]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm.h
net/dst: add new function skb_dst_update_pmtu_no_confirm
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28
29 struct mempolicy;
30 struct anon_vma;
31 struct anon_vma_chain;
32 struct file_ra_state;
33 struct user_struct;
34 struct writeback_control;
35 struct bdi_writeback;
36
37 void init_mm_internals(void);
38
39 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
40 extern unsigned long max_mapnr;
41
42 static inline void set_max_mapnr(unsigned long limit)
43 {
44 max_mapnr = limit;
45 }
46 #else
47 static inline void set_max_mapnr(unsigned long limit) { }
48 #endif
49
50 extern unsigned long totalram_pages;
51 extern void * high_memory;
52 extern int page_cluster;
53
54 #ifdef CONFIG_SYSCTL
55 extern int sysctl_legacy_va_layout;
56 #else
57 #define sysctl_legacy_va_layout 0
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 extern const int mmap_rnd_bits_min;
62 extern const int mmap_rnd_bits_max;
63 extern int mmap_rnd_bits __read_mostly;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 extern const int mmap_rnd_compat_bits_min;
67 extern const int mmap_rnd_compat_bits_max;
68 extern int mmap_rnd_compat_bits __read_mostly;
69 #endif
70
71 #include <asm/page.h>
72 #include <asm/pgtable.h>
73 #include <asm/processor.h>
74
75 #ifndef __pa_symbol
76 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77 #endif
78
79 #ifndef page_to_virt
80 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81 #endif
82
83 #ifndef lm_alias
84 #define lm_alias(x) __va(__pa_symbol(x))
85 #endif
86
87 /*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94 #ifndef mm_forbids_zeropage
95 #define mm_forbids_zeropage(X) (0)
96 #endif
97
98 /*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103 #ifndef mm_zero_struct_page
104 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105 #endif
106
107 /*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123 #define MAPCOUNT_ELF_CORE_MARGIN (5)
124 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126 extern int sysctl_max_map_count;
127
128 extern unsigned long sysctl_user_reserve_kbytes;
129 extern unsigned long sysctl_admin_reserve_kbytes;
130
131 extern int sysctl_overcommit_memory;
132 extern int sysctl_overcommit_ratio;
133 extern unsigned long sysctl_overcommit_kbytes;
134
135 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
140 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
142 /* to align the pointer to the (next) page boundary */
143 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
145 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
146 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
147
148 /*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
157 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
158 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
159 void vm_area_free(struct vm_area_struct *);
160
161 #ifndef CONFIG_MMU
162 extern struct rb_root nommu_region_tree;
163 extern struct rw_semaphore nommu_region_sem;
164
165 extern unsigned int kobjsize(const void *objp);
166 #endif
167
168 /*
169 * vm_flags in vm_area_struct, see mm_types.h.
170 * When changing, update also include/trace/events/mmflags.h
171 */
172 #define VM_NONE 0x00000000
173
174 #define VM_READ 0x00000001 /* currently active flags */
175 #define VM_WRITE 0x00000002
176 #define VM_EXEC 0x00000004
177 #define VM_SHARED 0x00000008
178
179 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
180 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
181 #define VM_MAYWRITE 0x00000020
182 #define VM_MAYEXEC 0x00000040
183 #define VM_MAYSHARE 0x00000080
184
185 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
186 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
187 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
188 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
189 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
190
191 #define VM_LOCKED 0x00002000
192 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
193
194 /* Used by sys_madvise() */
195 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
196 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
197
198 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
199 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
200 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
201 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
202 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
203 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
204 #define VM_SYNC 0x00800000 /* Synchronous page faults */
205 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
206 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
207 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
208
209 #ifdef CONFIG_MEM_SOFT_DIRTY
210 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
211 #else
212 # define VM_SOFTDIRTY 0
213 #endif
214
215 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
216 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
217 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
218 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
219
220 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
221 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
222 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
226 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
227 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
228 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
229 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
230 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
231 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
232
233 #if defined(CONFIG_X86)
234 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
235 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
236 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
237 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
238 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
239 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
240 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
241 #endif
242 #elif defined(CONFIG_PPC)
243 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
244 #elif defined(CONFIG_PARISC)
245 # define VM_GROWSUP VM_ARCH_1
246 #elif defined(CONFIG_METAG)
247 # define VM_GROWSUP VM_ARCH_1
248 #elif defined(CONFIG_IA64)
249 # define VM_GROWSUP VM_ARCH_1
250 #elif !defined(CONFIG_MMU)
251 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
252 #endif
253
254 #if defined(CONFIG_X86_INTEL_MPX)
255 /* MPX specific bounds table or bounds directory */
256 # define VM_MPX VM_HIGH_ARCH_4
257 #else
258 # define VM_MPX VM_NONE
259 #endif
260
261 #ifndef VM_GROWSUP
262 # define VM_GROWSUP VM_NONE
263 #endif
264
265 /* Bits set in the VMA until the stack is in its final location */
266 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
267
268 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
269 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
270 #endif
271
272 #ifdef CONFIG_STACK_GROWSUP
273 #define VM_STACK VM_GROWSUP
274 #else
275 #define VM_STACK VM_GROWSDOWN
276 #endif
277
278 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
279
280 /*
281 * Special vmas that are non-mergable, non-mlock()able.
282 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
283 */
284 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
285
286 /* This mask defines which mm->def_flags a process can inherit its parent */
287 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
288
289 /* This mask is used to clear all the VMA flags used by mlock */
290 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
291
292 /*
293 * mapping from the currently active vm_flags protection bits (the
294 * low four bits) to a page protection mask..
295 */
296 extern pgprot_t protection_map[16];
297
298 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
299 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
300 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
301 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
302 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
303 #define FAULT_FLAG_TRIED 0x20 /* Second try */
304 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
305 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
306 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
307
308 #define FAULT_FLAG_TRACE \
309 { FAULT_FLAG_WRITE, "WRITE" }, \
310 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
311 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
312 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
313 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
314 { FAULT_FLAG_TRIED, "TRIED" }, \
315 { FAULT_FLAG_USER, "USER" }, \
316 { FAULT_FLAG_REMOTE, "REMOTE" }, \
317 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
318
319 /*
320 * vm_fault is filled by the the pagefault handler and passed to the vma's
321 * ->fault function. The vma's ->fault is responsible for returning a bitmask
322 * of VM_FAULT_xxx flags that give details about how the fault was handled.
323 *
324 * MM layer fills up gfp_mask for page allocations but fault handler might
325 * alter it if its implementation requires a different allocation context.
326 *
327 * pgoff should be used in favour of virtual_address, if possible.
328 */
329 struct vm_fault {
330 struct vm_area_struct *vma; /* Target VMA */
331 unsigned int flags; /* FAULT_FLAG_xxx flags */
332 gfp_t gfp_mask; /* gfp mask to be used for allocations */
333 pgoff_t pgoff; /* Logical page offset based on vma */
334 unsigned long address; /* Faulting virtual address */
335 pmd_t *pmd; /* Pointer to pmd entry matching
336 * the 'address' */
337 pud_t *pud; /* Pointer to pud entry matching
338 * the 'address'
339 */
340 pte_t orig_pte; /* Value of PTE at the time of fault */
341
342 struct page *cow_page; /* Page handler may use for COW fault */
343 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
344 struct page *page; /* ->fault handlers should return a
345 * page here, unless VM_FAULT_NOPAGE
346 * is set (which is also implied by
347 * VM_FAULT_ERROR).
348 */
349 /* These three entries are valid only while holding ptl lock */
350 pte_t *pte; /* Pointer to pte entry matching
351 * the 'address'. NULL if the page
352 * table hasn't been allocated.
353 */
354 spinlock_t *ptl; /* Page table lock.
355 * Protects pte page table if 'pte'
356 * is not NULL, otherwise pmd.
357 */
358 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
359 * vm_ops->map_pages() calls
360 * alloc_set_pte() from atomic context.
361 * do_fault_around() pre-allocates
362 * page table to avoid allocation from
363 * atomic context.
364 */
365 };
366
367 /* page entry size for vm->huge_fault() */
368 enum page_entry_size {
369 PE_SIZE_PTE = 0,
370 PE_SIZE_PMD,
371 PE_SIZE_PUD,
372 };
373
374 /*
375 * These are the virtual MM functions - opening of an area, closing and
376 * unmapping it (needed to keep files on disk up-to-date etc), pointer
377 * to the functions called when a no-page or a wp-page exception occurs.
378 */
379 struct vm_operations_struct {
380 void (*open)(struct vm_area_struct * area);
381 void (*close)(struct vm_area_struct * area);
382 int (*split)(struct vm_area_struct * area, unsigned long addr);
383 int (*mremap)(struct vm_area_struct * area);
384 int (*fault)(struct vm_fault *vmf);
385 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
386 void (*map_pages)(struct vm_fault *vmf,
387 pgoff_t start_pgoff, pgoff_t end_pgoff);
388
389 /* notification that a previously read-only page is about to become
390 * writable, if an error is returned it will cause a SIGBUS */
391 int (*page_mkwrite)(struct vm_fault *vmf);
392
393 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
394 int (*pfn_mkwrite)(struct vm_fault *vmf);
395
396 /* called by access_process_vm when get_user_pages() fails, typically
397 * for use by special VMAs that can switch between memory and hardware
398 */
399 int (*access)(struct vm_area_struct *vma, unsigned long addr,
400 void *buf, int len, int write);
401
402 /* Called by the /proc/PID/maps code to ask the vma whether it
403 * has a special name. Returning non-NULL will also cause this
404 * vma to be dumped unconditionally. */
405 const char *(*name)(struct vm_area_struct *vma);
406
407 #ifdef CONFIG_NUMA
408 /*
409 * set_policy() op must add a reference to any non-NULL @new mempolicy
410 * to hold the policy upon return. Caller should pass NULL @new to
411 * remove a policy and fall back to surrounding context--i.e. do not
412 * install a MPOL_DEFAULT policy, nor the task or system default
413 * mempolicy.
414 */
415 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
416
417 /*
418 * get_policy() op must add reference [mpol_get()] to any policy at
419 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
420 * in mm/mempolicy.c will do this automatically.
421 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
422 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
423 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
424 * must return NULL--i.e., do not "fallback" to task or system default
425 * policy.
426 */
427 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
428 unsigned long addr);
429 #endif
430 /*
431 * Called by vm_normal_page() for special PTEs to find the
432 * page for @addr. This is useful if the default behavior
433 * (using pte_page()) would not find the correct page.
434 */
435 struct page *(*find_special_page)(struct vm_area_struct *vma,
436 unsigned long addr);
437 };
438
439 struct mmu_gather;
440 struct inode;
441
442 #define page_private(page) ((page)->private)
443 #define set_page_private(page, v) ((page)->private = (v))
444
445 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
446 static inline int pmd_devmap(pmd_t pmd)
447 {
448 return 0;
449 }
450 static inline int pud_devmap(pud_t pud)
451 {
452 return 0;
453 }
454 static inline int pgd_devmap(pgd_t pgd)
455 {
456 return 0;
457 }
458 #endif
459
460 /*
461 * FIXME: take this include out, include page-flags.h in
462 * files which need it (119 of them)
463 */
464 #include <linux/page-flags.h>
465 #include <linux/huge_mm.h>
466
467 /*
468 * Methods to modify the page usage count.
469 *
470 * What counts for a page usage:
471 * - cache mapping (page->mapping)
472 * - private data (page->private)
473 * - page mapped in a task's page tables, each mapping
474 * is counted separately
475 *
476 * Also, many kernel routines increase the page count before a critical
477 * routine so they can be sure the page doesn't go away from under them.
478 */
479
480 /*
481 * Drop a ref, return true if the refcount fell to zero (the page has no users)
482 */
483 static inline int put_page_testzero(struct page *page)
484 {
485 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
486 return page_ref_dec_and_test(page);
487 }
488
489 /*
490 * Try to grab a ref unless the page has a refcount of zero, return false if
491 * that is the case.
492 * This can be called when MMU is off so it must not access
493 * any of the virtual mappings.
494 */
495 static inline int get_page_unless_zero(struct page *page)
496 {
497 return page_ref_add_unless(page, 1, 0);
498 }
499
500 extern int page_is_ram(unsigned long pfn);
501
502 enum {
503 REGION_INTERSECTS,
504 REGION_DISJOINT,
505 REGION_MIXED,
506 };
507
508 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
509 unsigned long desc);
510
511 /* Support for virtually mapped pages */
512 struct page *vmalloc_to_page(const void *addr);
513 unsigned long vmalloc_to_pfn(const void *addr);
514
515 /*
516 * Determine if an address is within the vmalloc range
517 *
518 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
519 * is no special casing required.
520 */
521 static inline bool is_vmalloc_addr(const void *x)
522 {
523 #ifdef CONFIG_MMU
524 unsigned long addr = (unsigned long)x;
525
526 return addr >= VMALLOC_START && addr < VMALLOC_END;
527 #else
528 return false;
529 #endif
530 }
531 #ifdef CONFIG_MMU
532 extern int is_vmalloc_or_module_addr(const void *x);
533 #else
534 static inline int is_vmalloc_or_module_addr(const void *x)
535 {
536 return 0;
537 }
538 #endif
539
540 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
541 static inline void *kvmalloc(size_t size, gfp_t flags)
542 {
543 return kvmalloc_node(size, flags, NUMA_NO_NODE);
544 }
545 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
546 {
547 return kvmalloc_node(size, flags | __GFP_ZERO, node);
548 }
549 static inline void *kvzalloc(size_t size, gfp_t flags)
550 {
551 return kvmalloc(size, flags | __GFP_ZERO);
552 }
553
554 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
555 {
556 if (size != 0 && n > SIZE_MAX / size)
557 return NULL;
558
559 return kvmalloc(n * size, flags);
560 }
561
562 extern void kvfree(const void *addr);
563
564 static inline int compound_mapcount(struct page *page)
565 {
566 VM_BUG_ON_PAGE(!PageCompound(page), page);
567 page = compound_head(page);
568 return atomic_read(compound_mapcount_ptr(page)) + 1;
569 }
570
571 /*
572 * The atomic page->_mapcount, starts from -1: so that transitions
573 * both from it and to it can be tracked, using atomic_inc_and_test
574 * and atomic_add_negative(-1).
575 */
576 static inline void page_mapcount_reset(struct page *page)
577 {
578 atomic_set(&(page)->_mapcount, -1);
579 }
580
581 int __page_mapcount(struct page *page);
582
583 static inline int page_mapcount(struct page *page)
584 {
585 VM_BUG_ON_PAGE(PageSlab(page), page);
586
587 if (unlikely(PageCompound(page)))
588 return __page_mapcount(page);
589 return atomic_read(&page->_mapcount) + 1;
590 }
591
592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
593 int total_mapcount(struct page *page);
594 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
595 #else
596 static inline int total_mapcount(struct page *page)
597 {
598 return page_mapcount(page);
599 }
600 static inline int page_trans_huge_mapcount(struct page *page,
601 int *total_mapcount)
602 {
603 int mapcount = page_mapcount(page);
604 if (total_mapcount)
605 *total_mapcount = mapcount;
606 return mapcount;
607 }
608 #endif
609
610 static inline struct page *virt_to_head_page(const void *x)
611 {
612 struct page *page = virt_to_page(x);
613
614 return compound_head(page);
615 }
616
617 void __put_page(struct page *page);
618
619 void put_pages_list(struct list_head *pages);
620
621 void split_page(struct page *page, unsigned int order);
622
623 /*
624 * Compound pages have a destructor function. Provide a
625 * prototype for that function and accessor functions.
626 * These are _only_ valid on the head of a compound page.
627 */
628 typedef void compound_page_dtor(struct page *);
629
630 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
631 enum compound_dtor_id {
632 NULL_COMPOUND_DTOR,
633 COMPOUND_PAGE_DTOR,
634 #ifdef CONFIG_HUGETLB_PAGE
635 HUGETLB_PAGE_DTOR,
636 #endif
637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
638 TRANSHUGE_PAGE_DTOR,
639 #endif
640 NR_COMPOUND_DTORS,
641 };
642 extern compound_page_dtor * const compound_page_dtors[];
643
644 static inline void set_compound_page_dtor(struct page *page,
645 enum compound_dtor_id compound_dtor)
646 {
647 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
648 page[1].compound_dtor = compound_dtor;
649 }
650
651 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
652 {
653 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
654 return compound_page_dtors[page[1].compound_dtor];
655 }
656
657 static inline unsigned int compound_order(struct page *page)
658 {
659 if (!PageHead(page))
660 return 0;
661 return page[1].compound_order;
662 }
663
664 static inline void set_compound_order(struct page *page, unsigned int order)
665 {
666 page[1].compound_order = order;
667 }
668
669 void free_compound_page(struct page *page);
670
671 #ifdef CONFIG_MMU
672 /*
673 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
674 * servicing faults for write access. In the normal case, do always want
675 * pte_mkwrite. But get_user_pages can cause write faults for mappings
676 * that do not have writing enabled, when used by access_process_vm.
677 */
678 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
679 {
680 if (likely(vma->vm_flags & VM_WRITE))
681 pte = pte_mkwrite(pte);
682 return pte;
683 }
684
685 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
686 struct page *page);
687 int finish_fault(struct vm_fault *vmf);
688 int finish_mkwrite_fault(struct vm_fault *vmf);
689 #endif
690
691 /*
692 * Multiple processes may "see" the same page. E.g. for untouched
693 * mappings of /dev/null, all processes see the same page full of
694 * zeroes, and text pages of executables and shared libraries have
695 * only one copy in memory, at most, normally.
696 *
697 * For the non-reserved pages, page_count(page) denotes a reference count.
698 * page_count() == 0 means the page is free. page->lru is then used for
699 * freelist management in the buddy allocator.
700 * page_count() > 0 means the page has been allocated.
701 *
702 * Pages are allocated by the slab allocator in order to provide memory
703 * to kmalloc and kmem_cache_alloc. In this case, the management of the
704 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
705 * unless a particular usage is carefully commented. (the responsibility of
706 * freeing the kmalloc memory is the caller's, of course).
707 *
708 * A page may be used by anyone else who does a __get_free_page().
709 * In this case, page_count still tracks the references, and should only
710 * be used through the normal accessor functions. The top bits of page->flags
711 * and page->virtual store page management information, but all other fields
712 * are unused and could be used privately, carefully. The management of this
713 * page is the responsibility of the one who allocated it, and those who have
714 * subsequently been given references to it.
715 *
716 * The other pages (we may call them "pagecache pages") are completely
717 * managed by the Linux memory manager: I/O, buffers, swapping etc.
718 * The following discussion applies only to them.
719 *
720 * A pagecache page contains an opaque `private' member, which belongs to the
721 * page's address_space. Usually, this is the address of a circular list of
722 * the page's disk buffers. PG_private must be set to tell the VM to call
723 * into the filesystem to release these pages.
724 *
725 * A page may belong to an inode's memory mapping. In this case, page->mapping
726 * is the pointer to the inode, and page->index is the file offset of the page,
727 * in units of PAGE_SIZE.
728 *
729 * If pagecache pages are not associated with an inode, they are said to be
730 * anonymous pages. These may become associated with the swapcache, and in that
731 * case PG_swapcache is set, and page->private is an offset into the swapcache.
732 *
733 * In either case (swapcache or inode backed), the pagecache itself holds one
734 * reference to the page. Setting PG_private should also increment the
735 * refcount. The each user mapping also has a reference to the page.
736 *
737 * The pagecache pages are stored in a per-mapping radix tree, which is
738 * rooted at mapping->page_tree, and indexed by offset.
739 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
740 * lists, we instead now tag pages as dirty/writeback in the radix tree.
741 *
742 * All pagecache pages may be subject to I/O:
743 * - inode pages may need to be read from disk,
744 * - inode pages which have been modified and are MAP_SHARED may need
745 * to be written back to the inode on disk,
746 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
747 * modified may need to be swapped out to swap space and (later) to be read
748 * back into memory.
749 */
750
751 /*
752 * The zone field is never updated after free_area_init_core()
753 * sets it, so none of the operations on it need to be atomic.
754 */
755
756 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
757 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
758 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
759 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
760 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
761
762 /*
763 * Define the bit shifts to access each section. For non-existent
764 * sections we define the shift as 0; that plus a 0 mask ensures
765 * the compiler will optimise away reference to them.
766 */
767 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
768 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
769 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
770 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
771
772 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
773 #ifdef NODE_NOT_IN_PAGE_FLAGS
774 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
775 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
776 SECTIONS_PGOFF : ZONES_PGOFF)
777 #else
778 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
779 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
780 NODES_PGOFF : ZONES_PGOFF)
781 #endif
782
783 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
784
785 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
786 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
787 #endif
788
789 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
790 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
791 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
792 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
793 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
794
795 static inline enum zone_type page_zonenum(const struct page *page)
796 {
797 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
798 }
799
800 #ifdef CONFIG_ZONE_DEVICE
801 static inline bool is_zone_device_page(const struct page *page)
802 {
803 return page_zonenum(page) == ZONE_DEVICE;
804 }
805 #else
806 static inline bool is_zone_device_page(const struct page *page)
807 {
808 return false;
809 }
810 #endif
811
812 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
813 void put_zone_device_private_or_public_page(struct page *page);
814 DECLARE_STATIC_KEY_FALSE(device_private_key);
815 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
816 static inline bool is_device_private_page(const struct page *page);
817 static inline bool is_device_public_page(const struct page *page);
818 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
819 static inline void put_zone_device_private_or_public_page(struct page *page)
820 {
821 }
822 #define IS_HMM_ENABLED 0
823 static inline bool is_device_private_page(const struct page *page)
824 {
825 return false;
826 }
827 static inline bool is_device_public_page(const struct page *page)
828 {
829 return false;
830 }
831 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
832
833
834 /* 127: arbitrary random number, small enough to assemble well */
835 #define page_ref_zero_or_close_to_overflow(page) \
836 ((unsigned int) page_ref_count(page) + 127u <= 127u)
837
838 static inline void get_page(struct page *page)
839 {
840 page = compound_head(page);
841 /*
842 * Getting a normal page or the head of a compound page
843 * requires to already have an elevated page->_refcount.
844 */
845 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
846 page_ref_inc(page);
847 }
848
849 static inline __must_check bool try_get_page(struct page *page)
850 {
851 page = compound_head(page);
852 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
853 return false;
854 page_ref_inc(page);
855 return true;
856 }
857
858 static inline void put_page(struct page *page)
859 {
860 page = compound_head(page);
861
862 /*
863 * For private device pages we need to catch refcount transition from
864 * 2 to 1, when refcount reach one it means the private device page is
865 * free and we need to inform the device driver through callback. See
866 * include/linux/memremap.h and HMM for details.
867 */
868 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
869 unlikely(is_device_public_page(page)))) {
870 put_zone_device_private_or_public_page(page);
871 return;
872 }
873
874 if (put_page_testzero(page))
875 __put_page(page);
876 }
877
878 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
879 #define SECTION_IN_PAGE_FLAGS
880 #endif
881
882 /*
883 * The identification function is mainly used by the buddy allocator for
884 * determining if two pages could be buddies. We are not really identifying
885 * the zone since we could be using the section number id if we do not have
886 * node id available in page flags.
887 * We only guarantee that it will return the same value for two combinable
888 * pages in a zone.
889 */
890 static inline int page_zone_id(struct page *page)
891 {
892 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
893 }
894
895 static inline int zone_to_nid(struct zone *zone)
896 {
897 #ifdef CONFIG_NUMA
898 return zone->node;
899 #else
900 return 0;
901 #endif
902 }
903
904 #ifdef NODE_NOT_IN_PAGE_FLAGS
905 extern int page_to_nid(const struct page *page);
906 #else
907 static inline int page_to_nid(const struct page *page)
908 {
909 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
910 }
911 #endif
912
913 #ifdef CONFIG_NUMA_BALANCING
914 static inline int cpu_pid_to_cpupid(int cpu, int pid)
915 {
916 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
917 }
918
919 static inline int cpupid_to_pid(int cpupid)
920 {
921 return cpupid & LAST__PID_MASK;
922 }
923
924 static inline int cpupid_to_cpu(int cpupid)
925 {
926 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
927 }
928
929 static inline int cpupid_to_nid(int cpupid)
930 {
931 return cpu_to_node(cpupid_to_cpu(cpupid));
932 }
933
934 static inline bool cpupid_pid_unset(int cpupid)
935 {
936 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
937 }
938
939 static inline bool cpupid_cpu_unset(int cpupid)
940 {
941 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
942 }
943
944 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
945 {
946 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
947 }
948
949 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
950 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
951 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
952 {
953 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
954 }
955
956 static inline int page_cpupid_last(struct page *page)
957 {
958 return page->_last_cpupid;
959 }
960 static inline void page_cpupid_reset_last(struct page *page)
961 {
962 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
963 }
964 #else
965 static inline int page_cpupid_last(struct page *page)
966 {
967 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
968 }
969
970 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
971
972 static inline void page_cpupid_reset_last(struct page *page)
973 {
974 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
975 }
976 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
977 #else /* !CONFIG_NUMA_BALANCING */
978 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
979 {
980 return page_to_nid(page); /* XXX */
981 }
982
983 static inline int page_cpupid_last(struct page *page)
984 {
985 return page_to_nid(page); /* XXX */
986 }
987
988 static inline int cpupid_to_nid(int cpupid)
989 {
990 return -1;
991 }
992
993 static inline int cpupid_to_pid(int cpupid)
994 {
995 return -1;
996 }
997
998 static inline int cpupid_to_cpu(int cpupid)
999 {
1000 return -1;
1001 }
1002
1003 static inline int cpu_pid_to_cpupid(int nid, int pid)
1004 {
1005 return -1;
1006 }
1007
1008 static inline bool cpupid_pid_unset(int cpupid)
1009 {
1010 return 1;
1011 }
1012
1013 static inline void page_cpupid_reset_last(struct page *page)
1014 {
1015 }
1016
1017 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1018 {
1019 return false;
1020 }
1021 #endif /* CONFIG_NUMA_BALANCING */
1022
1023 static inline struct zone *page_zone(const struct page *page)
1024 {
1025 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1026 }
1027
1028 static inline pg_data_t *page_pgdat(const struct page *page)
1029 {
1030 return NODE_DATA(page_to_nid(page));
1031 }
1032
1033 #ifdef SECTION_IN_PAGE_FLAGS
1034 static inline void set_page_section(struct page *page, unsigned long section)
1035 {
1036 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1037 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1038 }
1039
1040 static inline unsigned long page_to_section(const struct page *page)
1041 {
1042 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1043 }
1044 #endif
1045
1046 static inline void set_page_zone(struct page *page, enum zone_type zone)
1047 {
1048 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1049 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1050 }
1051
1052 static inline void set_page_node(struct page *page, unsigned long node)
1053 {
1054 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1055 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1056 }
1057
1058 static inline void set_page_links(struct page *page, enum zone_type zone,
1059 unsigned long node, unsigned long pfn)
1060 {
1061 set_page_zone(page, zone);
1062 set_page_node(page, node);
1063 #ifdef SECTION_IN_PAGE_FLAGS
1064 set_page_section(page, pfn_to_section_nr(pfn));
1065 #endif
1066 }
1067
1068 #ifdef CONFIG_MEMCG
1069 static inline struct mem_cgroup *page_memcg(struct page *page)
1070 {
1071 return page->mem_cgroup;
1072 }
1073 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1074 {
1075 WARN_ON_ONCE(!rcu_read_lock_held());
1076 return READ_ONCE(page->mem_cgroup);
1077 }
1078 #else
1079 static inline struct mem_cgroup *page_memcg(struct page *page)
1080 {
1081 return NULL;
1082 }
1083 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1084 {
1085 WARN_ON_ONCE(!rcu_read_lock_held());
1086 return NULL;
1087 }
1088 #endif
1089
1090 /*
1091 * Some inline functions in vmstat.h depend on page_zone()
1092 */
1093 #include <linux/vmstat.h>
1094
1095 static __always_inline void *lowmem_page_address(const struct page *page)
1096 {
1097 return page_to_virt(page);
1098 }
1099
1100 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1101 #define HASHED_PAGE_VIRTUAL
1102 #endif
1103
1104 #if defined(WANT_PAGE_VIRTUAL)
1105 static inline void *page_address(const struct page *page)
1106 {
1107 return page->virtual;
1108 }
1109 static inline void set_page_address(struct page *page, void *address)
1110 {
1111 page->virtual = address;
1112 }
1113 #define page_address_init() do { } while(0)
1114 #endif
1115
1116 #if defined(HASHED_PAGE_VIRTUAL)
1117 void *page_address(const struct page *page);
1118 void set_page_address(struct page *page, void *virtual);
1119 void page_address_init(void);
1120 #endif
1121
1122 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1123 #define page_address(page) lowmem_page_address(page)
1124 #define set_page_address(page, address) do { } while(0)
1125 #define page_address_init() do { } while(0)
1126 #endif
1127
1128 extern void *page_rmapping(struct page *page);
1129 extern struct anon_vma *page_anon_vma(struct page *page);
1130 extern struct address_space *page_mapping(struct page *page);
1131
1132 extern struct address_space *__page_file_mapping(struct page *);
1133
1134 static inline
1135 struct address_space *page_file_mapping(struct page *page)
1136 {
1137 if (unlikely(PageSwapCache(page)))
1138 return __page_file_mapping(page);
1139
1140 return page->mapping;
1141 }
1142
1143 extern pgoff_t __page_file_index(struct page *page);
1144
1145 /*
1146 * Return the pagecache index of the passed page. Regular pagecache pages
1147 * use ->index whereas swapcache pages use swp_offset(->private)
1148 */
1149 static inline pgoff_t page_index(struct page *page)
1150 {
1151 if (unlikely(PageSwapCache(page)))
1152 return __page_file_index(page);
1153 return page->index;
1154 }
1155
1156 bool page_mapped(struct page *page);
1157 struct address_space *page_mapping(struct page *page);
1158
1159 /*
1160 * Return true only if the page has been allocated with
1161 * ALLOC_NO_WATERMARKS and the low watermark was not
1162 * met implying that the system is under some pressure.
1163 */
1164 static inline bool page_is_pfmemalloc(struct page *page)
1165 {
1166 /*
1167 * Page index cannot be this large so this must be
1168 * a pfmemalloc page.
1169 */
1170 return page->index == -1UL;
1171 }
1172
1173 /*
1174 * Only to be called by the page allocator on a freshly allocated
1175 * page.
1176 */
1177 static inline void set_page_pfmemalloc(struct page *page)
1178 {
1179 page->index = -1UL;
1180 }
1181
1182 static inline void clear_page_pfmemalloc(struct page *page)
1183 {
1184 page->index = 0;
1185 }
1186
1187 /*
1188 * Different kinds of faults, as returned by handle_mm_fault().
1189 * Used to decide whether a process gets delivered SIGBUS or
1190 * just gets major/minor fault counters bumped up.
1191 */
1192
1193 #define VM_FAULT_OOM 0x0001
1194 #define VM_FAULT_SIGBUS 0x0002
1195 #define VM_FAULT_MAJOR 0x0004
1196 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1197 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1198 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1199 #define VM_FAULT_SIGSEGV 0x0040
1200
1201 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1202 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1203 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1204 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1205 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1206 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1207 * and needs fsync() to complete (for
1208 * synchronous page faults in DAX) */
1209
1210 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1211 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1212 VM_FAULT_FALLBACK)
1213
1214 #define VM_FAULT_RESULT_TRACE \
1215 { VM_FAULT_OOM, "OOM" }, \
1216 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1217 { VM_FAULT_MAJOR, "MAJOR" }, \
1218 { VM_FAULT_WRITE, "WRITE" }, \
1219 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1220 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1221 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1222 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1223 { VM_FAULT_LOCKED, "LOCKED" }, \
1224 { VM_FAULT_RETRY, "RETRY" }, \
1225 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1226 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1227 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1228
1229 /* Encode hstate index for a hwpoisoned large page */
1230 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1231 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1232
1233 /*
1234 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1235 */
1236 extern void pagefault_out_of_memory(void);
1237
1238 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1239
1240 /*
1241 * Flags passed to show_mem() and show_free_areas() to suppress output in
1242 * various contexts.
1243 */
1244 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1245
1246 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1247
1248 extern bool can_do_mlock(void);
1249 extern int user_shm_lock(size_t, struct user_struct *);
1250 extern void user_shm_unlock(size_t, struct user_struct *);
1251
1252 /*
1253 * Parameter block passed down to zap_pte_range in exceptional cases.
1254 */
1255 struct zap_details {
1256 struct address_space *check_mapping; /* Check page->mapping if set */
1257 pgoff_t first_index; /* Lowest page->index to unmap */
1258 pgoff_t last_index; /* Highest page->index to unmap */
1259 };
1260
1261 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1262 pte_t pte, bool with_public_device);
1263 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1264
1265 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1266 pmd_t pmd);
1267
1268 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1269 unsigned long size);
1270 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1271 unsigned long size);
1272 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1273 unsigned long start, unsigned long end);
1274
1275 /**
1276 * mm_walk - callbacks for walk_page_range
1277 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1278 * this handler should only handle pud_trans_huge() puds.
1279 * the pmd_entry or pte_entry callbacks will be used for
1280 * regular PUDs.
1281 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1282 * this handler is required to be able to handle
1283 * pmd_trans_huge() pmds. They may simply choose to
1284 * split_huge_page() instead of handling it explicitly.
1285 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1286 * @pte_hole: if set, called for each hole at all levels
1287 * @hugetlb_entry: if set, called for each hugetlb entry
1288 * @test_walk: caller specific callback function to determine whether
1289 * we walk over the current vma or not. Returning 0
1290 * value means "do page table walk over the current vma,"
1291 * and a negative one means "abort current page table walk
1292 * right now." 1 means "skip the current vma."
1293 * @mm: mm_struct representing the target process of page table walk
1294 * @vma: vma currently walked (NULL if walking outside vmas)
1295 * @private: private data for callbacks' usage
1296 *
1297 * (see the comment on walk_page_range() for more details)
1298 */
1299 struct mm_walk {
1300 int (*pud_entry)(pud_t *pud, unsigned long addr,
1301 unsigned long next, struct mm_walk *walk);
1302 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1303 unsigned long next, struct mm_walk *walk);
1304 int (*pte_entry)(pte_t *pte, unsigned long addr,
1305 unsigned long next, struct mm_walk *walk);
1306 int (*pte_hole)(unsigned long addr, unsigned long next,
1307 struct mm_walk *walk);
1308 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1309 unsigned long addr, unsigned long next,
1310 struct mm_walk *walk);
1311 int (*test_walk)(unsigned long addr, unsigned long next,
1312 struct mm_walk *walk);
1313 struct mm_struct *mm;
1314 struct vm_area_struct *vma;
1315 void *private;
1316 };
1317
1318 int walk_page_range(unsigned long addr, unsigned long end,
1319 struct mm_walk *walk);
1320 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1321 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1322 unsigned long end, unsigned long floor, unsigned long ceiling);
1323 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1324 struct vm_area_struct *vma);
1325 void unmap_mapping_range(struct address_space *mapping,
1326 loff_t const holebegin, loff_t const holelen, int even_cows);
1327 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1328 unsigned long *start, unsigned long *end,
1329 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1330 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1331 unsigned long *pfn);
1332 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1333 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1334 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1335 void *buf, int len, int write);
1336
1337 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1338 loff_t const holebegin, loff_t const holelen)
1339 {
1340 unmap_mapping_range(mapping, holebegin, holelen, 0);
1341 }
1342
1343 extern void truncate_pagecache(struct inode *inode, loff_t new);
1344 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1345 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1346 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1347 int truncate_inode_page(struct address_space *mapping, struct page *page);
1348 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1349 int invalidate_inode_page(struct page *page);
1350
1351 #ifdef CONFIG_MMU
1352 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1353 unsigned int flags);
1354 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1355 unsigned long address, unsigned int fault_flags,
1356 bool *unlocked);
1357 #else
1358 static inline int handle_mm_fault(struct vm_area_struct *vma,
1359 unsigned long address, unsigned int flags)
1360 {
1361 /* should never happen if there's no MMU */
1362 BUG();
1363 return VM_FAULT_SIGBUS;
1364 }
1365 static inline int fixup_user_fault(struct task_struct *tsk,
1366 struct mm_struct *mm, unsigned long address,
1367 unsigned int fault_flags, bool *unlocked)
1368 {
1369 /* should never happen if there's no MMU */
1370 BUG();
1371 return -EFAULT;
1372 }
1373 #endif
1374
1375 extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1376 extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1377 int);
1378 extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1379 extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1380
1381 #define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1382 __LINE__)
1383 #define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1384 __LINE__)
1385 #define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1386 #define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1387
1388 #ifndef CONFIG_MMU
1389 extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1390 extern void vmr_do_fput(struct vm_region *, const char[], int);
1391
1392 #define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1393 __LINE__)
1394 #define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1395 #endif /* !CONFIG_MMU */
1396
1397 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1398 unsigned int gup_flags);
1399 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1400 void *buf, int len, unsigned int gup_flags);
1401 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1402 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1403
1404 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1405 unsigned long start, unsigned long nr_pages,
1406 unsigned int gup_flags, struct page **pages,
1407 struct vm_area_struct **vmas, int *locked);
1408 long get_user_pages(unsigned long start, unsigned long nr_pages,
1409 unsigned int gup_flags, struct page **pages,
1410 struct vm_area_struct **vmas);
1411 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1412 unsigned int gup_flags, struct page **pages, int *locked);
1413 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1414 struct page **pages, unsigned int gup_flags);
1415 #ifdef CONFIG_FS_DAX
1416 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1417 unsigned int gup_flags, struct page **pages,
1418 struct vm_area_struct **vmas);
1419 #else
1420 static inline long get_user_pages_longterm(unsigned long start,
1421 unsigned long nr_pages, unsigned int gup_flags,
1422 struct page **pages, struct vm_area_struct **vmas)
1423 {
1424 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1425 }
1426 #endif /* CONFIG_FS_DAX */
1427
1428 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1429 struct page **pages);
1430
1431 /* Container for pinned pfns / pages */
1432 struct frame_vector {
1433 unsigned int nr_allocated; /* Number of frames we have space for */
1434 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1435 bool got_ref; /* Did we pin pages by getting page ref? */
1436 bool is_pfns; /* Does array contain pages or pfns? */
1437 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1438 * pfns_vector_pages() or pfns_vector_pfns()
1439 * for access */
1440 };
1441
1442 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1443 void frame_vector_destroy(struct frame_vector *vec);
1444 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1445 unsigned int gup_flags, struct frame_vector *vec);
1446 void put_vaddr_frames(struct frame_vector *vec);
1447 int frame_vector_to_pages(struct frame_vector *vec);
1448 void frame_vector_to_pfns(struct frame_vector *vec);
1449
1450 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1451 {
1452 return vec->nr_frames;
1453 }
1454
1455 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1456 {
1457 if (vec->is_pfns) {
1458 int err = frame_vector_to_pages(vec);
1459
1460 if (err)
1461 return ERR_PTR(err);
1462 }
1463 return (struct page **)(vec->ptrs);
1464 }
1465
1466 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1467 {
1468 if (!vec->is_pfns)
1469 frame_vector_to_pfns(vec);
1470 return (unsigned long *)(vec->ptrs);
1471 }
1472
1473 struct kvec;
1474 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1475 struct page **pages);
1476 int get_kernel_page(unsigned long start, int write, struct page **pages);
1477 struct page *get_dump_page(unsigned long addr);
1478
1479 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1480 extern void do_invalidatepage(struct page *page, unsigned int offset,
1481 unsigned int length);
1482
1483 int __set_page_dirty_nobuffers(struct page *page);
1484 int __set_page_dirty_no_writeback(struct page *page);
1485 int redirty_page_for_writepage(struct writeback_control *wbc,
1486 struct page *page);
1487 void account_page_dirtied(struct page *page, struct address_space *mapping);
1488 void account_page_cleaned(struct page *page, struct address_space *mapping,
1489 struct bdi_writeback *wb);
1490 int set_page_dirty(struct page *page);
1491 int set_page_dirty_lock(struct page *page);
1492 void __cancel_dirty_page(struct page *page);
1493 static inline void cancel_dirty_page(struct page *page)
1494 {
1495 /* Avoid atomic ops, locking, etc. when not actually needed. */
1496 if (PageDirty(page))
1497 __cancel_dirty_page(page);
1498 }
1499 int clear_page_dirty_for_io(struct page *page);
1500
1501 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1502
1503 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1504 {
1505 return !vma->vm_ops;
1506 }
1507
1508 #ifdef CONFIG_SHMEM
1509 /*
1510 * The vma_is_shmem is not inline because it is used only by slow
1511 * paths in userfault.
1512 */
1513 bool vma_is_shmem(struct vm_area_struct *vma);
1514 #else
1515 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1516 #endif
1517
1518 int vma_is_stack_for_current(struct vm_area_struct *vma);
1519
1520 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1521 unsigned long old_addr, struct vm_area_struct *new_vma,
1522 unsigned long new_addr, unsigned long len,
1523 bool need_rmap_locks);
1524 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1525 unsigned long end, pgprot_t newprot,
1526 int dirty_accountable, int prot_numa);
1527 extern int mprotect_fixup(struct vm_area_struct *vma,
1528 struct vm_area_struct **pprev, unsigned long start,
1529 unsigned long end, unsigned long newflags);
1530
1531 /*
1532 * doesn't attempt to fault and will return short.
1533 */
1534 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1535 struct page **pages);
1536 /*
1537 * per-process(per-mm_struct) statistics.
1538 */
1539 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1540 {
1541 long val = atomic_long_read(&mm->rss_stat.count[member]);
1542
1543 #ifdef SPLIT_RSS_COUNTING
1544 /*
1545 * counter is updated in asynchronous manner and may go to minus.
1546 * But it's never be expected number for users.
1547 */
1548 if (val < 0)
1549 val = 0;
1550 #endif
1551 return (unsigned long)val;
1552 }
1553
1554 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1555 {
1556 atomic_long_add(value, &mm->rss_stat.count[member]);
1557 }
1558
1559 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1560 {
1561 atomic_long_inc(&mm->rss_stat.count[member]);
1562 }
1563
1564 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1565 {
1566 atomic_long_dec(&mm->rss_stat.count[member]);
1567 }
1568
1569 /* Optimized variant when page is already known not to be PageAnon */
1570 static inline int mm_counter_file(struct page *page)
1571 {
1572 if (PageSwapBacked(page))
1573 return MM_SHMEMPAGES;
1574 return MM_FILEPAGES;
1575 }
1576
1577 static inline int mm_counter(struct page *page)
1578 {
1579 if (PageAnon(page))
1580 return MM_ANONPAGES;
1581 return mm_counter_file(page);
1582 }
1583
1584 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1585 {
1586 return get_mm_counter(mm, MM_FILEPAGES) +
1587 get_mm_counter(mm, MM_ANONPAGES) +
1588 get_mm_counter(mm, MM_SHMEMPAGES);
1589 }
1590
1591 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1592 {
1593 return max(mm->hiwater_rss, get_mm_rss(mm));
1594 }
1595
1596 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1597 {
1598 return max(mm->hiwater_vm, mm->total_vm);
1599 }
1600
1601 static inline void update_hiwater_rss(struct mm_struct *mm)
1602 {
1603 unsigned long _rss = get_mm_rss(mm);
1604
1605 if ((mm)->hiwater_rss < _rss)
1606 (mm)->hiwater_rss = _rss;
1607 }
1608
1609 static inline void update_hiwater_vm(struct mm_struct *mm)
1610 {
1611 if (mm->hiwater_vm < mm->total_vm)
1612 mm->hiwater_vm = mm->total_vm;
1613 }
1614
1615 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1616 {
1617 mm->hiwater_rss = get_mm_rss(mm);
1618 }
1619
1620 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1621 struct mm_struct *mm)
1622 {
1623 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1624
1625 if (*maxrss < hiwater_rss)
1626 *maxrss = hiwater_rss;
1627 }
1628
1629 #if defined(SPLIT_RSS_COUNTING)
1630 void sync_mm_rss(struct mm_struct *mm);
1631 #else
1632 static inline void sync_mm_rss(struct mm_struct *mm)
1633 {
1634 }
1635 #endif
1636
1637 #ifndef __HAVE_ARCH_PTE_DEVMAP
1638 static inline int pte_devmap(pte_t pte)
1639 {
1640 return 0;
1641 }
1642 #endif
1643
1644 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1645
1646 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1647 spinlock_t **ptl);
1648 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1649 spinlock_t **ptl)
1650 {
1651 pte_t *ptep;
1652 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1653 return ptep;
1654 }
1655
1656 #ifdef __PAGETABLE_P4D_FOLDED
1657 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1658 unsigned long address)
1659 {
1660 return 0;
1661 }
1662 #else
1663 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1664 #endif
1665
1666 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1667 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1668 unsigned long address)
1669 {
1670 return 0;
1671 }
1672 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1673 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1674
1675 #else
1676 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1677
1678 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1679 {
1680 if (mm_pud_folded(mm))
1681 return;
1682 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1683 }
1684
1685 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1686 {
1687 if (mm_pud_folded(mm))
1688 return;
1689 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1690 }
1691 #endif
1692
1693 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1694 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1695 unsigned long address)
1696 {
1697 return 0;
1698 }
1699
1700 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1701 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1702
1703 #else
1704 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1705
1706 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1707 {
1708 if (mm_pmd_folded(mm))
1709 return;
1710 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1711 }
1712
1713 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1714 {
1715 if (mm_pmd_folded(mm))
1716 return;
1717 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1718 }
1719 #endif
1720
1721 #ifdef CONFIG_MMU
1722 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1723 {
1724 atomic_long_set(&mm->pgtables_bytes, 0);
1725 }
1726
1727 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1728 {
1729 return atomic_long_read(&mm->pgtables_bytes);
1730 }
1731
1732 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1733 {
1734 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1735 }
1736
1737 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1738 {
1739 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1740 }
1741 #else
1742
1743 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1744 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1745 {
1746 return 0;
1747 }
1748
1749 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1750 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1751 #endif
1752
1753 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1754 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1755
1756 /*
1757 * The following ifdef needed to get the 4level-fixup.h header to work.
1758 * Remove it when 4level-fixup.h has been removed.
1759 */
1760 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1761
1762 #ifndef __ARCH_HAS_5LEVEL_HACK
1763 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1764 unsigned long address)
1765 {
1766 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1767 NULL : p4d_offset(pgd, address);
1768 }
1769
1770 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1771 unsigned long address)
1772 {
1773 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1774 NULL : pud_offset(p4d, address);
1775 }
1776 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1777
1778 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1779 {
1780 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1781 NULL: pmd_offset(pud, address);
1782 }
1783 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1784
1785 #if USE_SPLIT_PTE_PTLOCKS
1786 #if ALLOC_SPLIT_PTLOCKS
1787 void __init ptlock_cache_init(void);
1788 extern bool ptlock_alloc(struct page *page);
1789 extern void ptlock_free(struct page *page);
1790
1791 static inline spinlock_t *ptlock_ptr(struct page *page)
1792 {
1793 return page->ptl;
1794 }
1795 #else /* ALLOC_SPLIT_PTLOCKS */
1796 static inline void ptlock_cache_init(void)
1797 {
1798 }
1799
1800 static inline bool ptlock_alloc(struct page *page)
1801 {
1802 return true;
1803 }
1804
1805 static inline void ptlock_free(struct page *page)
1806 {
1807 }
1808
1809 static inline spinlock_t *ptlock_ptr(struct page *page)
1810 {
1811 return &page->ptl;
1812 }
1813 #endif /* ALLOC_SPLIT_PTLOCKS */
1814
1815 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1816 {
1817 return ptlock_ptr(pmd_page(*pmd));
1818 }
1819
1820 static inline bool ptlock_init(struct page *page)
1821 {
1822 /*
1823 * prep_new_page() initialize page->private (and therefore page->ptl)
1824 * with 0. Make sure nobody took it in use in between.
1825 *
1826 * It can happen if arch try to use slab for page table allocation:
1827 * slab code uses page->slab_cache, which share storage with page->ptl.
1828 */
1829 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1830 if (!ptlock_alloc(page))
1831 return false;
1832 spin_lock_init(ptlock_ptr(page));
1833 return true;
1834 }
1835
1836 /* Reset page->mapping so free_pages_check won't complain. */
1837 static inline void pte_lock_deinit(struct page *page)
1838 {
1839 page->mapping = NULL;
1840 ptlock_free(page);
1841 }
1842
1843 #else /* !USE_SPLIT_PTE_PTLOCKS */
1844 /*
1845 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1846 */
1847 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1848 {
1849 return &mm->page_table_lock;
1850 }
1851 static inline void ptlock_cache_init(void) {}
1852 static inline bool ptlock_init(struct page *page) { return true; }
1853 static inline void pte_lock_deinit(struct page *page) {}
1854 #endif /* USE_SPLIT_PTE_PTLOCKS */
1855
1856 static inline void pgtable_init(void)
1857 {
1858 ptlock_cache_init();
1859 pgtable_cache_init();
1860 }
1861
1862 static inline bool pgtable_page_ctor(struct page *page)
1863 {
1864 if (!ptlock_init(page))
1865 return false;
1866 inc_zone_page_state(page, NR_PAGETABLE);
1867 return true;
1868 }
1869
1870 static inline void pgtable_page_dtor(struct page *page)
1871 {
1872 pte_lock_deinit(page);
1873 dec_zone_page_state(page, NR_PAGETABLE);
1874 }
1875
1876 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1877 ({ \
1878 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1879 pte_t *__pte = pte_offset_map(pmd, address); \
1880 *(ptlp) = __ptl; \
1881 spin_lock(__ptl); \
1882 __pte; \
1883 })
1884
1885 #define pte_unmap_unlock(pte, ptl) do { \
1886 spin_unlock(ptl); \
1887 pte_unmap(pte); \
1888 } while (0)
1889
1890 #define pte_alloc(mm, pmd, address) \
1891 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1892
1893 #define pte_alloc_map(mm, pmd, address) \
1894 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1895
1896 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1897 (pte_alloc(mm, pmd, address) ? \
1898 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1899
1900 #define pte_alloc_kernel(pmd, address) \
1901 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1902 NULL: pte_offset_kernel(pmd, address))
1903
1904 #if USE_SPLIT_PMD_PTLOCKS
1905
1906 static struct page *pmd_to_page(pmd_t *pmd)
1907 {
1908 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1909 return virt_to_page((void *)((unsigned long) pmd & mask));
1910 }
1911
1912 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1913 {
1914 return ptlock_ptr(pmd_to_page(pmd));
1915 }
1916
1917 static inline bool pgtable_pmd_page_ctor(struct page *page)
1918 {
1919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1920 page->pmd_huge_pte = NULL;
1921 #endif
1922 return ptlock_init(page);
1923 }
1924
1925 static inline void pgtable_pmd_page_dtor(struct page *page)
1926 {
1927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1928 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1929 #endif
1930 ptlock_free(page);
1931 }
1932
1933 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1934
1935 #else
1936
1937 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1938 {
1939 return &mm->page_table_lock;
1940 }
1941
1942 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1943 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1944
1945 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1946
1947 #endif
1948
1949 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1950 {
1951 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1952 spin_lock(ptl);
1953 return ptl;
1954 }
1955
1956 /*
1957 * No scalability reason to split PUD locks yet, but follow the same pattern
1958 * as the PMD locks to make it easier if we decide to. The VM should not be
1959 * considered ready to switch to split PUD locks yet; there may be places
1960 * which need to be converted from page_table_lock.
1961 */
1962 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1963 {
1964 return &mm->page_table_lock;
1965 }
1966
1967 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1968 {
1969 spinlock_t *ptl = pud_lockptr(mm, pud);
1970
1971 spin_lock(ptl);
1972 return ptl;
1973 }
1974
1975 extern void __init pagecache_init(void);
1976 extern void free_area_init(unsigned long * zones_size);
1977 extern void free_area_init_node(int nid, unsigned long * zones_size,
1978 unsigned long zone_start_pfn, unsigned long *zholes_size);
1979 extern void free_initmem(void);
1980
1981 /*
1982 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1983 * into the buddy system. The freed pages will be poisoned with pattern
1984 * "poison" if it's within range [0, UCHAR_MAX].
1985 * Return pages freed into the buddy system.
1986 */
1987 extern unsigned long free_reserved_area(void *start, void *end,
1988 int poison, char *s);
1989
1990 #ifdef CONFIG_HIGHMEM
1991 /*
1992 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1993 * and totalram_pages.
1994 */
1995 extern void free_highmem_page(struct page *page);
1996 #endif
1997
1998 extern void adjust_managed_page_count(struct page *page, long count);
1999 extern void mem_init_print_info(const char *str);
2000
2001 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2002
2003 /* Free the reserved page into the buddy system, so it gets managed. */
2004 static inline void __free_reserved_page(struct page *page)
2005 {
2006 ClearPageReserved(page);
2007 init_page_count(page);
2008 __free_page(page);
2009 }
2010
2011 static inline void free_reserved_page(struct page *page)
2012 {
2013 __free_reserved_page(page);
2014 adjust_managed_page_count(page, 1);
2015 }
2016
2017 static inline void mark_page_reserved(struct page *page)
2018 {
2019 SetPageReserved(page);
2020 adjust_managed_page_count(page, -1);
2021 }
2022
2023 /*
2024 * Default method to free all the __init memory into the buddy system.
2025 * The freed pages will be poisoned with pattern "poison" if it's within
2026 * range [0, UCHAR_MAX].
2027 * Return pages freed into the buddy system.
2028 */
2029 static inline unsigned long free_initmem_default(int poison)
2030 {
2031 extern char __init_begin[], __init_end[];
2032
2033 return free_reserved_area(&__init_begin, &__init_end,
2034 poison, "unused kernel");
2035 }
2036
2037 static inline unsigned long get_num_physpages(void)
2038 {
2039 int nid;
2040 unsigned long phys_pages = 0;
2041
2042 for_each_online_node(nid)
2043 phys_pages += node_present_pages(nid);
2044
2045 return phys_pages;
2046 }
2047
2048 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2049 /*
2050 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2051 * zones, allocate the backing mem_map and account for memory holes in a more
2052 * architecture independent manner. This is a substitute for creating the
2053 * zone_sizes[] and zholes_size[] arrays and passing them to
2054 * free_area_init_node()
2055 *
2056 * An architecture is expected to register range of page frames backed by
2057 * physical memory with memblock_add[_node]() before calling
2058 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2059 * usage, an architecture is expected to do something like
2060 *
2061 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2062 * max_highmem_pfn};
2063 * for_each_valid_physical_page_range()
2064 * memblock_add_node(base, size, nid)
2065 * free_area_init_nodes(max_zone_pfns);
2066 *
2067 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2068 * registered physical page range. Similarly
2069 * sparse_memory_present_with_active_regions() calls memory_present() for
2070 * each range when SPARSEMEM is enabled.
2071 *
2072 * See mm/page_alloc.c for more information on each function exposed by
2073 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2074 */
2075 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2076 unsigned long node_map_pfn_alignment(void);
2077 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2078 unsigned long end_pfn);
2079 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2080 unsigned long end_pfn);
2081 extern void get_pfn_range_for_nid(unsigned int nid,
2082 unsigned long *start_pfn, unsigned long *end_pfn);
2083 extern unsigned long find_min_pfn_with_active_regions(void);
2084 extern void free_bootmem_with_active_regions(int nid,
2085 unsigned long max_low_pfn);
2086 extern void sparse_memory_present_with_active_regions(int nid);
2087
2088 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2089
2090 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2091 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2092 static inline int __early_pfn_to_nid(unsigned long pfn,
2093 struct mminit_pfnnid_cache *state)
2094 {
2095 return 0;
2096 }
2097 #else
2098 /* please see mm/page_alloc.c */
2099 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2100 /* there is a per-arch backend function. */
2101 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2102 struct mminit_pfnnid_cache *state);
2103 #endif
2104
2105 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
2106 void zero_resv_unavail(void);
2107 #else
2108 static inline void zero_resv_unavail(void) {}
2109 #endif
2110
2111 extern void set_dma_reserve(unsigned long new_dma_reserve);
2112 extern void memmap_init_zone(unsigned long, int, unsigned long,
2113 unsigned long, enum memmap_context);
2114 extern void setup_per_zone_wmarks(void);
2115 extern int __meminit init_per_zone_wmark_min(void);
2116 extern void mem_init(void);
2117 extern void __init mmap_init(void);
2118 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2119 extern long si_mem_available(void);
2120 extern void si_meminfo(struct sysinfo * val);
2121 extern void si_meminfo_node(struct sysinfo *val, int nid);
2122 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2123 extern unsigned long arch_reserved_kernel_pages(void);
2124 #endif
2125
2126 extern __printf(3, 4)
2127 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2128
2129 extern void setup_per_cpu_pageset(void);
2130
2131 extern void zone_pcp_update(struct zone *zone);
2132 extern void zone_pcp_reset(struct zone *zone);
2133
2134 /* page_alloc.c */
2135 extern int min_free_kbytes;
2136 extern int watermark_scale_factor;
2137
2138 /* nommu.c */
2139 extern atomic_long_t mmap_pages_allocated;
2140 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2141
2142 /* interval_tree.c */
2143 void vma_interval_tree_insert(struct vm_area_struct *node,
2144 struct rb_root_cached *root);
2145 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2146 struct vm_area_struct *prev,
2147 struct rb_root_cached *root);
2148 void vma_interval_tree_remove(struct vm_area_struct *node,
2149 struct rb_root_cached *root);
2150 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2151 unsigned long start, unsigned long last);
2152 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2153 unsigned long start, unsigned long last);
2154
2155 #define vma_interval_tree_foreach(vma, root, start, last) \
2156 for (vma = vma_interval_tree_iter_first(root, start, last); \
2157 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2158
2159 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2160 struct rb_root_cached *root);
2161 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2162 struct rb_root_cached *root);
2163 struct anon_vma_chain *
2164 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2165 unsigned long start, unsigned long last);
2166 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2167 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2168 #ifdef CONFIG_DEBUG_VM_RB
2169 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2170 #endif
2171
2172 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2173 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2174 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2175
2176 /* mmap.c */
2177 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2178 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2179 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2180 struct vm_area_struct *expand);
2181 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2182 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2183 {
2184 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2185 }
2186 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2187 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2188 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2189 struct mempolicy *, struct vm_userfaultfd_ctx);
2190 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2191 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2192 unsigned long addr, int new_below);
2193 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2194 unsigned long addr, int new_below);
2195 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2196 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2197 struct rb_node **, struct rb_node *);
2198 extern void unlink_file_vma(struct vm_area_struct *);
2199 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2200 unsigned long addr, unsigned long len, pgoff_t pgoff,
2201 bool *need_rmap_locks);
2202 extern void exit_mmap(struct mm_struct *);
2203
2204 static inline int check_data_rlimit(unsigned long rlim,
2205 unsigned long new,
2206 unsigned long start,
2207 unsigned long end_data,
2208 unsigned long start_data)
2209 {
2210 if (rlim < RLIM_INFINITY) {
2211 if (((new - start) + (end_data - start_data)) > rlim)
2212 return -ENOSPC;
2213 }
2214
2215 return 0;
2216 }
2217
2218 extern int mm_take_all_locks(struct mm_struct *mm);
2219 extern void mm_drop_all_locks(struct mm_struct *mm);
2220
2221 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2222 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2223 extern struct file *get_task_exe_file(struct task_struct *task);
2224
2225 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2226 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2227
2228 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2229 const struct vm_special_mapping *sm);
2230 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2231 unsigned long addr, unsigned long len,
2232 unsigned long flags,
2233 const struct vm_special_mapping *spec);
2234 /* This is an obsolete alternative to _install_special_mapping. */
2235 extern int install_special_mapping(struct mm_struct *mm,
2236 unsigned long addr, unsigned long len,
2237 unsigned long flags, struct page **pages);
2238
2239 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2240
2241 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2242 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2243 struct list_head *uf);
2244 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2245 unsigned long len, unsigned long prot, unsigned long flags,
2246 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2247 struct list_head *uf);
2248 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2249 struct list_head *uf);
2250
2251 static inline unsigned long
2252 do_mmap_pgoff(struct file *file, unsigned long addr,
2253 unsigned long len, unsigned long prot, unsigned long flags,
2254 unsigned long pgoff, unsigned long *populate,
2255 struct list_head *uf)
2256 {
2257 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2258 }
2259
2260 #ifdef CONFIG_MMU
2261 extern int __mm_populate(unsigned long addr, unsigned long len,
2262 int ignore_errors);
2263 static inline void mm_populate(unsigned long addr, unsigned long len)
2264 {
2265 /* Ignore errors */
2266 (void) __mm_populate(addr, len, 1);
2267 }
2268 #else
2269 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2270 #endif
2271
2272 /* These take the mm semaphore themselves */
2273 extern int __must_check vm_brk(unsigned long, unsigned long);
2274 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2275 extern int vm_munmap(unsigned long, size_t);
2276 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2277 unsigned long, unsigned long,
2278 unsigned long, unsigned long);
2279
2280 struct vm_unmapped_area_info {
2281 #define VM_UNMAPPED_AREA_TOPDOWN 1
2282 unsigned long flags;
2283 unsigned long length;
2284 unsigned long low_limit;
2285 unsigned long high_limit;
2286 unsigned long align_mask;
2287 unsigned long align_offset;
2288 };
2289
2290 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2291 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2292
2293 /*
2294 * Search for an unmapped address range.
2295 *
2296 * We are looking for a range that:
2297 * - does not intersect with any VMA;
2298 * - is contained within the [low_limit, high_limit) interval;
2299 * - is at least the desired size.
2300 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2301 */
2302 static inline unsigned long
2303 vm_unmapped_area(struct vm_unmapped_area_info *info)
2304 {
2305 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2306 return unmapped_area_topdown(info);
2307 else
2308 return unmapped_area(info);
2309 }
2310
2311 /* truncate.c */
2312 extern void truncate_inode_pages(struct address_space *, loff_t);
2313 extern void truncate_inode_pages_range(struct address_space *,
2314 loff_t lstart, loff_t lend);
2315 extern void truncate_inode_pages_final(struct address_space *);
2316
2317 /* generic vm_area_ops exported for stackable file systems */
2318 extern int filemap_fault(struct vm_fault *vmf);
2319 extern void filemap_map_pages(struct vm_fault *vmf,
2320 pgoff_t start_pgoff, pgoff_t end_pgoff);
2321 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2322
2323 /* mm/page-writeback.c */
2324 int __must_check write_one_page(struct page *page);
2325 void task_dirty_inc(struct task_struct *tsk);
2326
2327 /* readahead.c */
2328 #define VM_MAX_READAHEAD 128 /* kbytes */
2329 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2330
2331 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2332 pgoff_t offset, unsigned long nr_to_read);
2333
2334 void page_cache_sync_readahead(struct address_space *mapping,
2335 struct file_ra_state *ra,
2336 struct file *filp,
2337 pgoff_t offset,
2338 unsigned long size);
2339
2340 void page_cache_async_readahead(struct address_space *mapping,
2341 struct file_ra_state *ra,
2342 struct file *filp,
2343 struct page *pg,
2344 pgoff_t offset,
2345 unsigned long size);
2346
2347 extern unsigned long stack_guard_gap;
2348 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2349 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2350
2351 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2352 extern int expand_downwards(struct vm_area_struct *vma,
2353 unsigned long address);
2354 #if VM_GROWSUP
2355 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2356 #else
2357 #define expand_upwards(vma, address) (0)
2358 #endif
2359
2360 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2361 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2362 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2363 struct vm_area_struct **pprev);
2364
2365 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2366 NULL if none. Assume start_addr < end_addr. */
2367 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2368 {
2369 struct vm_area_struct * vma = find_vma(mm,start_addr);
2370
2371 if (vma && end_addr <= vma->vm_start)
2372 vma = NULL;
2373 return vma;
2374 }
2375
2376 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2377 {
2378 unsigned long vm_start = vma->vm_start;
2379
2380 if (vma->vm_flags & VM_GROWSDOWN) {
2381 vm_start -= stack_guard_gap;
2382 if (vm_start > vma->vm_start)
2383 vm_start = 0;
2384 }
2385 return vm_start;
2386 }
2387
2388 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2389 {
2390 unsigned long vm_end = vma->vm_end;
2391
2392 if (vma->vm_flags & VM_GROWSUP) {
2393 vm_end += stack_guard_gap;
2394 if (vm_end < vma->vm_end)
2395 vm_end = -PAGE_SIZE;
2396 }
2397 return vm_end;
2398 }
2399
2400 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2401 {
2402 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2403 }
2404
2405 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2406 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2407 unsigned long vm_start, unsigned long vm_end)
2408 {
2409 struct vm_area_struct *vma = find_vma(mm, vm_start);
2410
2411 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2412 vma = NULL;
2413
2414 return vma;
2415 }
2416
2417 static inline bool range_in_vma(struct vm_area_struct *vma,
2418 unsigned long start, unsigned long end)
2419 {
2420 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2421 }
2422
2423 #ifdef CONFIG_MMU
2424 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2425 void vma_set_page_prot(struct vm_area_struct *vma);
2426 #else
2427 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2428 {
2429 return __pgprot(0);
2430 }
2431 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2432 {
2433 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2434 }
2435 #endif
2436
2437 #ifdef CONFIG_NUMA_BALANCING
2438 unsigned long change_prot_numa(struct vm_area_struct *vma,
2439 unsigned long start, unsigned long end);
2440 #endif
2441
2442 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2443 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2444 unsigned long pfn, unsigned long size, pgprot_t);
2445 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2446 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2447 unsigned long pfn);
2448 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2449 unsigned long pfn, pgprot_t pgprot);
2450 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2451 pfn_t pfn);
2452 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2453 pfn_t pfn);
2454 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2455
2456
2457 struct page *follow_page_mask(struct vm_area_struct *vma,
2458 unsigned long address, unsigned int foll_flags,
2459 unsigned int *page_mask);
2460
2461 static inline struct page *follow_page(struct vm_area_struct *vma,
2462 unsigned long address, unsigned int foll_flags)
2463 {
2464 unsigned int unused_page_mask;
2465 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2466 }
2467
2468 #define FOLL_WRITE 0x01 /* check pte is writable */
2469 #define FOLL_TOUCH 0x02 /* mark page accessed */
2470 #define FOLL_GET 0x04 /* do get_page on page */
2471 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2472 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2473 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2474 * and return without waiting upon it */
2475 #define FOLL_POPULATE 0x40 /* fault in page */
2476 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2477 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2478 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2479 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2480 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2481 #define FOLL_MLOCK 0x1000 /* lock present pages */
2482 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2483 #define FOLL_COW 0x4000 /* internal GUP flag */
2484 #define FOLL_ANON 0x8000 /* don't do file mappings */
2485
2486 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2487 {
2488 if (vm_fault & VM_FAULT_OOM)
2489 return -ENOMEM;
2490 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2491 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2492 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2493 return -EFAULT;
2494 return 0;
2495 }
2496
2497 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2498 void *data);
2499 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2500 unsigned long size, pte_fn_t fn, void *data);
2501
2502
2503 #ifdef CONFIG_PAGE_POISONING
2504 extern bool page_poisoning_enabled(void);
2505 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2506 extern bool page_is_poisoned(struct page *page);
2507 #else
2508 static inline bool page_poisoning_enabled(void) { return false; }
2509 static inline void kernel_poison_pages(struct page *page, int numpages,
2510 int enable) { }
2511 static inline bool page_is_poisoned(struct page *page) { return false; }
2512 #endif
2513
2514 #ifdef CONFIG_DEBUG_PAGEALLOC
2515 extern bool _debug_pagealloc_enabled;
2516 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2517
2518 static inline bool debug_pagealloc_enabled(void)
2519 {
2520 return _debug_pagealloc_enabled;
2521 }
2522
2523 static inline void
2524 kernel_map_pages(struct page *page, int numpages, int enable)
2525 {
2526 if (!debug_pagealloc_enabled())
2527 return;
2528
2529 __kernel_map_pages(page, numpages, enable);
2530 }
2531 #ifdef CONFIG_HIBERNATION
2532 extern bool kernel_page_present(struct page *page);
2533 #endif /* CONFIG_HIBERNATION */
2534 #else /* CONFIG_DEBUG_PAGEALLOC */
2535 static inline void
2536 kernel_map_pages(struct page *page, int numpages, int enable) {}
2537 #ifdef CONFIG_HIBERNATION
2538 static inline bool kernel_page_present(struct page *page) { return true; }
2539 #endif /* CONFIG_HIBERNATION */
2540 static inline bool debug_pagealloc_enabled(void)
2541 {
2542 return false;
2543 }
2544 #endif /* CONFIG_DEBUG_PAGEALLOC */
2545
2546 #ifdef __HAVE_ARCH_GATE_AREA
2547 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2548 extern int in_gate_area_no_mm(unsigned long addr);
2549 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2550 #else
2551 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2552 {
2553 return NULL;
2554 }
2555 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2556 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2557 {
2558 return 0;
2559 }
2560 #endif /* __HAVE_ARCH_GATE_AREA */
2561
2562 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2563
2564 #ifdef CONFIG_SYSCTL
2565 extern int sysctl_drop_caches;
2566 int drop_caches_sysctl_handler(struct ctl_table *, int,
2567 void __user *, size_t *, loff_t *);
2568 #endif
2569
2570 void drop_slab(void);
2571 void drop_slab_node(int nid);
2572
2573 #ifndef CONFIG_MMU
2574 #define randomize_va_space 0
2575 #else
2576 extern int randomize_va_space;
2577 #endif
2578
2579 const char * arch_vma_name(struct vm_area_struct *vma);
2580 void print_vma_addr(char *prefix, unsigned long rip);
2581
2582 void sparse_mem_maps_populate_node(struct page **map_map,
2583 unsigned long pnum_begin,
2584 unsigned long pnum_end,
2585 unsigned long map_count,
2586 int nodeid);
2587
2588 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2589 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2590 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2591 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2592 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2593 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2594 void *vmemmap_alloc_block(unsigned long size, int node);
2595 struct vmem_altmap;
2596 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2597 struct vmem_altmap *altmap);
2598 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2599 {
2600 return __vmemmap_alloc_block_buf(size, node, NULL);
2601 }
2602
2603 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2604 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2605 int node);
2606 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2607 void vmemmap_populate_print_last(void);
2608 #ifdef CONFIG_MEMORY_HOTPLUG
2609 void vmemmap_free(unsigned long start, unsigned long end);
2610 #endif
2611 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2612 unsigned long nr_pages);
2613
2614 enum mf_flags {
2615 MF_COUNT_INCREASED = 1 << 0,
2616 MF_ACTION_REQUIRED = 1 << 1,
2617 MF_MUST_KILL = 1 << 2,
2618 MF_SOFT_OFFLINE = 1 << 3,
2619 };
2620 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2621 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2622 extern int unpoison_memory(unsigned long pfn);
2623 extern int get_hwpoison_page(struct page *page);
2624 #define put_hwpoison_page(page) put_page(page)
2625 extern int sysctl_memory_failure_early_kill;
2626 extern int sysctl_memory_failure_recovery;
2627 extern void shake_page(struct page *p, int access);
2628 extern atomic_long_t num_poisoned_pages;
2629 extern int soft_offline_page(struct page *page, int flags);
2630
2631
2632 /*
2633 * Error handlers for various types of pages.
2634 */
2635 enum mf_result {
2636 MF_IGNORED, /* Error: cannot be handled */
2637 MF_FAILED, /* Error: handling failed */
2638 MF_DELAYED, /* Will be handled later */
2639 MF_RECOVERED, /* Successfully recovered */
2640 };
2641
2642 enum mf_action_page_type {
2643 MF_MSG_KERNEL,
2644 MF_MSG_KERNEL_HIGH_ORDER,
2645 MF_MSG_SLAB,
2646 MF_MSG_DIFFERENT_COMPOUND,
2647 MF_MSG_POISONED_HUGE,
2648 MF_MSG_HUGE,
2649 MF_MSG_FREE_HUGE,
2650 MF_MSG_NON_PMD_HUGE,
2651 MF_MSG_UNMAP_FAILED,
2652 MF_MSG_DIRTY_SWAPCACHE,
2653 MF_MSG_CLEAN_SWAPCACHE,
2654 MF_MSG_DIRTY_MLOCKED_LRU,
2655 MF_MSG_CLEAN_MLOCKED_LRU,
2656 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2657 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2658 MF_MSG_DIRTY_LRU,
2659 MF_MSG_CLEAN_LRU,
2660 MF_MSG_TRUNCATED_LRU,
2661 MF_MSG_BUDDY,
2662 MF_MSG_BUDDY_2ND,
2663 MF_MSG_UNKNOWN,
2664 };
2665
2666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2667 extern void clear_huge_page(struct page *page,
2668 unsigned long addr_hint,
2669 unsigned int pages_per_huge_page);
2670 extern void copy_user_huge_page(struct page *dst, struct page *src,
2671 unsigned long addr, struct vm_area_struct *vma,
2672 unsigned int pages_per_huge_page);
2673 extern long copy_huge_page_from_user(struct page *dst_page,
2674 const void __user *usr_src,
2675 unsigned int pages_per_huge_page,
2676 bool allow_pagefault);
2677 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2678
2679 extern struct page_ext_operations debug_guardpage_ops;
2680
2681 #ifdef CONFIG_DEBUG_PAGEALLOC
2682 extern unsigned int _debug_guardpage_minorder;
2683 extern bool _debug_guardpage_enabled;
2684
2685 static inline unsigned int debug_guardpage_minorder(void)
2686 {
2687 return _debug_guardpage_minorder;
2688 }
2689
2690 static inline bool debug_guardpage_enabled(void)
2691 {
2692 return _debug_guardpage_enabled;
2693 }
2694
2695 static inline bool page_is_guard(struct page *page)
2696 {
2697 struct page_ext *page_ext;
2698
2699 if (!debug_guardpage_enabled())
2700 return false;
2701
2702 page_ext = lookup_page_ext(page);
2703 if (unlikely(!page_ext))
2704 return false;
2705
2706 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2707 }
2708 #else
2709 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2710 static inline bool debug_guardpage_enabled(void) { return false; }
2711 static inline bool page_is_guard(struct page *page) { return false; }
2712 #endif /* CONFIG_DEBUG_PAGEALLOC */
2713
2714 #if MAX_NUMNODES > 1
2715 void __init setup_nr_node_ids(void);
2716 #else
2717 static inline void setup_nr_node_ids(void) {}
2718 #endif
2719
2720 #endif /* __KERNEL__ */
2721 #endif /* _LINUX_MM_H */