1986 if (((new - start) + (end_data - start_data)) > rlim)
1987 return -ENOSPC;
1988 }
1989
1990 return 0;
1991 }
1992
1993 extern int mm_take_all_locks(struct mm_struct *mm);
1994 extern void mm_drop_all_locks(struct mm_struct *mm);
1995
1996 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1997 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1998 extern struct file *get_task_exe_file(struct task_struct *task);
1999
2000 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2001 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2002
2003 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2004 const struct vm_special_mapping *sm);
2005 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2006 unsigned long addr, unsigned long len,
2007 unsigned long flags,
2008 const struct vm_special_mapping *spec);
2009 /* This is an obsolete alternative to _install_special_mapping. */
2010 extern int install_special_mapping(struct mm_struct *mm,
2011 unsigned long addr, unsigned long len,
2012 unsigned long flags, struct page **pages);
2013
2014 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2015
2016 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2017 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2018 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2019 unsigned long len, unsigned long prot, unsigned long flags,
2020 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2021 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2022
2023 static inline unsigned long
2024 do_mmap_pgoff(struct file *file, unsigned long addr,
2025 unsigned long len, unsigned long prot, unsigned long flags,
2026 unsigned long pgoff, unsigned long *populate)
2027 {
2028 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2029 }
2030
2031 #ifdef CONFIG_MMU
2032 extern int __mm_populate(unsigned long addr, unsigned long len,
2033 int ignore_errors);
2034 static inline void mm_populate(unsigned long addr, unsigned long len)
2035 {
2036 /* Ignore errors */
2037 (void) __mm_populate(addr, len, 1);
2038 }
2039 #else
2040 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2041 #endif
2042
2043 /* These take the mm semaphore themselves */
2044 extern int __must_check vm_brk(unsigned long, unsigned long);
2045 extern int vm_munmap(unsigned long, size_t);
2046 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2047 unsigned long, unsigned long,
2048 unsigned long, unsigned long);
2049
2050 struct vm_unmapped_area_info {
2051 #define VM_UNMAPPED_AREA_TOPDOWN 1
2052 unsigned long flags;
2053 unsigned long length;
2054 unsigned long low_limit;
2055 unsigned long high_limit;
2056 unsigned long align_mask;
2057 unsigned long align_offset;
2058 };
2059
2060 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2061 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2062
2063 /*
2064 * Search for an unmapped address range.
2065 *
2066 * We are looking for a range that:
2067 * - does not intersect with any VMA;
2068 * - is contained within the [low_limit, high_limit) interval;
2069 * - is at least the desired size.
2070 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2071 */
2072 static inline unsigned long
2073 vm_unmapped_area(struct vm_unmapped_area_info *info)
2074 {
2075 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2076 return unmapped_area_topdown(info);
2077 else
2078 return unmapped_area(info);
2079 }
2080
2081 /* truncate.c */
2082 extern void truncate_inode_pages(struct address_space *, loff_t);
2083 extern void truncate_inode_pages_range(struct address_space *,
2084 loff_t lstart, loff_t lend);
2085 extern void truncate_inode_pages_final(struct address_space *);
2086
2087 /* generic vm_area_ops exported for stackable file systems */
2088 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2089 extern void filemap_map_pages(struct vm_fault *vmf,
2090 pgoff_t start_pgoff, pgoff_t end_pgoff);
2091 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2092
2093 /* mm/page-writeback.c */
2094 int write_one_page(struct page *page, int wait);
2095 void task_dirty_inc(struct task_struct *tsk);
2096
2097 /* readahead.c */
2098 #define VM_MAX_READAHEAD 128 /* kbytes */
2099 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2100
2101 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2102 pgoff_t offset, unsigned long nr_to_read);
2103
2104 void page_cache_sync_readahead(struct address_space *mapping,
2105 struct file_ra_state *ra,
2106 struct file *filp,
2107 pgoff_t offset,
2108 unsigned long size);
2109
2110 void page_cache_async_readahead(struct address_space *mapping,
2111 struct file_ra_state *ra,
2112 struct file *filp,
2113 struct page *pg,
2114 pgoff_t offset,
2115 unsigned long size);
2116
2117 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2118 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2119
2120 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2121 extern int expand_downwards(struct vm_area_struct *vma,
2122 unsigned long address);
2123 #if VM_GROWSUP
2124 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2125 #else
2126 #define expand_upwards(vma, address) (0)
2127 #endif
2128
2129 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2130 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2131 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2132 struct vm_area_struct **pprev);
2133
2134 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2135 NULL if none. Assume start_addr < end_addr. */
2136 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2137 {
2138 struct vm_area_struct * vma = find_vma(mm,start_addr);
2139
2140 if (vma && end_addr <= vma->vm_start)
2141 vma = NULL;
2142 return vma;
2143 }
2144
2145 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2146 {
2147 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2148 }
2149
2150 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2151 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2152 unsigned long vm_start, unsigned long vm_end)
2153 {
2154 struct vm_area_struct *vma = find_vma(mm, vm_start);
2155
2156 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2157 vma = NULL;
2158
2159 return vma;
2160 }
2161
2162 #ifdef CONFIG_MMU
2163 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2164 void vma_set_page_prot(struct vm_area_struct *vma);
2165 #else
2166 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2167 {
2168 return __pgprot(0);
2169 }
2170 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2171 {
2172 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2173 }
2174 #endif
2175
2176 #ifdef CONFIG_NUMA_BALANCING
2177 unsigned long change_prot_numa(struct vm_area_struct *vma,
2178 unsigned long start, unsigned long end);
2179 #endif
2180
2181 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2182 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2183 unsigned long pfn, unsigned long size, pgprot_t);
2184 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2185 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2186 unsigned long pfn);
2187 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2188 unsigned long pfn, pgprot_t pgprot);
2189 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2190 pfn_t pfn);
2191 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2192
2193
2194 struct page *follow_page_mask(struct vm_area_struct *vma,
2195 unsigned long address, unsigned int foll_flags,
2196 unsigned int *page_mask);
2197
2198 static inline struct page *follow_page(struct vm_area_struct *vma,
2199 unsigned long address, unsigned int foll_flags)
2200 {
2201 unsigned int unused_page_mask;
2202 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2203 }
2204
2205 #define FOLL_WRITE 0x01 /* check pte is writable */
2206 #define FOLL_TOUCH 0x02 /* mark page accessed */
2207 #define FOLL_GET 0x04 /* do get_page on page */
2208 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2209 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2210 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2211 * and return without waiting upon it */
2212 #define FOLL_POPULATE 0x40 /* fault in page */
2213 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2214 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2215 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2216 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2217 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2218 #define FOLL_MLOCK 0x1000 /* lock present pages */
2219 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2220 #define FOLL_COW 0x4000 /* internal GUP flag */
2221
2222 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2223 void *data);
2224 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2225 unsigned long size, pte_fn_t fn, void *data);
2226
2227
2228 #ifdef CONFIG_PAGE_POISONING
2229 extern bool page_poisoning_enabled(void);
2230 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2231 extern bool page_is_poisoned(struct page *page);
2232 #else
2233 static inline bool page_poisoning_enabled(void) { return false; }
2234 static inline void kernel_poison_pages(struct page *page, int numpages,
2235 int enable) { }
2236 static inline bool page_is_poisoned(struct page *page) { return false; }
2237 #endif
2238
2239 #ifdef CONFIG_DEBUG_PAGEALLOC
2240 extern bool _debug_pagealloc_enabled;
2241 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2242
2243 static inline bool debug_pagealloc_enabled(void)
2244 {
2245 return _debug_pagealloc_enabled;
2246 }
2247
2248 static inline void
2249 kernel_map_pages(struct page *page, int numpages, int enable)
2250 {
2251 if (!debug_pagealloc_enabled())
2252 return;
2253
2254 __kernel_map_pages(page, numpages, enable);
2255 }
2256 #ifdef CONFIG_HIBERNATION
2257 extern bool kernel_page_present(struct page *page);
2258 #endif /* CONFIG_HIBERNATION */
2259 #else /* CONFIG_DEBUG_PAGEALLOC */
2260 static inline void
2261 kernel_map_pages(struct page *page, int numpages, int enable) {}
2262 #ifdef CONFIG_HIBERNATION
2263 static inline bool kernel_page_present(struct page *page) { return true; }
2264 #endif /* CONFIG_HIBERNATION */
2265 static inline bool debug_pagealloc_enabled(void)
2266 {
2267 return false;
2268 }
2269 #endif /* CONFIG_DEBUG_PAGEALLOC */
2270
2271 #ifdef __HAVE_ARCH_GATE_AREA
2272 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2273 extern int in_gate_area_no_mm(unsigned long addr);
2274 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2275 #else
2276 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2277 {
2278 return NULL;
2279 }
2280 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2281 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2282 {
2283 return 0;
2284 }
2285 #endif /* __HAVE_ARCH_GATE_AREA */
2286
2287 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2288
2289 #ifdef CONFIG_SYSCTL
2290 extern int sysctl_drop_caches;
2291 int drop_caches_sysctl_handler(struct ctl_table *, int,
2292 void __user *, size_t *, loff_t *);
2293 #endif
2294
2295 void drop_slab(void);
2296 void drop_slab_node(int nid);
2297
2298 #ifndef CONFIG_MMU
2299 #define randomize_va_space 0
2300 #else
2301 extern int randomize_va_space;
2302 #endif
2303
2304 const char * arch_vma_name(struct vm_area_struct *vma);
2305 void print_vma_addr(char *prefix, unsigned long rip);
2306
2307 void sparse_mem_maps_populate_node(struct page **map_map,
2308 unsigned long pnum_begin,
2309 unsigned long pnum_end,
2310 unsigned long map_count,
2311 int nodeid);
2312
2313 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2314 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2315 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2316 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2317 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2318 void *vmemmap_alloc_block(unsigned long size, int node);
2319 struct vmem_altmap;
2320 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2321 struct vmem_altmap *altmap);
2322 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2323 {
2324 return __vmemmap_alloc_block_buf(size, node, NULL);
2325 }
2326
2327 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2328 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2329 int node);
2330 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2331 void vmemmap_populate_print_last(void);
2332 #ifdef CONFIG_MEMORY_HOTPLUG
2333 void vmemmap_free(unsigned long start, unsigned long end);
2334 #endif
2335 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2336 unsigned long size);
2337
2338 enum mf_flags {
2339 MF_COUNT_INCREASED = 1 << 0,
2340 MF_ACTION_REQUIRED = 1 << 1,
2341 MF_MUST_KILL = 1 << 2,
2342 MF_SOFT_OFFLINE = 1 << 3,
2343 };
2344 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2345 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2346 extern int unpoison_memory(unsigned long pfn);
2347 extern int get_hwpoison_page(struct page *page);
2348 #define put_hwpoison_page(page) put_page(page)
2349 extern int sysctl_memory_failure_early_kill;
2350 extern int sysctl_memory_failure_recovery;
2351 extern void shake_page(struct page *p, int access);
2352 extern atomic_long_t num_poisoned_pages;
2353 extern int soft_offline_page(struct page *page, int flags);
2354
2355
2356 /*
2357 * Error handlers for various types of pages.
2358 */
2359 enum mf_result {
2360 MF_IGNORED, /* Error: cannot be handled */
2361 MF_FAILED, /* Error: handling failed */
2362 MF_DELAYED, /* Will be handled later */
2363 MF_RECOVERED, /* Successfully recovered */
2364 };
2365
2366 enum mf_action_page_type {
2367 MF_MSG_KERNEL,
2368 MF_MSG_KERNEL_HIGH_ORDER,
2369 MF_MSG_SLAB,
2370 MF_MSG_DIFFERENT_COMPOUND,
2371 MF_MSG_POISONED_HUGE,
2372 MF_MSG_HUGE,
2373 MF_MSG_FREE_HUGE,
2374 MF_MSG_UNMAP_FAILED,
2375 MF_MSG_DIRTY_SWAPCACHE,
2376 MF_MSG_CLEAN_SWAPCACHE,
2377 MF_MSG_DIRTY_MLOCKED_LRU,
2378 MF_MSG_CLEAN_MLOCKED_LRU,
2379 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2380 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2381 MF_MSG_DIRTY_LRU,
2382 MF_MSG_CLEAN_LRU,
2383 MF_MSG_TRUNCATED_LRU,
2384 MF_MSG_BUDDY,
2385 MF_MSG_BUDDY_2ND,
2386 MF_MSG_UNKNOWN,
2387 };
2388
2389 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2390 extern void clear_huge_page(struct page *page,
2391 unsigned long addr,
2392 unsigned int pages_per_huge_page);
2393 extern void copy_user_huge_page(struct page *dst, struct page *src,
2394 unsigned long addr, struct vm_area_struct *vma,
2395 unsigned int pages_per_huge_page);
2396 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2397
2398 extern struct page_ext_operations debug_guardpage_ops;
2399 extern struct page_ext_operations page_poisoning_ops;
2400
2401 #ifdef CONFIG_DEBUG_PAGEALLOC
2402 extern unsigned int _debug_guardpage_minorder;
2403 extern bool _debug_guardpage_enabled;
2404
2405 static inline unsigned int debug_guardpage_minorder(void)
2406 {
2407 return _debug_guardpage_minorder;
2408 }
2409
2410 static inline bool debug_guardpage_enabled(void)
2411 {
2412 return _debug_guardpage_enabled;
2413 }
2414
2415 static inline bool page_is_guard(struct page *page)
2416 {
2417 struct page_ext *page_ext;
2418
2419 if (!debug_guardpage_enabled())
2420 return false;
2421
2422 page_ext = lookup_page_ext(page);
2423 if (unlikely(!page_ext))
2424 return false;
2425
2426 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2427 }
2428 #else
2429 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2430 static inline bool debug_guardpage_enabled(void) { return false; }
2431 static inline bool page_is_guard(struct page *page) { return false; }
2432 #endif /* CONFIG_DEBUG_PAGEALLOC */
2433
2434 #if MAX_NUMNODES > 1
2435 void __init setup_nr_node_ids(void);
2436 #else
2437 static inline void setup_nr_node_ids(void) {}
2438 #endif
2439
2440 #endif /* __KERNEL__ */
2441 #endif /* _LINUX_MM_H */