]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm.h
mm: implement ->map_pages for page cache
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21
22 struct mempolicy;
23 struct anon_vma;
24 struct anon_vma_chain;
25 struct file_ra_state;
26 struct user_struct;
27 struct writeback_control;
28
29 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30 extern unsigned long max_mapnr;
31
32 static inline void set_max_mapnr(unsigned long limit)
33 {
34 max_mapnr = limit;
35 }
36 #else
37 static inline void set_max_mapnr(unsigned long limit) { }
38 #endif
39
40 extern unsigned long totalram_pages;
41 extern void * high_memory;
42 extern int page_cluster;
43
44 #ifdef CONFIG_SYSCTL
45 extern int sysctl_legacy_va_layout;
46 #else
47 #define sysctl_legacy_va_layout 0
48 #endif
49
50 #include <asm/page.h>
51 #include <asm/pgtable.h>
52 #include <asm/processor.h>
53
54 #ifndef __pa_symbol
55 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56 #endif
57
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60
61 extern int sysctl_overcommit_memory;
62 extern int sysctl_overcommit_ratio;
63 extern unsigned long sysctl_overcommit_kbytes;
64
65 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
70 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
72 /* to align the pointer to the (next) page boundary */
73 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
75 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
78 /*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
87 extern struct kmem_cache *vm_area_cachep;
88
89 #ifndef CONFIG_MMU
90 extern struct rb_root nommu_region_tree;
91 extern struct rw_semaphore nommu_region_sem;
92
93 extern unsigned int kobjsize(const void *objp);
94 #endif
95
96 /*
97 * vm_flags in vm_area_struct, see mm_types.h.
98 */
99 #define VM_NONE 0x00000000
100
101 #define VM_READ 0x00000001 /* currently active flags */
102 #define VM_WRITE 0x00000002
103 #define VM_EXEC 0x00000004
104 #define VM_SHARED 0x00000008
105
106 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108 #define VM_MAYWRITE 0x00000020
109 #define VM_MAYEXEC 0x00000040
110 #define VM_MAYSHARE 0x00000080
111
112 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
116 #define VM_LOCKED 0x00002000
117 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131
132 #ifdef CONFIG_MEM_SOFT_DIRTY
133 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134 #else
135 # define VM_SOFTDIRTY 0
136 #endif
137
138 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142
143 #if defined(CONFIG_X86)
144 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145 #elif defined(CONFIG_PPC)
146 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147 #elif defined(CONFIG_PARISC)
148 # define VM_GROWSUP VM_ARCH_1
149 #elif defined(CONFIG_METAG)
150 # define VM_GROWSUP VM_ARCH_1
151 #elif defined(CONFIG_IA64)
152 # define VM_GROWSUP VM_ARCH_1
153 #elif !defined(CONFIG_MMU)
154 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155 #endif
156
157 #ifndef VM_GROWSUP
158 # define VM_GROWSUP VM_NONE
159 #endif
160
161 /* Bits set in the VMA until the stack is in its final location */
162 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
164 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 #endif
167
168 #ifdef CONFIG_STACK_GROWSUP
169 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 #else
171 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 #endif
173
174 /*
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 */
178 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179
180 /* This mask defines which mm->def_flags a process can inherit its parent */
181 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182
183 /*
184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask..
186 */
187 extern pgprot_t protection_map[16];
188
189 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
191 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
192 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
193 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
194 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
195 #define FAULT_FLAG_TRIED 0x40 /* second try */
196 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
197
198 /*
199 * vm_fault is filled by the the pagefault handler and passed to the vma's
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
202 *
203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
205 */
206 struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */
210
211 struct page *page; /* ->fault handlers should return a
212 * page here, unless VM_FAULT_NOPAGE
213 * is set (which is also implied by
214 * VM_FAULT_ERROR).
215 */
216 /* for ->map_pages() only */
217 pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 * max_pgoff inclusive */
219 pte_t *pte; /* pte entry associated with ->pgoff */
220 };
221
222 /*
223 * These are the virtual MM functions - opening of an area, closing and
224 * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 * to the functions called when a no-page or a wp-page exception occurs.
226 */
227 struct vm_operations_struct {
228 void (*open)(struct vm_area_struct * area);
229 void (*close)(struct vm_area_struct * area);
230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
232
233 /* notification that a previously read-only page is about to become
234 * writable, if an error is returned it will cause a SIGBUS */
235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
236
237 /* called by access_process_vm when get_user_pages() fails, typically
238 * for use by special VMAs that can switch between memory and hardware
239 */
240 int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 void *buf, int len, int write);
242 #ifdef CONFIG_NUMA
243 /*
244 * set_policy() op must add a reference to any non-NULL @new mempolicy
245 * to hold the policy upon return. Caller should pass NULL @new to
246 * remove a policy and fall back to surrounding context--i.e. do not
247 * install a MPOL_DEFAULT policy, nor the task or system default
248 * mempolicy.
249 */
250 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
251
252 /*
253 * get_policy() op must add reference [mpol_get()] to any policy at
254 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
255 * in mm/mempolicy.c will do this automatically.
256 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
257 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
258 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
259 * must return NULL--i.e., do not "fallback" to task or system default
260 * policy.
261 */
262 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
263 unsigned long addr);
264 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
265 const nodemask_t *to, unsigned long flags);
266 #endif
267 /* called by sys_remap_file_pages() to populate non-linear mapping */
268 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
269 unsigned long size, pgoff_t pgoff);
270 };
271
272 struct mmu_gather;
273 struct inode;
274
275 #define page_private(page) ((page)->private)
276 #define set_page_private(page, v) ((page)->private = (v))
277
278 /* It's valid only if the page is free path or free_list */
279 static inline void set_freepage_migratetype(struct page *page, int migratetype)
280 {
281 page->index = migratetype;
282 }
283
284 /* It's valid only if the page is free path or free_list */
285 static inline int get_freepage_migratetype(struct page *page)
286 {
287 return page->index;
288 }
289
290 /*
291 * FIXME: take this include out, include page-flags.h in
292 * files which need it (119 of them)
293 */
294 #include <linux/page-flags.h>
295 #include <linux/huge_mm.h>
296
297 /*
298 * Methods to modify the page usage count.
299 *
300 * What counts for a page usage:
301 * - cache mapping (page->mapping)
302 * - private data (page->private)
303 * - page mapped in a task's page tables, each mapping
304 * is counted separately
305 *
306 * Also, many kernel routines increase the page count before a critical
307 * routine so they can be sure the page doesn't go away from under them.
308 */
309
310 /*
311 * Drop a ref, return true if the refcount fell to zero (the page has no users)
312 */
313 static inline int put_page_testzero(struct page *page)
314 {
315 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
316 return atomic_dec_and_test(&page->_count);
317 }
318
319 /*
320 * Try to grab a ref unless the page has a refcount of zero, return false if
321 * that is the case.
322 * This can be called when MMU is off so it must not access
323 * any of the virtual mappings.
324 */
325 static inline int get_page_unless_zero(struct page *page)
326 {
327 return atomic_inc_not_zero(&page->_count);
328 }
329
330 /*
331 * Try to drop a ref unless the page has a refcount of one, return false if
332 * that is the case.
333 * This is to make sure that the refcount won't become zero after this drop.
334 * This can be called when MMU is off so it must not access
335 * any of the virtual mappings.
336 */
337 static inline int put_page_unless_one(struct page *page)
338 {
339 return atomic_add_unless(&page->_count, -1, 1);
340 }
341
342 extern int page_is_ram(unsigned long pfn);
343
344 /* Support for virtually mapped pages */
345 struct page *vmalloc_to_page(const void *addr);
346 unsigned long vmalloc_to_pfn(const void *addr);
347
348 /*
349 * Determine if an address is within the vmalloc range
350 *
351 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
352 * is no special casing required.
353 */
354 static inline int is_vmalloc_addr(const void *x)
355 {
356 #ifdef CONFIG_MMU
357 unsigned long addr = (unsigned long)x;
358
359 return addr >= VMALLOC_START && addr < VMALLOC_END;
360 #else
361 return 0;
362 #endif
363 }
364 #ifdef CONFIG_MMU
365 extern int is_vmalloc_or_module_addr(const void *x);
366 #else
367 static inline int is_vmalloc_or_module_addr(const void *x)
368 {
369 return 0;
370 }
371 #endif
372
373 static inline void compound_lock(struct page *page)
374 {
375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
376 VM_BUG_ON_PAGE(PageSlab(page), page);
377 bit_spin_lock(PG_compound_lock, &page->flags);
378 #endif
379 }
380
381 static inline void compound_unlock(struct page *page)
382 {
383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
384 VM_BUG_ON_PAGE(PageSlab(page), page);
385 bit_spin_unlock(PG_compound_lock, &page->flags);
386 #endif
387 }
388
389 static inline unsigned long compound_lock_irqsave(struct page *page)
390 {
391 unsigned long uninitialized_var(flags);
392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
393 local_irq_save(flags);
394 compound_lock(page);
395 #endif
396 return flags;
397 }
398
399 static inline void compound_unlock_irqrestore(struct page *page,
400 unsigned long flags)
401 {
402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
403 compound_unlock(page);
404 local_irq_restore(flags);
405 #endif
406 }
407
408 static inline struct page *compound_head(struct page *page)
409 {
410 if (unlikely(PageTail(page))) {
411 struct page *head = page->first_page;
412
413 /*
414 * page->first_page may be a dangling pointer to an old
415 * compound page, so recheck that it is still a tail
416 * page before returning.
417 */
418 smp_rmb();
419 if (likely(PageTail(page)))
420 return head;
421 }
422 return page;
423 }
424
425 /*
426 * The atomic page->_mapcount, starts from -1: so that transitions
427 * both from it and to it can be tracked, using atomic_inc_and_test
428 * and atomic_add_negative(-1).
429 */
430 static inline void page_mapcount_reset(struct page *page)
431 {
432 atomic_set(&(page)->_mapcount, -1);
433 }
434
435 static inline int page_mapcount(struct page *page)
436 {
437 return atomic_read(&(page)->_mapcount) + 1;
438 }
439
440 static inline int page_count(struct page *page)
441 {
442 return atomic_read(&compound_head(page)->_count);
443 }
444
445 #ifdef CONFIG_HUGETLB_PAGE
446 extern int PageHeadHuge(struct page *page_head);
447 #else /* CONFIG_HUGETLB_PAGE */
448 static inline int PageHeadHuge(struct page *page_head)
449 {
450 return 0;
451 }
452 #endif /* CONFIG_HUGETLB_PAGE */
453
454 static inline bool __compound_tail_refcounted(struct page *page)
455 {
456 return !PageSlab(page) && !PageHeadHuge(page);
457 }
458
459 /*
460 * This takes a head page as parameter and tells if the
461 * tail page reference counting can be skipped.
462 *
463 * For this to be safe, PageSlab and PageHeadHuge must remain true on
464 * any given page where they return true here, until all tail pins
465 * have been released.
466 */
467 static inline bool compound_tail_refcounted(struct page *page)
468 {
469 VM_BUG_ON_PAGE(!PageHead(page), page);
470 return __compound_tail_refcounted(page);
471 }
472
473 static inline void get_huge_page_tail(struct page *page)
474 {
475 /*
476 * __split_huge_page_refcount() cannot run from under us.
477 */
478 VM_BUG_ON_PAGE(!PageTail(page), page);
479 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
480 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
481 if (compound_tail_refcounted(page->first_page))
482 atomic_inc(&page->_mapcount);
483 }
484
485 extern bool __get_page_tail(struct page *page);
486
487 static inline void get_page(struct page *page)
488 {
489 if (unlikely(PageTail(page)))
490 if (likely(__get_page_tail(page)))
491 return;
492 /*
493 * Getting a normal page or the head of a compound page
494 * requires to already have an elevated page->_count.
495 */
496 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
497 atomic_inc(&page->_count);
498 }
499
500 static inline struct page *virt_to_head_page(const void *x)
501 {
502 struct page *page = virt_to_page(x);
503 return compound_head(page);
504 }
505
506 /*
507 * Setup the page count before being freed into the page allocator for
508 * the first time (boot or memory hotplug)
509 */
510 static inline void init_page_count(struct page *page)
511 {
512 atomic_set(&page->_count, 1);
513 }
514
515 /*
516 * PageBuddy() indicate that the page is free and in the buddy system
517 * (see mm/page_alloc.c).
518 *
519 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
520 * -2 so that an underflow of the page_mapcount() won't be mistaken
521 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
522 * efficiently by most CPU architectures.
523 */
524 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
525
526 static inline int PageBuddy(struct page *page)
527 {
528 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
529 }
530
531 static inline void __SetPageBuddy(struct page *page)
532 {
533 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
534 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
535 }
536
537 static inline void __ClearPageBuddy(struct page *page)
538 {
539 VM_BUG_ON_PAGE(!PageBuddy(page), page);
540 atomic_set(&page->_mapcount, -1);
541 }
542
543 void put_page(struct page *page);
544 void put_pages_list(struct list_head *pages);
545
546 void split_page(struct page *page, unsigned int order);
547 int split_free_page(struct page *page);
548
549 /*
550 * Compound pages have a destructor function. Provide a
551 * prototype for that function and accessor functions.
552 * These are _only_ valid on the head of a PG_compound page.
553 */
554 typedef void compound_page_dtor(struct page *);
555
556 static inline void set_compound_page_dtor(struct page *page,
557 compound_page_dtor *dtor)
558 {
559 page[1].lru.next = (void *)dtor;
560 }
561
562 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
563 {
564 return (compound_page_dtor *)page[1].lru.next;
565 }
566
567 static inline int compound_order(struct page *page)
568 {
569 if (!PageHead(page))
570 return 0;
571 return (unsigned long)page[1].lru.prev;
572 }
573
574 static inline void set_compound_order(struct page *page, unsigned long order)
575 {
576 page[1].lru.prev = (void *)order;
577 }
578
579 #ifdef CONFIG_MMU
580 /*
581 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
582 * servicing faults for write access. In the normal case, do always want
583 * pte_mkwrite. But get_user_pages can cause write faults for mappings
584 * that do not have writing enabled, when used by access_process_vm.
585 */
586 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
587 {
588 if (likely(vma->vm_flags & VM_WRITE))
589 pte = pte_mkwrite(pte);
590 return pte;
591 }
592
593 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
594 struct page *page, pte_t *pte, bool write, bool anon);
595 #endif
596
597 /*
598 * Multiple processes may "see" the same page. E.g. for untouched
599 * mappings of /dev/null, all processes see the same page full of
600 * zeroes, and text pages of executables and shared libraries have
601 * only one copy in memory, at most, normally.
602 *
603 * For the non-reserved pages, page_count(page) denotes a reference count.
604 * page_count() == 0 means the page is free. page->lru is then used for
605 * freelist management in the buddy allocator.
606 * page_count() > 0 means the page has been allocated.
607 *
608 * Pages are allocated by the slab allocator in order to provide memory
609 * to kmalloc and kmem_cache_alloc. In this case, the management of the
610 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
611 * unless a particular usage is carefully commented. (the responsibility of
612 * freeing the kmalloc memory is the caller's, of course).
613 *
614 * A page may be used by anyone else who does a __get_free_page().
615 * In this case, page_count still tracks the references, and should only
616 * be used through the normal accessor functions. The top bits of page->flags
617 * and page->virtual store page management information, but all other fields
618 * are unused and could be used privately, carefully. The management of this
619 * page is the responsibility of the one who allocated it, and those who have
620 * subsequently been given references to it.
621 *
622 * The other pages (we may call them "pagecache pages") are completely
623 * managed by the Linux memory manager: I/O, buffers, swapping etc.
624 * The following discussion applies only to them.
625 *
626 * A pagecache page contains an opaque `private' member, which belongs to the
627 * page's address_space. Usually, this is the address of a circular list of
628 * the page's disk buffers. PG_private must be set to tell the VM to call
629 * into the filesystem to release these pages.
630 *
631 * A page may belong to an inode's memory mapping. In this case, page->mapping
632 * is the pointer to the inode, and page->index is the file offset of the page,
633 * in units of PAGE_CACHE_SIZE.
634 *
635 * If pagecache pages are not associated with an inode, they are said to be
636 * anonymous pages. These may become associated with the swapcache, and in that
637 * case PG_swapcache is set, and page->private is an offset into the swapcache.
638 *
639 * In either case (swapcache or inode backed), the pagecache itself holds one
640 * reference to the page. Setting PG_private should also increment the
641 * refcount. The each user mapping also has a reference to the page.
642 *
643 * The pagecache pages are stored in a per-mapping radix tree, which is
644 * rooted at mapping->page_tree, and indexed by offset.
645 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
646 * lists, we instead now tag pages as dirty/writeback in the radix tree.
647 *
648 * All pagecache pages may be subject to I/O:
649 * - inode pages may need to be read from disk,
650 * - inode pages which have been modified and are MAP_SHARED may need
651 * to be written back to the inode on disk,
652 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
653 * modified may need to be swapped out to swap space and (later) to be read
654 * back into memory.
655 */
656
657 /*
658 * The zone field is never updated after free_area_init_core()
659 * sets it, so none of the operations on it need to be atomic.
660 */
661
662 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
663 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
664 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
665 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
666 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
667
668 /*
669 * Define the bit shifts to access each section. For non-existent
670 * sections we define the shift as 0; that plus a 0 mask ensures
671 * the compiler will optimise away reference to them.
672 */
673 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
674 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
675 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
676 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
677
678 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
679 #ifdef NODE_NOT_IN_PAGE_FLAGS
680 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
681 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
682 SECTIONS_PGOFF : ZONES_PGOFF)
683 #else
684 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
685 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
686 NODES_PGOFF : ZONES_PGOFF)
687 #endif
688
689 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
690
691 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
692 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
693 #endif
694
695 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
696 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
697 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
698 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
699 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
700
701 static inline enum zone_type page_zonenum(const struct page *page)
702 {
703 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
704 }
705
706 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
707 #define SECTION_IN_PAGE_FLAGS
708 #endif
709
710 /*
711 * The identification function is mainly used by the buddy allocator for
712 * determining if two pages could be buddies. We are not really identifying
713 * the zone since we could be using the section number id if we do not have
714 * node id available in page flags.
715 * We only guarantee that it will return the same value for two combinable
716 * pages in a zone.
717 */
718 static inline int page_zone_id(struct page *page)
719 {
720 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
721 }
722
723 static inline int zone_to_nid(struct zone *zone)
724 {
725 #ifdef CONFIG_NUMA
726 return zone->node;
727 #else
728 return 0;
729 #endif
730 }
731
732 #ifdef NODE_NOT_IN_PAGE_FLAGS
733 extern int page_to_nid(const struct page *page);
734 #else
735 static inline int page_to_nid(const struct page *page)
736 {
737 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
738 }
739 #endif
740
741 #ifdef CONFIG_NUMA_BALANCING
742 static inline int cpu_pid_to_cpupid(int cpu, int pid)
743 {
744 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
745 }
746
747 static inline int cpupid_to_pid(int cpupid)
748 {
749 return cpupid & LAST__PID_MASK;
750 }
751
752 static inline int cpupid_to_cpu(int cpupid)
753 {
754 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
755 }
756
757 static inline int cpupid_to_nid(int cpupid)
758 {
759 return cpu_to_node(cpupid_to_cpu(cpupid));
760 }
761
762 static inline bool cpupid_pid_unset(int cpupid)
763 {
764 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
765 }
766
767 static inline bool cpupid_cpu_unset(int cpupid)
768 {
769 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
770 }
771
772 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
773 {
774 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
775 }
776
777 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
778 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
779 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
780 {
781 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
782 }
783
784 static inline int page_cpupid_last(struct page *page)
785 {
786 return page->_last_cpupid;
787 }
788 static inline void page_cpupid_reset_last(struct page *page)
789 {
790 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
791 }
792 #else
793 static inline int page_cpupid_last(struct page *page)
794 {
795 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
796 }
797
798 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
799
800 static inline void page_cpupid_reset_last(struct page *page)
801 {
802 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
803
804 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
805 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
806 }
807 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
808 #else /* !CONFIG_NUMA_BALANCING */
809 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
810 {
811 return page_to_nid(page); /* XXX */
812 }
813
814 static inline int page_cpupid_last(struct page *page)
815 {
816 return page_to_nid(page); /* XXX */
817 }
818
819 static inline int cpupid_to_nid(int cpupid)
820 {
821 return -1;
822 }
823
824 static inline int cpupid_to_pid(int cpupid)
825 {
826 return -1;
827 }
828
829 static inline int cpupid_to_cpu(int cpupid)
830 {
831 return -1;
832 }
833
834 static inline int cpu_pid_to_cpupid(int nid, int pid)
835 {
836 return -1;
837 }
838
839 static inline bool cpupid_pid_unset(int cpupid)
840 {
841 return 1;
842 }
843
844 static inline void page_cpupid_reset_last(struct page *page)
845 {
846 }
847
848 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
849 {
850 return false;
851 }
852 #endif /* CONFIG_NUMA_BALANCING */
853
854 static inline struct zone *page_zone(const struct page *page)
855 {
856 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
857 }
858
859 #ifdef SECTION_IN_PAGE_FLAGS
860 static inline void set_page_section(struct page *page, unsigned long section)
861 {
862 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
863 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
864 }
865
866 static inline unsigned long page_to_section(const struct page *page)
867 {
868 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
869 }
870 #endif
871
872 static inline void set_page_zone(struct page *page, enum zone_type zone)
873 {
874 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
875 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
876 }
877
878 static inline void set_page_node(struct page *page, unsigned long node)
879 {
880 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
881 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
882 }
883
884 static inline void set_page_links(struct page *page, enum zone_type zone,
885 unsigned long node, unsigned long pfn)
886 {
887 set_page_zone(page, zone);
888 set_page_node(page, node);
889 #ifdef SECTION_IN_PAGE_FLAGS
890 set_page_section(page, pfn_to_section_nr(pfn));
891 #endif
892 }
893
894 /*
895 * Some inline functions in vmstat.h depend on page_zone()
896 */
897 #include <linux/vmstat.h>
898
899 static __always_inline void *lowmem_page_address(const struct page *page)
900 {
901 return __va(PFN_PHYS(page_to_pfn(page)));
902 }
903
904 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
905 #define HASHED_PAGE_VIRTUAL
906 #endif
907
908 #if defined(WANT_PAGE_VIRTUAL)
909 static inline void *page_address(const struct page *page)
910 {
911 return page->virtual;
912 }
913 static inline void set_page_address(struct page *page, void *address)
914 {
915 page->virtual = address;
916 }
917 #define page_address_init() do { } while(0)
918 #endif
919
920 #if defined(HASHED_PAGE_VIRTUAL)
921 void *page_address(const struct page *page);
922 void set_page_address(struct page *page, void *virtual);
923 void page_address_init(void);
924 #endif
925
926 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
927 #define page_address(page) lowmem_page_address(page)
928 #define set_page_address(page, address) do { } while(0)
929 #define page_address_init() do { } while(0)
930 #endif
931
932 /*
933 * On an anonymous page mapped into a user virtual memory area,
934 * page->mapping points to its anon_vma, not to a struct address_space;
935 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
936 *
937 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
938 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
939 * and then page->mapping points, not to an anon_vma, but to a private
940 * structure which KSM associates with that merged page. See ksm.h.
941 *
942 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
943 *
944 * Please note that, confusingly, "page_mapping" refers to the inode
945 * address_space which maps the page from disk; whereas "page_mapped"
946 * refers to user virtual address space into which the page is mapped.
947 */
948 #define PAGE_MAPPING_ANON 1
949 #define PAGE_MAPPING_KSM 2
950 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
951
952 extern struct address_space *page_mapping(struct page *page);
953
954 /* Neutral page->mapping pointer to address_space or anon_vma or other */
955 static inline void *page_rmapping(struct page *page)
956 {
957 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
958 }
959
960 extern struct address_space *__page_file_mapping(struct page *);
961
962 static inline
963 struct address_space *page_file_mapping(struct page *page)
964 {
965 if (unlikely(PageSwapCache(page)))
966 return __page_file_mapping(page);
967
968 return page->mapping;
969 }
970
971 static inline int PageAnon(struct page *page)
972 {
973 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
974 }
975
976 /*
977 * Return the pagecache index of the passed page. Regular pagecache pages
978 * use ->index whereas swapcache pages use ->private
979 */
980 static inline pgoff_t page_index(struct page *page)
981 {
982 if (unlikely(PageSwapCache(page)))
983 return page_private(page);
984 return page->index;
985 }
986
987 extern pgoff_t __page_file_index(struct page *page);
988
989 /*
990 * Return the file index of the page. Regular pagecache pages use ->index
991 * whereas swapcache pages use swp_offset(->private)
992 */
993 static inline pgoff_t page_file_index(struct page *page)
994 {
995 if (unlikely(PageSwapCache(page)))
996 return __page_file_index(page);
997
998 return page->index;
999 }
1000
1001 /*
1002 * Return true if this page is mapped into pagetables.
1003 */
1004 static inline int page_mapped(struct page *page)
1005 {
1006 return atomic_read(&(page)->_mapcount) >= 0;
1007 }
1008
1009 /*
1010 * Different kinds of faults, as returned by handle_mm_fault().
1011 * Used to decide whether a process gets delivered SIGBUS or
1012 * just gets major/minor fault counters bumped up.
1013 */
1014
1015 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1016
1017 #define VM_FAULT_OOM 0x0001
1018 #define VM_FAULT_SIGBUS 0x0002
1019 #define VM_FAULT_MAJOR 0x0004
1020 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1021 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1022 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1023
1024 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1025 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1026 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1027 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1028
1029 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1030
1031 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1032 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1033
1034 /* Encode hstate index for a hwpoisoned large page */
1035 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1036 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1037
1038 /*
1039 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1040 */
1041 extern void pagefault_out_of_memory(void);
1042
1043 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1044
1045 /*
1046 * Flags passed to show_mem() and show_free_areas() to suppress output in
1047 * various contexts.
1048 */
1049 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1050
1051 extern void show_free_areas(unsigned int flags);
1052 extern bool skip_free_areas_node(unsigned int flags, int nid);
1053
1054 int shmem_zero_setup(struct vm_area_struct *);
1055 #ifdef CONFIG_SHMEM
1056 bool shmem_mapping(struct address_space *mapping);
1057 #else
1058 static inline bool shmem_mapping(struct address_space *mapping)
1059 {
1060 return false;
1061 }
1062 #endif
1063
1064 extern int can_do_mlock(void);
1065 extern int user_shm_lock(size_t, struct user_struct *);
1066 extern void user_shm_unlock(size_t, struct user_struct *);
1067
1068 /*
1069 * Parameter block passed down to zap_pte_range in exceptional cases.
1070 */
1071 struct zap_details {
1072 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1073 struct address_space *check_mapping; /* Check page->mapping if set */
1074 pgoff_t first_index; /* Lowest page->index to unmap */
1075 pgoff_t last_index; /* Highest page->index to unmap */
1076 };
1077
1078 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1079 pte_t pte);
1080
1081 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1082 unsigned long size);
1083 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1084 unsigned long size, struct zap_details *);
1085 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1086 unsigned long start, unsigned long end);
1087
1088 /**
1089 * mm_walk - callbacks for walk_page_range
1090 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1091 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1092 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1093 * this handler is required to be able to handle
1094 * pmd_trans_huge() pmds. They may simply choose to
1095 * split_huge_page() instead of handling it explicitly.
1096 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1097 * @pte_hole: if set, called for each hole at all levels
1098 * @hugetlb_entry: if set, called for each hugetlb entry
1099 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1100 * is used.
1101 *
1102 * (see walk_page_range for more details)
1103 */
1104 struct mm_walk {
1105 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1106 unsigned long next, struct mm_walk *walk);
1107 int (*pud_entry)(pud_t *pud, unsigned long addr,
1108 unsigned long next, struct mm_walk *walk);
1109 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1110 unsigned long next, struct mm_walk *walk);
1111 int (*pte_entry)(pte_t *pte, unsigned long addr,
1112 unsigned long next, struct mm_walk *walk);
1113 int (*pte_hole)(unsigned long addr, unsigned long next,
1114 struct mm_walk *walk);
1115 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1116 unsigned long addr, unsigned long next,
1117 struct mm_walk *walk);
1118 struct mm_struct *mm;
1119 void *private;
1120 };
1121
1122 int walk_page_range(unsigned long addr, unsigned long end,
1123 struct mm_walk *walk);
1124 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1125 unsigned long end, unsigned long floor, unsigned long ceiling);
1126 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1127 struct vm_area_struct *vma);
1128 void unmap_mapping_range(struct address_space *mapping,
1129 loff_t const holebegin, loff_t const holelen, int even_cows);
1130 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1131 unsigned long *pfn);
1132 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1133 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1134 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1135 void *buf, int len, int write);
1136
1137 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1138 loff_t const holebegin, loff_t const holelen)
1139 {
1140 unmap_mapping_range(mapping, holebegin, holelen, 0);
1141 }
1142
1143 extern void truncate_pagecache(struct inode *inode, loff_t new);
1144 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1145 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1146 int truncate_inode_page(struct address_space *mapping, struct page *page);
1147 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1148 int invalidate_inode_page(struct page *page);
1149
1150 #ifdef CONFIG_MMU
1151 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1152 unsigned long address, unsigned int flags);
1153 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1154 unsigned long address, unsigned int fault_flags);
1155 #else
1156 static inline int handle_mm_fault(struct mm_struct *mm,
1157 struct vm_area_struct *vma, unsigned long address,
1158 unsigned int flags)
1159 {
1160 /* should never happen if there's no MMU */
1161 BUG();
1162 return VM_FAULT_SIGBUS;
1163 }
1164 static inline int fixup_user_fault(struct task_struct *tsk,
1165 struct mm_struct *mm, unsigned long address,
1166 unsigned int fault_flags)
1167 {
1168 /* should never happen if there's no MMU */
1169 BUG();
1170 return -EFAULT;
1171 }
1172 #endif
1173
1174 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1175 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1176 void *buf, int len, int write);
1177
1178 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1179 unsigned long start, unsigned long nr_pages,
1180 unsigned int foll_flags, struct page **pages,
1181 struct vm_area_struct **vmas, int *nonblocking);
1182 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1183 unsigned long start, unsigned long nr_pages,
1184 int write, int force, struct page **pages,
1185 struct vm_area_struct **vmas);
1186 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1187 struct page **pages);
1188 struct kvec;
1189 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1190 struct page **pages);
1191 int get_kernel_page(unsigned long start, int write, struct page **pages);
1192 struct page *get_dump_page(unsigned long addr);
1193
1194 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1195 extern void do_invalidatepage(struct page *page, unsigned int offset,
1196 unsigned int length);
1197
1198 int __set_page_dirty_nobuffers(struct page *page);
1199 int __set_page_dirty_no_writeback(struct page *page);
1200 int redirty_page_for_writepage(struct writeback_control *wbc,
1201 struct page *page);
1202 void account_page_dirtied(struct page *page, struct address_space *mapping);
1203 void account_page_writeback(struct page *page);
1204 int set_page_dirty(struct page *page);
1205 int set_page_dirty_lock(struct page *page);
1206 int clear_page_dirty_for_io(struct page *page);
1207
1208 /* Is the vma a continuation of the stack vma above it? */
1209 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1210 {
1211 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1212 }
1213
1214 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1215 unsigned long addr)
1216 {
1217 return (vma->vm_flags & VM_GROWSDOWN) &&
1218 (vma->vm_start == addr) &&
1219 !vma_growsdown(vma->vm_prev, addr);
1220 }
1221
1222 /* Is the vma a continuation of the stack vma below it? */
1223 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1224 {
1225 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1226 }
1227
1228 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1229 unsigned long addr)
1230 {
1231 return (vma->vm_flags & VM_GROWSUP) &&
1232 (vma->vm_end == addr) &&
1233 !vma_growsup(vma->vm_next, addr);
1234 }
1235
1236 extern pid_t
1237 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1238
1239 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1240 unsigned long old_addr, struct vm_area_struct *new_vma,
1241 unsigned long new_addr, unsigned long len,
1242 bool need_rmap_locks);
1243 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1244 unsigned long end, pgprot_t newprot,
1245 int dirty_accountable, int prot_numa);
1246 extern int mprotect_fixup(struct vm_area_struct *vma,
1247 struct vm_area_struct **pprev, unsigned long start,
1248 unsigned long end, unsigned long newflags);
1249
1250 /*
1251 * doesn't attempt to fault and will return short.
1252 */
1253 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1254 struct page **pages);
1255 /*
1256 * per-process(per-mm_struct) statistics.
1257 */
1258 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1259 {
1260 long val = atomic_long_read(&mm->rss_stat.count[member]);
1261
1262 #ifdef SPLIT_RSS_COUNTING
1263 /*
1264 * counter is updated in asynchronous manner and may go to minus.
1265 * But it's never be expected number for users.
1266 */
1267 if (val < 0)
1268 val = 0;
1269 #endif
1270 return (unsigned long)val;
1271 }
1272
1273 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1274 {
1275 atomic_long_add(value, &mm->rss_stat.count[member]);
1276 }
1277
1278 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1279 {
1280 atomic_long_inc(&mm->rss_stat.count[member]);
1281 }
1282
1283 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1284 {
1285 atomic_long_dec(&mm->rss_stat.count[member]);
1286 }
1287
1288 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1289 {
1290 return get_mm_counter(mm, MM_FILEPAGES) +
1291 get_mm_counter(mm, MM_ANONPAGES);
1292 }
1293
1294 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1295 {
1296 return max(mm->hiwater_rss, get_mm_rss(mm));
1297 }
1298
1299 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1300 {
1301 return max(mm->hiwater_vm, mm->total_vm);
1302 }
1303
1304 static inline void update_hiwater_rss(struct mm_struct *mm)
1305 {
1306 unsigned long _rss = get_mm_rss(mm);
1307
1308 if ((mm)->hiwater_rss < _rss)
1309 (mm)->hiwater_rss = _rss;
1310 }
1311
1312 static inline void update_hiwater_vm(struct mm_struct *mm)
1313 {
1314 if (mm->hiwater_vm < mm->total_vm)
1315 mm->hiwater_vm = mm->total_vm;
1316 }
1317
1318 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1319 struct mm_struct *mm)
1320 {
1321 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1322
1323 if (*maxrss < hiwater_rss)
1324 *maxrss = hiwater_rss;
1325 }
1326
1327 #if defined(SPLIT_RSS_COUNTING)
1328 void sync_mm_rss(struct mm_struct *mm);
1329 #else
1330 static inline void sync_mm_rss(struct mm_struct *mm)
1331 {
1332 }
1333 #endif
1334
1335 int vma_wants_writenotify(struct vm_area_struct *vma);
1336
1337 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1338 spinlock_t **ptl);
1339 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1340 spinlock_t **ptl)
1341 {
1342 pte_t *ptep;
1343 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1344 return ptep;
1345 }
1346
1347 #ifdef __PAGETABLE_PUD_FOLDED
1348 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1349 unsigned long address)
1350 {
1351 return 0;
1352 }
1353 #else
1354 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1355 #endif
1356
1357 #ifdef __PAGETABLE_PMD_FOLDED
1358 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1359 unsigned long address)
1360 {
1361 return 0;
1362 }
1363 #else
1364 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1365 #endif
1366
1367 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1368 pmd_t *pmd, unsigned long address);
1369 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1370
1371 /*
1372 * The following ifdef needed to get the 4level-fixup.h header to work.
1373 * Remove it when 4level-fixup.h has been removed.
1374 */
1375 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1376 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1377 {
1378 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1379 NULL: pud_offset(pgd, address);
1380 }
1381
1382 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1383 {
1384 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1385 NULL: pmd_offset(pud, address);
1386 }
1387 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1388
1389 #if USE_SPLIT_PTE_PTLOCKS
1390 #if ALLOC_SPLIT_PTLOCKS
1391 void __init ptlock_cache_init(void);
1392 extern bool ptlock_alloc(struct page *page);
1393 extern void ptlock_free(struct page *page);
1394
1395 static inline spinlock_t *ptlock_ptr(struct page *page)
1396 {
1397 return page->ptl;
1398 }
1399 #else /* ALLOC_SPLIT_PTLOCKS */
1400 static inline void ptlock_cache_init(void)
1401 {
1402 }
1403
1404 static inline bool ptlock_alloc(struct page *page)
1405 {
1406 return true;
1407 }
1408
1409 static inline void ptlock_free(struct page *page)
1410 {
1411 }
1412
1413 static inline spinlock_t *ptlock_ptr(struct page *page)
1414 {
1415 return &page->ptl;
1416 }
1417 #endif /* ALLOC_SPLIT_PTLOCKS */
1418
1419 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1420 {
1421 return ptlock_ptr(pmd_page(*pmd));
1422 }
1423
1424 static inline bool ptlock_init(struct page *page)
1425 {
1426 /*
1427 * prep_new_page() initialize page->private (and therefore page->ptl)
1428 * with 0. Make sure nobody took it in use in between.
1429 *
1430 * It can happen if arch try to use slab for page table allocation:
1431 * slab code uses page->slab_cache and page->first_page (for tail
1432 * pages), which share storage with page->ptl.
1433 */
1434 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1435 if (!ptlock_alloc(page))
1436 return false;
1437 spin_lock_init(ptlock_ptr(page));
1438 return true;
1439 }
1440
1441 /* Reset page->mapping so free_pages_check won't complain. */
1442 static inline void pte_lock_deinit(struct page *page)
1443 {
1444 page->mapping = NULL;
1445 ptlock_free(page);
1446 }
1447
1448 #else /* !USE_SPLIT_PTE_PTLOCKS */
1449 /*
1450 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1451 */
1452 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1453 {
1454 return &mm->page_table_lock;
1455 }
1456 static inline void ptlock_cache_init(void) {}
1457 static inline bool ptlock_init(struct page *page) { return true; }
1458 static inline void pte_lock_deinit(struct page *page) {}
1459 #endif /* USE_SPLIT_PTE_PTLOCKS */
1460
1461 static inline void pgtable_init(void)
1462 {
1463 ptlock_cache_init();
1464 pgtable_cache_init();
1465 }
1466
1467 static inline bool pgtable_page_ctor(struct page *page)
1468 {
1469 inc_zone_page_state(page, NR_PAGETABLE);
1470 return ptlock_init(page);
1471 }
1472
1473 static inline void pgtable_page_dtor(struct page *page)
1474 {
1475 pte_lock_deinit(page);
1476 dec_zone_page_state(page, NR_PAGETABLE);
1477 }
1478
1479 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1480 ({ \
1481 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1482 pte_t *__pte = pte_offset_map(pmd, address); \
1483 *(ptlp) = __ptl; \
1484 spin_lock(__ptl); \
1485 __pte; \
1486 })
1487
1488 #define pte_unmap_unlock(pte, ptl) do { \
1489 spin_unlock(ptl); \
1490 pte_unmap(pte); \
1491 } while (0)
1492
1493 #define pte_alloc_map(mm, vma, pmd, address) \
1494 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1495 pmd, address))? \
1496 NULL: pte_offset_map(pmd, address))
1497
1498 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1499 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1500 pmd, address))? \
1501 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1502
1503 #define pte_alloc_kernel(pmd, address) \
1504 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1505 NULL: pte_offset_kernel(pmd, address))
1506
1507 #if USE_SPLIT_PMD_PTLOCKS
1508
1509 static struct page *pmd_to_page(pmd_t *pmd)
1510 {
1511 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1512 return virt_to_page((void *)((unsigned long) pmd & mask));
1513 }
1514
1515 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1516 {
1517 return ptlock_ptr(pmd_to_page(pmd));
1518 }
1519
1520 static inline bool pgtable_pmd_page_ctor(struct page *page)
1521 {
1522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1523 page->pmd_huge_pte = NULL;
1524 #endif
1525 return ptlock_init(page);
1526 }
1527
1528 static inline void pgtable_pmd_page_dtor(struct page *page)
1529 {
1530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1532 #endif
1533 ptlock_free(page);
1534 }
1535
1536 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1537
1538 #else
1539
1540 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1541 {
1542 return &mm->page_table_lock;
1543 }
1544
1545 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1546 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1547
1548 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1549
1550 #endif
1551
1552 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1553 {
1554 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1555 spin_lock(ptl);
1556 return ptl;
1557 }
1558
1559 extern void free_area_init(unsigned long * zones_size);
1560 extern void free_area_init_node(int nid, unsigned long * zones_size,
1561 unsigned long zone_start_pfn, unsigned long *zholes_size);
1562 extern void free_initmem(void);
1563
1564 /*
1565 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1566 * into the buddy system. The freed pages will be poisoned with pattern
1567 * "poison" if it's within range [0, UCHAR_MAX].
1568 * Return pages freed into the buddy system.
1569 */
1570 extern unsigned long free_reserved_area(void *start, void *end,
1571 int poison, char *s);
1572
1573 #ifdef CONFIG_HIGHMEM
1574 /*
1575 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1576 * and totalram_pages.
1577 */
1578 extern void free_highmem_page(struct page *page);
1579 #endif
1580
1581 extern void adjust_managed_page_count(struct page *page, long count);
1582 extern void mem_init_print_info(const char *str);
1583
1584 /* Free the reserved page into the buddy system, so it gets managed. */
1585 static inline void __free_reserved_page(struct page *page)
1586 {
1587 ClearPageReserved(page);
1588 init_page_count(page);
1589 __free_page(page);
1590 }
1591
1592 static inline void free_reserved_page(struct page *page)
1593 {
1594 __free_reserved_page(page);
1595 adjust_managed_page_count(page, 1);
1596 }
1597
1598 static inline void mark_page_reserved(struct page *page)
1599 {
1600 SetPageReserved(page);
1601 adjust_managed_page_count(page, -1);
1602 }
1603
1604 /*
1605 * Default method to free all the __init memory into the buddy system.
1606 * The freed pages will be poisoned with pattern "poison" if it's within
1607 * range [0, UCHAR_MAX].
1608 * Return pages freed into the buddy system.
1609 */
1610 static inline unsigned long free_initmem_default(int poison)
1611 {
1612 extern char __init_begin[], __init_end[];
1613
1614 return free_reserved_area(&__init_begin, &__init_end,
1615 poison, "unused kernel");
1616 }
1617
1618 static inline unsigned long get_num_physpages(void)
1619 {
1620 int nid;
1621 unsigned long phys_pages = 0;
1622
1623 for_each_online_node(nid)
1624 phys_pages += node_present_pages(nid);
1625
1626 return phys_pages;
1627 }
1628
1629 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1630 /*
1631 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1632 * zones, allocate the backing mem_map and account for memory holes in a more
1633 * architecture independent manner. This is a substitute for creating the
1634 * zone_sizes[] and zholes_size[] arrays and passing them to
1635 * free_area_init_node()
1636 *
1637 * An architecture is expected to register range of page frames backed by
1638 * physical memory with memblock_add[_node]() before calling
1639 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1640 * usage, an architecture is expected to do something like
1641 *
1642 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1643 * max_highmem_pfn};
1644 * for_each_valid_physical_page_range()
1645 * memblock_add_node(base, size, nid)
1646 * free_area_init_nodes(max_zone_pfns);
1647 *
1648 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1649 * registered physical page range. Similarly
1650 * sparse_memory_present_with_active_regions() calls memory_present() for
1651 * each range when SPARSEMEM is enabled.
1652 *
1653 * See mm/page_alloc.c for more information on each function exposed by
1654 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1655 */
1656 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1657 unsigned long node_map_pfn_alignment(void);
1658 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1659 unsigned long end_pfn);
1660 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1661 unsigned long end_pfn);
1662 extern void get_pfn_range_for_nid(unsigned int nid,
1663 unsigned long *start_pfn, unsigned long *end_pfn);
1664 extern unsigned long find_min_pfn_with_active_regions(void);
1665 extern void free_bootmem_with_active_regions(int nid,
1666 unsigned long max_low_pfn);
1667 extern void sparse_memory_present_with_active_regions(int nid);
1668
1669 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1670
1671 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1672 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1673 static inline int __early_pfn_to_nid(unsigned long pfn)
1674 {
1675 return 0;
1676 }
1677 #else
1678 /* please see mm/page_alloc.c */
1679 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1680 /* there is a per-arch backend function. */
1681 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1682 #endif
1683
1684 extern void set_dma_reserve(unsigned long new_dma_reserve);
1685 extern void memmap_init_zone(unsigned long, int, unsigned long,
1686 unsigned long, enum memmap_context);
1687 extern void setup_per_zone_wmarks(void);
1688 extern int __meminit init_per_zone_wmark_min(void);
1689 extern void mem_init(void);
1690 extern void __init mmap_init(void);
1691 extern void show_mem(unsigned int flags);
1692 extern void si_meminfo(struct sysinfo * val);
1693 extern void si_meminfo_node(struct sysinfo *val, int nid);
1694
1695 extern __printf(3, 4)
1696 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1697
1698 extern void setup_per_cpu_pageset(void);
1699
1700 extern void zone_pcp_update(struct zone *zone);
1701 extern void zone_pcp_reset(struct zone *zone);
1702
1703 /* page_alloc.c */
1704 extern int min_free_kbytes;
1705
1706 /* nommu.c */
1707 extern atomic_long_t mmap_pages_allocated;
1708 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1709
1710 /* interval_tree.c */
1711 void vma_interval_tree_insert(struct vm_area_struct *node,
1712 struct rb_root *root);
1713 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1714 struct vm_area_struct *prev,
1715 struct rb_root *root);
1716 void vma_interval_tree_remove(struct vm_area_struct *node,
1717 struct rb_root *root);
1718 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1719 unsigned long start, unsigned long last);
1720 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1721 unsigned long start, unsigned long last);
1722
1723 #define vma_interval_tree_foreach(vma, root, start, last) \
1724 for (vma = vma_interval_tree_iter_first(root, start, last); \
1725 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1726
1727 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1728 struct list_head *list)
1729 {
1730 list_add_tail(&vma->shared.nonlinear, list);
1731 }
1732
1733 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1734 struct rb_root *root);
1735 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1736 struct rb_root *root);
1737 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1738 struct rb_root *root, unsigned long start, unsigned long last);
1739 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1740 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1741 #ifdef CONFIG_DEBUG_VM_RB
1742 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1743 #endif
1744
1745 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1746 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1747 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1748
1749 /* mmap.c */
1750 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1751 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1752 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1753 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1754 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1755 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1756 struct mempolicy *);
1757 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1758 extern int split_vma(struct mm_struct *,
1759 struct vm_area_struct *, unsigned long addr, int new_below);
1760 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1761 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1762 struct rb_node **, struct rb_node *);
1763 extern void unlink_file_vma(struct vm_area_struct *);
1764 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1765 unsigned long addr, unsigned long len, pgoff_t pgoff,
1766 bool *need_rmap_locks);
1767 extern void exit_mmap(struct mm_struct *);
1768
1769 extern int mm_take_all_locks(struct mm_struct *mm);
1770 extern void mm_drop_all_locks(struct mm_struct *mm);
1771
1772 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1773 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1774
1775 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1776 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1777 unsigned long addr, unsigned long len,
1778 unsigned long flags, struct page **pages);
1779 extern int install_special_mapping(struct mm_struct *mm,
1780 unsigned long addr, unsigned long len,
1781 unsigned long flags, struct page **pages);
1782
1783 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1784
1785 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1786 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1787 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1788 unsigned long len, unsigned long prot, unsigned long flags,
1789 unsigned long pgoff, unsigned long *populate);
1790 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1791
1792 #ifdef CONFIG_MMU
1793 extern int __mm_populate(unsigned long addr, unsigned long len,
1794 int ignore_errors);
1795 static inline void mm_populate(unsigned long addr, unsigned long len)
1796 {
1797 /* Ignore errors */
1798 (void) __mm_populate(addr, len, 1);
1799 }
1800 #else
1801 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1802 #endif
1803
1804 /* These take the mm semaphore themselves */
1805 extern unsigned long vm_brk(unsigned long, unsigned long);
1806 extern int vm_munmap(unsigned long, size_t);
1807 extern unsigned long vm_mmap(struct file *, unsigned long,
1808 unsigned long, unsigned long,
1809 unsigned long, unsigned long);
1810
1811 struct vm_unmapped_area_info {
1812 #define VM_UNMAPPED_AREA_TOPDOWN 1
1813 unsigned long flags;
1814 unsigned long length;
1815 unsigned long low_limit;
1816 unsigned long high_limit;
1817 unsigned long align_mask;
1818 unsigned long align_offset;
1819 };
1820
1821 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1822 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1823
1824 /*
1825 * Search for an unmapped address range.
1826 *
1827 * We are looking for a range that:
1828 * - does not intersect with any VMA;
1829 * - is contained within the [low_limit, high_limit) interval;
1830 * - is at least the desired size.
1831 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1832 */
1833 static inline unsigned long
1834 vm_unmapped_area(struct vm_unmapped_area_info *info)
1835 {
1836 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1837 return unmapped_area(info);
1838 else
1839 return unmapped_area_topdown(info);
1840 }
1841
1842 /* truncate.c */
1843 extern void truncate_inode_pages(struct address_space *, loff_t);
1844 extern void truncate_inode_pages_range(struct address_space *,
1845 loff_t lstart, loff_t lend);
1846 extern void truncate_inode_pages_final(struct address_space *);
1847
1848 /* generic vm_area_ops exported for stackable file systems */
1849 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1850 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1851 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1852
1853 /* mm/page-writeback.c */
1854 int write_one_page(struct page *page, int wait);
1855 void task_dirty_inc(struct task_struct *tsk);
1856
1857 /* readahead.c */
1858 #define VM_MAX_READAHEAD 128 /* kbytes */
1859 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1860
1861 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1862 pgoff_t offset, unsigned long nr_to_read);
1863
1864 void page_cache_sync_readahead(struct address_space *mapping,
1865 struct file_ra_state *ra,
1866 struct file *filp,
1867 pgoff_t offset,
1868 unsigned long size);
1869
1870 void page_cache_async_readahead(struct address_space *mapping,
1871 struct file_ra_state *ra,
1872 struct file *filp,
1873 struct page *pg,
1874 pgoff_t offset,
1875 unsigned long size);
1876
1877 unsigned long max_sane_readahead(unsigned long nr);
1878 unsigned long ra_submit(struct file_ra_state *ra,
1879 struct address_space *mapping,
1880 struct file *filp);
1881
1882 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1883 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1884
1885 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1886 extern int expand_downwards(struct vm_area_struct *vma,
1887 unsigned long address);
1888 #if VM_GROWSUP
1889 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1890 #else
1891 #define expand_upwards(vma, address) do { } while (0)
1892 #endif
1893
1894 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1895 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1896 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1897 struct vm_area_struct **pprev);
1898
1899 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1900 NULL if none. Assume start_addr < end_addr. */
1901 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1902 {
1903 struct vm_area_struct * vma = find_vma(mm,start_addr);
1904
1905 if (vma && end_addr <= vma->vm_start)
1906 vma = NULL;
1907 return vma;
1908 }
1909
1910 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1911 {
1912 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1913 }
1914
1915 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1916 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1917 unsigned long vm_start, unsigned long vm_end)
1918 {
1919 struct vm_area_struct *vma = find_vma(mm, vm_start);
1920
1921 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1922 vma = NULL;
1923
1924 return vma;
1925 }
1926
1927 #ifdef CONFIG_MMU
1928 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1929 #else
1930 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1931 {
1932 return __pgprot(0);
1933 }
1934 #endif
1935
1936 #ifdef CONFIG_NUMA_BALANCING
1937 unsigned long change_prot_numa(struct vm_area_struct *vma,
1938 unsigned long start, unsigned long end);
1939 #endif
1940
1941 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1942 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1943 unsigned long pfn, unsigned long size, pgprot_t);
1944 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1945 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1946 unsigned long pfn);
1947 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1948 unsigned long pfn);
1949 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1950
1951
1952 struct page *follow_page_mask(struct vm_area_struct *vma,
1953 unsigned long address, unsigned int foll_flags,
1954 unsigned int *page_mask);
1955
1956 static inline struct page *follow_page(struct vm_area_struct *vma,
1957 unsigned long address, unsigned int foll_flags)
1958 {
1959 unsigned int unused_page_mask;
1960 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1961 }
1962
1963 #define FOLL_WRITE 0x01 /* check pte is writable */
1964 #define FOLL_TOUCH 0x02 /* mark page accessed */
1965 #define FOLL_GET 0x04 /* do get_page on page */
1966 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1967 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1968 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1969 * and return without waiting upon it */
1970 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1971 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1972 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1973 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1974 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1975
1976 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1977 void *data);
1978 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1979 unsigned long size, pte_fn_t fn, void *data);
1980
1981 #ifdef CONFIG_PROC_FS
1982 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1983 #else
1984 static inline void vm_stat_account(struct mm_struct *mm,
1985 unsigned long flags, struct file *file, long pages)
1986 {
1987 mm->total_vm += pages;
1988 }
1989 #endif /* CONFIG_PROC_FS */
1990
1991 #ifdef CONFIG_DEBUG_PAGEALLOC
1992 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1993 #ifdef CONFIG_HIBERNATION
1994 extern bool kernel_page_present(struct page *page);
1995 #endif /* CONFIG_HIBERNATION */
1996 #else
1997 static inline void
1998 kernel_map_pages(struct page *page, int numpages, int enable) {}
1999 #ifdef CONFIG_HIBERNATION
2000 static inline bool kernel_page_present(struct page *page) { return true; }
2001 #endif /* CONFIG_HIBERNATION */
2002 #endif
2003
2004 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2005 #ifdef __HAVE_ARCH_GATE_AREA
2006 int in_gate_area_no_mm(unsigned long addr);
2007 int in_gate_area(struct mm_struct *mm, unsigned long addr);
2008 #else
2009 int in_gate_area_no_mm(unsigned long addr);
2010 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
2011 #endif /* __HAVE_ARCH_GATE_AREA */
2012
2013 #ifdef CONFIG_SYSCTL
2014 extern int sysctl_drop_caches;
2015 int drop_caches_sysctl_handler(struct ctl_table *, int,
2016 void __user *, size_t *, loff_t *);
2017 #endif
2018
2019 unsigned long shrink_slab(struct shrink_control *shrink,
2020 unsigned long nr_pages_scanned,
2021 unsigned long lru_pages);
2022
2023 #ifndef CONFIG_MMU
2024 #define randomize_va_space 0
2025 #else
2026 extern int randomize_va_space;
2027 #endif
2028
2029 const char * arch_vma_name(struct vm_area_struct *vma);
2030 void print_vma_addr(char *prefix, unsigned long rip);
2031
2032 void sparse_mem_maps_populate_node(struct page **map_map,
2033 unsigned long pnum_begin,
2034 unsigned long pnum_end,
2035 unsigned long map_count,
2036 int nodeid);
2037
2038 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2039 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2040 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2041 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2042 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2043 void *vmemmap_alloc_block(unsigned long size, int node);
2044 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2045 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2046 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2047 int node);
2048 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2049 void vmemmap_populate_print_last(void);
2050 #ifdef CONFIG_MEMORY_HOTPLUG
2051 void vmemmap_free(unsigned long start, unsigned long end);
2052 #endif
2053 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2054 unsigned long size);
2055
2056 enum mf_flags {
2057 MF_COUNT_INCREASED = 1 << 0,
2058 MF_ACTION_REQUIRED = 1 << 1,
2059 MF_MUST_KILL = 1 << 2,
2060 MF_SOFT_OFFLINE = 1 << 3,
2061 };
2062 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2063 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2064 extern int unpoison_memory(unsigned long pfn);
2065 extern int sysctl_memory_failure_early_kill;
2066 extern int sysctl_memory_failure_recovery;
2067 extern void shake_page(struct page *p, int access);
2068 extern atomic_long_t num_poisoned_pages;
2069 extern int soft_offline_page(struct page *page, int flags);
2070
2071 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2072 extern void clear_huge_page(struct page *page,
2073 unsigned long addr,
2074 unsigned int pages_per_huge_page);
2075 extern void copy_user_huge_page(struct page *dst, struct page *src,
2076 unsigned long addr, struct vm_area_struct *vma,
2077 unsigned int pages_per_huge_page);
2078 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2079
2080 #ifdef CONFIG_DEBUG_PAGEALLOC
2081 extern unsigned int _debug_guardpage_minorder;
2082
2083 static inline unsigned int debug_guardpage_minorder(void)
2084 {
2085 return _debug_guardpage_minorder;
2086 }
2087
2088 static inline bool page_is_guard(struct page *page)
2089 {
2090 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2091 }
2092 #else
2093 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2094 static inline bool page_is_guard(struct page *page) { return false; }
2095 #endif /* CONFIG_DEBUG_PAGEALLOC */
2096
2097 #if MAX_NUMNODES > 1
2098 void __init setup_nr_node_ids(void);
2099 #else
2100 static inline void setup_nr_node_ids(void) {}
2101 #endif
2102
2103 #endif /* __KERNEL__ */
2104 #endif /* _LINUX_MM_H */