]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm.h
mm: make page ref count overflow check tighter and more explicit
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28
29 struct mempolicy;
30 struct anon_vma;
31 struct anon_vma_chain;
32 struct file_ra_state;
33 struct user_struct;
34 struct writeback_control;
35 struct bdi_writeback;
36
37 void init_mm_internals(void);
38
39 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
40 extern unsigned long max_mapnr;
41
42 static inline void set_max_mapnr(unsigned long limit)
43 {
44 max_mapnr = limit;
45 }
46 #else
47 static inline void set_max_mapnr(unsigned long limit) { }
48 #endif
49
50 extern unsigned long totalram_pages;
51 extern void * high_memory;
52 extern int page_cluster;
53
54 #ifdef CONFIG_SYSCTL
55 extern int sysctl_legacy_va_layout;
56 #else
57 #define sysctl_legacy_va_layout 0
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 extern const int mmap_rnd_bits_min;
62 extern const int mmap_rnd_bits_max;
63 extern int mmap_rnd_bits __read_mostly;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 extern const int mmap_rnd_compat_bits_min;
67 extern const int mmap_rnd_compat_bits_max;
68 extern int mmap_rnd_compat_bits __read_mostly;
69 #endif
70
71 #include <asm/page.h>
72 #include <asm/pgtable.h>
73 #include <asm/processor.h>
74
75 #ifndef __pa_symbol
76 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77 #endif
78
79 #ifndef page_to_virt
80 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81 #endif
82
83 #ifndef lm_alias
84 #define lm_alias(x) __va(__pa_symbol(x))
85 #endif
86
87 /*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94 #ifndef mm_forbids_zeropage
95 #define mm_forbids_zeropage(X) (0)
96 #endif
97
98 /*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103 #ifndef mm_zero_struct_page
104 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105 #endif
106
107 /*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123 #define MAPCOUNT_ELF_CORE_MARGIN (5)
124 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126 extern int sysctl_max_map_count;
127
128 extern unsigned long sysctl_user_reserve_kbytes;
129 extern unsigned long sysctl_admin_reserve_kbytes;
130
131 extern int sysctl_overcommit_memory;
132 extern int sysctl_overcommit_ratio;
133 extern unsigned long sysctl_overcommit_kbytes;
134
135 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
140 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
142 /* to align the pointer to the (next) page boundary */
143 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
145 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
146 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
147
148 /*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
157 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
158 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
159 void vm_area_free(struct vm_area_struct *);
160
161 #ifndef CONFIG_MMU
162 extern struct rb_root nommu_region_tree;
163 extern struct rw_semaphore nommu_region_sem;
164
165 extern unsigned int kobjsize(const void *objp);
166 #endif
167
168 /*
169 * vm_flags in vm_area_struct, see mm_types.h.
170 * When changing, update also include/trace/events/mmflags.h
171 */
172 #define VM_NONE 0x00000000
173
174 #define VM_READ 0x00000001 /* currently active flags */
175 #define VM_WRITE 0x00000002
176 #define VM_EXEC 0x00000004
177 #define VM_SHARED 0x00000008
178
179 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
180 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
181 #define VM_MAYWRITE 0x00000020
182 #define VM_MAYEXEC 0x00000040
183 #define VM_MAYSHARE 0x00000080
184
185 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
186 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
187 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
188 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
189 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
190
191 #define VM_LOCKED 0x00002000
192 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
193
194 /* Used by sys_madvise() */
195 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
196 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
197
198 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
199 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
200 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
201 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
202 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
203 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
204 #define VM_SYNC 0x00800000 /* Synchronous page faults */
205 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
206 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
207 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
208
209 #ifdef CONFIG_MEM_SOFT_DIRTY
210 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
211 #else
212 # define VM_SOFTDIRTY 0
213 #endif
214
215 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
216 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
217 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
218 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
219
220 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
221 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
222 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
226 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
227 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
228 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
229 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
230 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
231 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
232
233 #if defined(CONFIG_X86)
234 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
235 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
236 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
237 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
238 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
239 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
240 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
241 #endif
242 #elif defined(CONFIG_PPC)
243 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
244 #elif defined(CONFIG_PARISC)
245 # define VM_GROWSUP VM_ARCH_1
246 #elif defined(CONFIG_METAG)
247 # define VM_GROWSUP VM_ARCH_1
248 #elif defined(CONFIG_IA64)
249 # define VM_GROWSUP VM_ARCH_1
250 #elif !defined(CONFIG_MMU)
251 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
252 #endif
253
254 #if defined(CONFIG_X86_INTEL_MPX)
255 /* MPX specific bounds table or bounds directory */
256 # define VM_MPX VM_HIGH_ARCH_4
257 #else
258 # define VM_MPX VM_NONE
259 #endif
260
261 #ifndef VM_GROWSUP
262 # define VM_GROWSUP VM_NONE
263 #endif
264
265 /* Bits set in the VMA until the stack is in its final location */
266 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
267
268 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
269 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
270 #endif
271
272 #ifdef CONFIG_STACK_GROWSUP
273 #define VM_STACK VM_GROWSUP
274 #else
275 #define VM_STACK VM_GROWSDOWN
276 #endif
277
278 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
279
280 /*
281 * Special vmas that are non-mergable, non-mlock()able.
282 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
283 */
284 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
285
286 /* This mask defines which mm->def_flags a process can inherit its parent */
287 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
288
289 /* This mask is used to clear all the VMA flags used by mlock */
290 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
291
292 /*
293 * mapping from the currently active vm_flags protection bits (the
294 * low four bits) to a page protection mask..
295 */
296 extern pgprot_t protection_map[16];
297
298 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
299 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
300 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
301 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
302 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
303 #define FAULT_FLAG_TRIED 0x20 /* Second try */
304 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
305 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
306 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
307
308 #define FAULT_FLAG_TRACE \
309 { FAULT_FLAG_WRITE, "WRITE" }, \
310 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
311 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
312 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
313 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
314 { FAULT_FLAG_TRIED, "TRIED" }, \
315 { FAULT_FLAG_USER, "USER" }, \
316 { FAULT_FLAG_REMOTE, "REMOTE" }, \
317 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
318
319 /*
320 * vm_fault is filled by the the pagefault handler and passed to the vma's
321 * ->fault function. The vma's ->fault is responsible for returning a bitmask
322 * of VM_FAULT_xxx flags that give details about how the fault was handled.
323 *
324 * MM layer fills up gfp_mask for page allocations but fault handler might
325 * alter it if its implementation requires a different allocation context.
326 *
327 * pgoff should be used in favour of virtual_address, if possible.
328 */
329 struct vm_fault {
330 struct vm_area_struct *vma; /* Target VMA */
331 unsigned int flags; /* FAULT_FLAG_xxx flags */
332 gfp_t gfp_mask; /* gfp mask to be used for allocations */
333 pgoff_t pgoff; /* Logical page offset based on vma */
334 unsigned long address; /* Faulting virtual address */
335 pmd_t *pmd; /* Pointer to pmd entry matching
336 * the 'address' */
337 pud_t *pud; /* Pointer to pud entry matching
338 * the 'address'
339 */
340 pte_t orig_pte; /* Value of PTE at the time of fault */
341
342 struct page *cow_page; /* Page handler may use for COW fault */
343 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
344 struct page *page; /* ->fault handlers should return a
345 * page here, unless VM_FAULT_NOPAGE
346 * is set (which is also implied by
347 * VM_FAULT_ERROR).
348 */
349 /* These three entries are valid only while holding ptl lock */
350 pte_t *pte; /* Pointer to pte entry matching
351 * the 'address'. NULL if the page
352 * table hasn't been allocated.
353 */
354 spinlock_t *ptl; /* Page table lock.
355 * Protects pte page table if 'pte'
356 * is not NULL, otherwise pmd.
357 */
358 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
359 * vm_ops->map_pages() calls
360 * alloc_set_pte() from atomic context.
361 * do_fault_around() pre-allocates
362 * page table to avoid allocation from
363 * atomic context.
364 */
365 };
366
367 /* page entry size for vm->huge_fault() */
368 enum page_entry_size {
369 PE_SIZE_PTE = 0,
370 PE_SIZE_PMD,
371 PE_SIZE_PUD,
372 };
373
374 /*
375 * These are the virtual MM functions - opening of an area, closing and
376 * unmapping it (needed to keep files on disk up-to-date etc), pointer
377 * to the functions called when a no-page or a wp-page exception occurs.
378 */
379 struct vm_operations_struct {
380 void (*open)(struct vm_area_struct * area);
381 void (*close)(struct vm_area_struct * area);
382 int (*split)(struct vm_area_struct * area, unsigned long addr);
383 int (*mremap)(struct vm_area_struct * area);
384 int (*fault)(struct vm_fault *vmf);
385 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
386 void (*map_pages)(struct vm_fault *vmf,
387 pgoff_t start_pgoff, pgoff_t end_pgoff);
388
389 /* notification that a previously read-only page is about to become
390 * writable, if an error is returned it will cause a SIGBUS */
391 int (*page_mkwrite)(struct vm_fault *vmf);
392
393 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
394 int (*pfn_mkwrite)(struct vm_fault *vmf);
395
396 /* called by access_process_vm when get_user_pages() fails, typically
397 * for use by special VMAs that can switch between memory and hardware
398 */
399 int (*access)(struct vm_area_struct *vma, unsigned long addr,
400 void *buf, int len, int write);
401
402 /* Called by the /proc/PID/maps code to ask the vma whether it
403 * has a special name. Returning non-NULL will also cause this
404 * vma to be dumped unconditionally. */
405 const char *(*name)(struct vm_area_struct *vma);
406
407 #ifdef CONFIG_NUMA
408 /*
409 * set_policy() op must add a reference to any non-NULL @new mempolicy
410 * to hold the policy upon return. Caller should pass NULL @new to
411 * remove a policy and fall back to surrounding context--i.e. do not
412 * install a MPOL_DEFAULT policy, nor the task or system default
413 * mempolicy.
414 */
415 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
416
417 /*
418 * get_policy() op must add reference [mpol_get()] to any policy at
419 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
420 * in mm/mempolicy.c will do this automatically.
421 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
422 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
423 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
424 * must return NULL--i.e., do not "fallback" to task or system default
425 * policy.
426 */
427 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
428 unsigned long addr);
429 #endif
430 /*
431 * Called by vm_normal_page() for special PTEs to find the
432 * page for @addr. This is useful if the default behavior
433 * (using pte_page()) would not find the correct page.
434 */
435 struct page *(*find_special_page)(struct vm_area_struct *vma,
436 unsigned long addr);
437 };
438
439 struct mmu_gather;
440 struct inode;
441
442 #define page_private(page) ((page)->private)
443 #define set_page_private(page, v) ((page)->private = (v))
444
445 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
446 static inline int pmd_devmap(pmd_t pmd)
447 {
448 return 0;
449 }
450 static inline int pud_devmap(pud_t pud)
451 {
452 return 0;
453 }
454 static inline int pgd_devmap(pgd_t pgd)
455 {
456 return 0;
457 }
458 #endif
459
460 /*
461 * FIXME: take this include out, include page-flags.h in
462 * files which need it (119 of them)
463 */
464 #include <linux/page-flags.h>
465 #include <linux/huge_mm.h>
466
467 /*
468 * Methods to modify the page usage count.
469 *
470 * What counts for a page usage:
471 * - cache mapping (page->mapping)
472 * - private data (page->private)
473 * - page mapped in a task's page tables, each mapping
474 * is counted separately
475 *
476 * Also, many kernel routines increase the page count before a critical
477 * routine so they can be sure the page doesn't go away from under them.
478 */
479
480 /*
481 * Drop a ref, return true if the refcount fell to zero (the page has no users)
482 */
483 static inline int put_page_testzero(struct page *page)
484 {
485 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
486 return page_ref_dec_and_test(page);
487 }
488
489 /*
490 * Try to grab a ref unless the page has a refcount of zero, return false if
491 * that is the case.
492 * This can be called when MMU is off so it must not access
493 * any of the virtual mappings.
494 */
495 static inline int get_page_unless_zero(struct page *page)
496 {
497 return page_ref_add_unless(page, 1, 0);
498 }
499
500 extern int page_is_ram(unsigned long pfn);
501
502 enum {
503 REGION_INTERSECTS,
504 REGION_DISJOINT,
505 REGION_MIXED,
506 };
507
508 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
509 unsigned long desc);
510
511 /* Support for virtually mapped pages */
512 struct page *vmalloc_to_page(const void *addr);
513 unsigned long vmalloc_to_pfn(const void *addr);
514
515 /*
516 * Determine if an address is within the vmalloc range
517 *
518 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
519 * is no special casing required.
520 */
521 static inline bool is_vmalloc_addr(const void *x)
522 {
523 #ifdef CONFIG_MMU
524 unsigned long addr = (unsigned long)x;
525
526 return addr >= VMALLOC_START && addr < VMALLOC_END;
527 #else
528 return false;
529 #endif
530 }
531 #ifdef CONFIG_MMU
532 extern int is_vmalloc_or_module_addr(const void *x);
533 #else
534 static inline int is_vmalloc_or_module_addr(const void *x)
535 {
536 return 0;
537 }
538 #endif
539
540 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
541 static inline void *kvmalloc(size_t size, gfp_t flags)
542 {
543 return kvmalloc_node(size, flags, NUMA_NO_NODE);
544 }
545 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
546 {
547 return kvmalloc_node(size, flags | __GFP_ZERO, node);
548 }
549 static inline void *kvzalloc(size_t size, gfp_t flags)
550 {
551 return kvmalloc(size, flags | __GFP_ZERO);
552 }
553
554 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
555 {
556 if (size != 0 && n > SIZE_MAX / size)
557 return NULL;
558
559 return kvmalloc(n * size, flags);
560 }
561
562 extern void kvfree(const void *addr);
563
564 static inline atomic_t *compound_mapcount_ptr(struct page *page)
565 {
566 return &page[1].compound_mapcount;
567 }
568
569 static inline int compound_mapcount(struct page *page)
570 {
571 VM_BUG_ON_PAGE(!PageCompound(page), page);
572 page = compound_head(page);
573 return atomic_read(compound_mapcount_ptr(page)) + 1;
574 }
575
576 /*
577 * The atomic page->_mapcount, starts from -1: so that transitions
578 * both from it and to it can be tracked, using atomic_inc_and_test
579 * and atomic_add_negative(-1).
580 */
581 static inline void page_mapcount_reset(struct page *page)
582 {
583 atomic_set(&(page)->_mapcount, -1);
584 }
585
586 int __page_mapcount(struct page *page);
587
588 static inline int page_mapcount(struct page *page)
589 {
590 VM_BUG_ON_PAGE(PageSlab(page), page);
591
592 if (unlikely(PageCompound(page)))
593 return __page_mapcount(page);
594 return atomic_read(&page->_mapcount) + 1;
595 }
596
597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
598 int total_mapcount(struct page *page);
599 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
600 #else
601 static inline int total_mapcount(struct page *page)
602 {
603 return page_mapcount(page);
604 }
605 static inline int page_trans_huge_mapcount(struct page *page,
606 int *total_mapcount)
607 {
608 int mapcount = page_mapcount(page);
609 if (total_mapcount)
610 *total_mapcount = mapcount;
611 return mapcount;
612 }
613 #endif
614
615 static inline struct page *virt_to_head_page(const void *x)
616 {
617 struct page *page = virt_to_page(x);
618
619 return compound_head(page);
620 }
621
622 void __put_page(struct page *page);
623
624 void put_pages_list(struct list_head *pages);
625
626 void split_page(struct page *page, unsigned int order);
627
628 /*
629 * Compound pages have a destructor function. Provide a
630 * prototype for that function and accessor functions.
631 * These are _only_ valid on the head of a compound page.
632 */
633 typedef void compound_page_dtor(struct page *);
634
635 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
636 enum compound_dtor_id {
637 NULL_COMPOUND_DTOR,
638 COMPOUND_PAGE_DTOR,
639 #ifdef CONFIG_HUGETLB_PAGE
640 HUGETLB_PAGE_DTOR,
641 #endif
642 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
643 TRANSHUGE_PAGE_DTOR,
644 #endif
645 NR_COMPOUND_DTORS,
646 };
647 extern compound_page_dtor * const compound_page_dtors[];
648
649 static inline void set_compound_page_dtor(struct page *page,
650 enum compound_dtor_id compound_dtor)
651 {
652 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
653 page[1].compound_dtor = compound_dtor;
654 }
655
656 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
657 {
658 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
659 return compound_page_dtors[page[1].compound_dtor];
660 }
661
662 static inline unsigned int compound_order(struct page *page)
663 {
664 if (!PageHead(page))
665 return 0;
666 return page[1].compound_order;
667 }
668
669 static inline void set_compound_order(struct page *page, unsigned int order)
670 {
671 page[1].compound_order = order;
672 }
673
674 void free_compound_page(struct page *page);
675
676 #ifdef CONFIG_MMU
677 /*
678 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
679 * servicing faults for write access. In the normal case, do always want
680 * pte_mkwrite. But get_user_pages can cause write faults for mappings
681 * that do not have writing enabled, when used by access_process_vm.
682 */
683 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
684 {
685 if (likely(vma->vm_flags & VM_WRITE))
686 pte = pte_mkwrite(pte);
687 return pte;
688 }
689
690 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
691 struct page *page);
692 int finish_fault(struct vm_fault *vmf);
693 int finish_mkwrite_fault(struct vm_fault *vmf);
694 #endif
695
696 /*
697 * Multiple processes may "see" the same page. E.g. for untouched
698 * mappings of /dev/null, all processes see the same page full of
699 * zeroes, and text pages of executables and shared libraries have
700 * only one copy in memory, at most, normally.
701 *
702 * For the non-reserved pages, page_count(page) denotes a reference count.
703 * page_count() == 0 means the page is free. page->lru is then used for
704 * freelist management in the buddy allocator.
705 * page_count() > 0 means the page has been allocated.
706 *
707 * Pages are allocated by the slab allocator in order to provide memory
708 * to kmalloc and kmem_cache_alloc. In this case, the management of the
709 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
710 * unless a particular usage is carefully commented. (the responsibility of
711 * freeing the kmalloc memory is the caller's, of course).
712 *
713 * A page may be used by anyone else who does a __get_free_page().
714 * In this case, page_count still tracks the references, and should only
715 * be used through the normal accessor functions. The top bits of page->flags
716 * and page->virtual store page management information, but all other fields
717 * are unused and could be used privately, carefully. The management of this
718 * page is the responsibility of the one who allocated it, and those who have
719 * subsequently been given references to it.
720 *
721 * The other pages (we may call them "pagecache pages") are completely
722 * managed by the Linux memory manager: I/O, buffers, swapping etc.
723 * The following discussion applies only to them.
724 *
725 * A pagecache page contains an opaque `private' member, which belongs to the
726 * page's address_space. Usually, this is the address of a circular list of
727 * the page's disk buffers. PG_private must be set to tell the VM to call
728 * into the filesystem to release these pages.
729 *
730 * A page may belong to an inode's memory mapping. In this case, page->mapping
731 * is the pointer to the inode, and page->index is the file offset of the page,
732 * in units of PAGE_SIZE.
733 *
734 * If pagecache pages are not associated with an inode, they are said to be
735 * anonymous pages. These may become associated with the swapcache, and in that
736 * case PG_swapcache is set, and page->private is an offset into the swapcache.
737 *
738 * In either case (swapcache or inode backed), the pagecache itself holds one
739 * reference to the page. Setting PG_private should also increment the
740 * refcount. The each user mapping also has a reference to the page.
741 *
742 * The pagecache pages are stored in a per-mapping radix tree, which is
743 * rooted at mapping->page_tree, and indexed by offset.
744 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
745 * lists, we instead now tag pages as dirty/writeback in the radix tree.
746 *
747 * All pagecache pages may be subject to I/O:
748 * - inode pages may need to be read from disk,
749 * - inode pages which have been modified and are MAP_SHARED may need
750 * to be written back to the inode on disk,
751 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
752 * modified may need to be swapped out to swap space and (later) to be read
753 * back into memory.
754 */
755
756 /*
757 * The zone field is never updated after free_area_init_core()
758 * sets it, so none of the operations on it need to be atomic.
759 */
760
761 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
762 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
763 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
764 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
765 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
766
767 /*
768 * Define the bit shifts to access each section. For non-existent
769 * sections we define the shift as 0; that plus a 0 mask ensures
770 * the compiler will optimise away reference to them.
771 */
772 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
773 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
774 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
775 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
776
777 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
778 #ifdef NODE_NOT_IN_PAGE_FLAGS
779 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
780 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
781 SECTIONS_PGOFF : ZONES_PGOFF)
782 #else
783 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
784 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
785 NODES_PGOFF : ZONES_PGOFF)
786 #endif
787
788 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
789
790 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
791 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
792 #endif
793
794 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
795 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
796 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
797 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
798 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
799
800 static inline enum zone_type page_zonenum(const struct page *page)
801 {
802 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
803 }
804
805 #ifdef CONFIG_ZONE_DEVICE
806 static inline bool is_zone_device_page(const struct page *page)
807 {
808 return page_zonenum(page) == ZONE_DEVICE;
809 }
810 #else
811 static inline bool is_zone_device_page(const struct page *page)
812 {
813 return false;
814 }
815 #endif
816
817 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
818 void put_zone_device_private_or_public_page(struct page *page);
819 DECLARE_STATIC_KEY_FALSE(device_private_key);
820 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
821 static inline bool is_device_private_page(const struct page *page);
822 static inline bool is_device_public_page(const struct page *page);
823 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
824 static inline void put_zone_device_private_or_public_page(struct page *page)
825 {
826 }
827 #define IS_HMM_ENABLED 0
828 static inline bool is_device_private_page(const struct page *page)
829 {
830 return false;
831 }
832 static inline bool is_device_public_page(const struct page *page)
833 {
834 return false;
835 }
836 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
837
838
839 /* 127: arbitrary random number, small enough to assemble well */
840 #define page_ref_zero_or_close_to_overflow(page) \
841 ((unsigned int) page_ref_count(page) + 127u <= 127u)
842
843 static inline void get_page(struct page *page)
844 {
845 page = compound_head(page);
846 /*
847 * Getting a normal page or the head of a compound page
848 * requires to already have an elevated page->_refcount.
849 */
850 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
851 page_ref_inc(page);
852 }
853
854 static inline void put_page(struct page *page)
855 {
856 page = compound_head(page);
857
858 /*
859 * For private device pages we need to catch refcount transition from
860 * 2 to 1, when refcount reach one it means the private device page is
861 * free and we need to inform the device driver through callback. See
862 * include/linux/memremap.h and HMM for details.
863 */
864 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
865 unlikely(is_device_public_page(page)))) {
866 put_zone_device_private_or_public_page(page);
867 return;
868 }
869
870 if (put_page_testzero(page))
871 __put_page(page);
872 }
873
874 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
875 #define SECTION_IN_PAGE_FLAGS
876 #endif
877
878 /*
879 * The identification function is mainly used by the buddy allocator for
880 * determining if two pages could be buddies. We are not really identifying
881 * the zone since we could be using the section number id if we do not have
882 * node id available in page flags.
883 * We only guarantee that it will return the same value for two combinable
884 * pages in a zone.
885 */
886 static inline int page_zone_id(struct page *page)
887 {
888 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
889 }
890
891 static inline int zone_to_nid(struct zone *zone)
892 {
893 #ifdef CONFIG_NUMA
894 return zone->node;
895 #else
896 return 0;
897 #endif
898 }
899
900 #ifdef NODE_NOT_IN_PAGE_FLAGS
901 extern int page_to_nid(const struct page *page);
902 #else
903 static inline int page_to_nid(const struct page *page)
904 {
905 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
906 }
907 #endif
908
909 #ifdef CONFIG_NUMA_BALANCING
910 static inline int cpu_pid_to_cpupid(int cpu, int pid)
911 {
912 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
913 }
914
915 static inline int cpupid_to_pid(int cpupid)
916 {
917 return cpupid & LAST__PID_MASK;
918 }
919
920 static inline int cpupid_to_cpu(int cpupid)
921 {
922 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
923 }
924
925 static inline int cpupid_to_nid(int cpupid)
926 {
927 return cpu_to_node(cpupid_to_cpu(cpupid));
928 }
929
930 static inline bool cpupid_pid_unset(int cpupid)
931 {
932 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
933 }
934
935 static inline bool cpupid_cpu_unset(int cpupid)
936 {
937 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
938 }
939
940 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
941 {
942 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
943 }
944
945 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
946 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
947 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
948 {
949 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
950 }
951
952 static inline int page_cpupid_last(struct page *page)
953 {
954 return page->_last_cpupid;
955 }
956 static inline void page_cpupid_reset_last(struct page *page)
957 {
958 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
959 }
960 #else
961 static inline int page_cpupid_last(struct page *page)
962 {
963 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
964 }
965
966 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
967
968 static inline void page_cpupid_reset_last(struct page *page)
969 {
970 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
971 }
972 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
973 #else /* !CONFIG_NUMA_BALANCING */
974 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
975 {
976 return page_to_nid(page); /* XXX */
977 }
978
979 static inline int page_cpupid_last(struct page *page)
980 {
981 return page_to_nid(page); /* XXX */
982 }
983
984 static inline int cpupid_to_nid(int cpupid)
985 {
986 return -1;
987 }
988
989 static inline int cpupid_to_pid(int cpupid)
990 {
991 return -1;
992 }
993
994 static inline int cpupid_to_cpu(int cpupid)
995 {
996 return -1;
997 }
998
999 static inline int cpu_pid_to_cpupid(int nid, int pid)
1000 {
1001 return -1;
1002 }
1003
1004 static inline bool cpupid_pid_unset(int cpupid)
1005 {
1006 return 1;
1007 }
1008
1009 static inline void page_cpupid_reset_last(struct page *page)
1010 {
1011 }
1012
1013 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1014 {
1015 return false;
1016 }
1017 #endif /* CONFIG_NUMA_BALANCING */
1018
1019 static inline struct zone *page_zone(const struct page *page)
1020 {
1021 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1022 }
1023
1024 static inline pg_data_t *page_pgdat(const struct page *page)
1025 {
1026 return NODE_DATA(page_to_nid(page));
1027 }
1028
1029 #ifdef SECTION_IN_PAGE_FLAGS
1030 static inline void set_page_section(struct page *page, unsigned long section)
1031 {
1032 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1033 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1034 }
1035
1036 static inline unsigned long page_to_section(const struct page *page)
1037 {
1038 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1039 }
1040 #endif
1041
1042 static inline void set_page_zone(struct page *page, enum zone_type zone)
1043 {
1044 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1045 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1046 }
1047
1048 static inline void set_page_node(struct page *page, unsigned long node)
1049 {
1050 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1051 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1052 }
1053
1054 static inline void set_page_links(struct page *page, enum zone_type zone,
1055 unsigned long node, unsigned long pfn)
1056 {
1057 set_page_zone(page, zone);
1058 set_page_node(page, node);
1059 #ifdef SECTION_IN_PAGE_FLAGS
1060 set_page_section(page, pfn_to_section_nr(pfn));
1061 #endif
1062 }
1063
1064 #ifdef CONFIG_MEMCG
1065 static inline struct mem_cgroup *page_memcg(struct page *page)
1066 {
1067 return page->mem_cgroup;
1068 }
1069 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1070 {
1071 WARN_ON_ONCE(!rcu_read_lock_held());
1072 return READ_ONCE(page->mem_cgroup);
1073 }
1074 #else
1075 static inline struct mem_cgroup *page_memcg(struct page *page)
1076 {
1077 return NULL;
1078 }
1079 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1080 {
1081 WARN_ON_ONCE(!rcu_read_lock_held());
1082 return NULL;
1083 }
1084 #endif
1085
1086 /*
1087 * Some inline functions in vmstat.h depend on page_zone()
1088 */
1089 #include <linux/vmstat.h>
1090
1091 static __always_inline void *lowmem_page_address(const struct page *page)
1092 {
1093 return page_to_virt(page);
1094 }
1095
1096 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1097 #define HASHED_PAGE_VIRTUAL
1098 #endif
1099
1100 #if defined(WANT_PAGE_VIRTUAL)
1101 static inline void *page_address(const struct page *page)
1102 {
1103 return page->virtual;
1104 }
1105 static inline void set_page_address(struct page *page, void *address)
1106 {
1107 page->virtual = address;
1108 }
1109 #define page_address_init() do { } while(0)
1110 #endif
1111
1112 #if defined(HASHED_PAGE_VIRTUAL)
1113 void *page_address(const struct page *page);
1114 void set_page_address(struct page *page, void *virtual);
1115 void page_address_init(void);
1116 #endif
1117
1118 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1119 #define page_address(page) lowmem_page_address(page)
1120 #define set_page_address(page, address) do { } while(0)
1121 #define page_address_init() do { } while(0)
1122 #endif
1123
1124 extern void *page_rmapping(struct page *page);
1125 extern struct anon_vma *page_anon_vma(struct page *page);
1126 extern struct address_space *page_mapping(struct page *page);
1127
1128 extern struct address_space *__page_file_mapping(struct page *);
1129
1130 static inline
1131 struct address_space *page_file_mapping(struct page *page)
1132 {
1133 if (unlikely(PageSwapCache(page)))
1134 return __page_file_mapping(page);
1135
1136 return page->mapping;
1137 }
1138
1139 extern pgoff_t __page_file_index(struct page *page);
1140
1141 /*
1142 * Return the pagecache index of the passed page. Regular pagecache pages
1143 * use ->index whereas swapcache pages use swp_offset(->private)
1144 */
1145 static inline pgoff_t page_index(struct page *page)
1146 {
1147 if (unlikely(PageSwapCache(page)))
1148 return __page_file_index(page);
1149 return page->index;
1150 }
1151
1152 bool page_mapped(struct page *page);
1153 struct address_space *page_mapping(struct page *page);
1154
1155 /*
1156 * Return true only if the page has been allocated with
1157 * ALLOC_NO_WATERMARKS and the low watermark was not
1158 * met implying that the system is under some pressure.
1159 */
1160 static inline bool page_is_pfmemalloc(struct page *page)
1161 {
1162 /*
1163 * Page index cannot be this large so this must be
1164 * a pfmemalloc page.
1165 */
1166 return page->index == -1UL;
1167 }
1168
1169 /*
1170 * Only to be called by the page allocator on a freshly allocated
1171 * page.
1172 */
1173 static inline void set_page_pfmemalloc(struct page *page)
1174 {
1175 page->index = -1UL;
1176 }
1177
1178 static inline void clear_page_pfmemalloc(struct page *page)
1179 {
1180 page->index = 0;
1181 }
1182
1183 /*
1184 * Different kinds of faults, as returned by handle_mm_fault().
1185 * Used to decide whether a process gets delivered SIGBUS or
1186 * just gets major/minor fault counters bumped up.
1187 */
1188
1189 #define VM_FAULT_OOM 0x0001
1190 #define VM_FAULT_SIGBUS 0x0002
1191 #define VM_FAULT_MAJOR 0x0004
1192 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1193 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1194 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1195 #define VM_FAULT_SIGSEGV 0x0040
1196
1197 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1198 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1199 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1200 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1201 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1202 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1203 * and needs fsync() to complete (for
1204 * synchronous page faults in DAX) */
1205
1206 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1207 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1208 VM_FAULT_FALLBACK)
1209
1210 #define VM_FAULT_RESULT_TRACE \
1211 { VM_FAULT_OOM, "OOM" }, \
1212 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1213 { VM_FAULT_MAJOR, "MAJOR" }, \
1214 { VM_FAULT_WRITE, "WRITE" }, \
1215 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1216 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1217 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1218 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1219 { VM_FAULT_LOCKED, "LOCKED" }, \
1220 { VM_FAULT_RETRY, "RETRY" }, \
1221 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1222 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1223 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1224
1225 /* Encode hstate index for a hwpoisoned large page */
1226 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1227 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1228
1229 /*
1230 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1231 */
1232 extern void pagefault_out_of_memory(void);
1233
1234 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1235
1236 /*
1237 * Flags passed to show_mem() and show_free_areas() to suppress output in
1238 * various contexts.
1239 */
1240 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1241
1242 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1243
1244 extern bool can_do_mlock(void);
1245 extern int user_shm_lock(size_t, struct user_struct *);
1246 extern void user_shm_unlock(size_t, struct user_struct *);
1247
1248 /*
1249 * Parameter block passed down to zap_pte_range in exceptional cases.
1250 */
1251 struct zap_details {
1252 struct address_space *check_mapping; /* Check page->mapping if set */
1253 pgoff_t first_index; /* Lowest page->index to unmap */
1254 pgoff_t last_index; /* Highest page->index to unmap */
1255 };
1256
1257 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1258 pte_t pte, bool with_public_device);
1259 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1260
1261 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1262 pmd_t pmd);
1263
1264 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1265 unsigned long size);
1266 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1267 unsigned long size);
1268 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1269 unsigned long start, unsigned long end);
1270
1271 /**
1272 * mm_walk - callbacks for walk_page_range
1273 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1274 * this handler should only handle pud_trans_huge() puds.
1275 * the pmd_entry or pte_entry callbacks will be used for
1276 * regular PUDs.
1277 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1278 * this handler is required to be able to handle
1279 * pmd_trans_huge() pmds. They may simply choose to
1280 * split_huge_page() instead of handling it explicitly.
1281 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1282 * @pte_hole: if set, called for each hole at all levels
1283 * @hugetlb_entry: if set, called for each hugetlb entry
1284 * @test_walk: caller specific callback function to determine whether
1285 * we walk over the current vma or not. Returning 0
1286 * value means "do page table walk over the current vma,"
1287 * and a negative one means "abort current page table walk
1288 * right now." 1 means "skip the current vma."
1289 * @mm: mm_struct representing the target process of page table walk
1290 * @vma: vma currently walked (NULL if walking outside vmas)
1291 * @private: private data for callbacks' usage
1292 *
1293 * (see the comment on walk_page_range() for more details)
1294 */
1295 struct mm_walk {
1296 int (*pud_entry)(pud_t *pud, unsigned long addr,
1297 unsigned long next, struct mm_walk *walk);
1298 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1299 unsigned long next, struct mm_walk *walk);
1300 int (*pte_entry)(pte_t *pte, unsigned long addr,
1301 unsigned long next, struct mm_walk *walk);
1302 int (*pte_hole)(unsigned long addr, unsigned long next,
1303 struct mm_walk *walk);
1304 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1305 unsigned long addr, unsigned long next,
1306 struct mm_walk *walk);
1307 int (*test_walk)(unsigned long addr, unsigned long next,
1308 struct mm_walk *walk);
1309 struct mm_struct *mm;
1310 struct vm_area_struct *vma;
1311 void *private;
1312 };
1313
1314 int walk_page_range(unsigned long addr, unsigned long end,
1315 struct mm_walk *walk);
1316 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1317 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1318 unsigned long end, unsigned long floor, unsigned long ceiling);
1319 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1320 struct vm_area_struct *vma);
1321 void unmap_mapping_range(struct address_space *mapping,
1322 loff_t const holebegin, loff_t const holelen, int even_cows);
1323 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1324 unsigned long *start, unsigned long *end,
1325 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1326 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1327 unsigned long *pfn);
1328 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1329 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1330 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1331 void *buf, int len, int write);
1332
1333 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1334 loff_t const holebegin, loff_t const holelen)
1335 {
1336 unmap_mapping_range(mapping, holebegin, holelen, 0);
1337 }
1338
1339 extern void truncate_pagecache(struct inode *inode, loff_t new);
1340 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1341 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1342 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1343 int truncate_inode_page(struct address_space *mapping, struct page *page);
1344 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1345 int invalidate_inode_page(struct page *page);
1346
1347 #ifdef CONFIG_MMU
1348 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1349 unsigned int flags);
1350 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1351 unsigned long address, unsigned int fault_flags,
1352 bool *unlocked);
1353 #else
1354 static inline int handle_mm_fault(struct vm_area_struct *vma,
1355 unsigned long address, unsigned int flags)
1356 {
1357 /* should never happen if there's no MMU */
1358 BUG();
1359 return VM_FAULT_SIGBUS;
1360 }
1361 static inline int fixup_user_fault(struct task_struct *tsk,
1362 struct mm_struct *mm, unsigned long address,
1363 unsigned int fault_flags, bool *unlocked)
1364 {
1365 /* should never happen if there's no MMU */
1366 BUG();
1367 return -EFAULT;
1368 }
1369 #endif
1370
1371 extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1372 extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1373 int);
1374 extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1375 extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1376
1377 #define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1378 __LINE__)
1379 #define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1380 __LINE__)
1381 #define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1382 #define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1383
1384 #ifndef CONFIG_MMU
1385 extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1386 extern void vmr_do_fput(struct vm_region *, const char[], int);
1387
1388 #define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1389 __LINE__)
1390 #define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1391 #endif /* !CONFIG_MMU */
1392
1393 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1394 unsigned int gup_flags);
1395 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1396 void *buf, int len, unsigned int gup_flags);
1397 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1398 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1399
1400 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1401 unsigned long start, unsigned long nr_pages,
1402 unsigned int gup_flags, struct page **pages,
1403 struct vm_area_struct **vmas, int *locked);
1404 long get_user_pages(unsigned long start, unsigned long nr_pages,
1405 unsigned int gup_flags, struct page **pages,
1406 struct vm_area_struct **vmas);
1407 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1408 unsigned int gup_flags, struct page **pages, int *locked);
1409 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1410 struct page **pages, unsigned int gup_flags);
1411 #ifdef CONFIG_FS_DAX
1412 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1413 unsigned int gup_flags, struct page **pages,
1414 struct vm_area_struct **vmas);
1415 #else
1416 static inline long get_user_pages_longterm(unsigned long start,
1417 unsigned long nr_pages, unsigned int gup_flags,
1418 struct page **pages, struct vm_area_struct **vmas)
1419 {
1420 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1421 }
1422 #endif /* CONFIG_FS_DAX */
1423
1424 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1425 struct page **pages);
1426
1427 /* Container for pinned pfns / pages */
1428 struct frame_vector {
1429 unsigned int nr_allocated; /* Number of frames we have space for */
1430 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1431 bool got_ref; /* Did we pin pages by getting page ref? */
1432 bool is_pfns; /* Does array contain pages or pfns? */
1433 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1434 * pfns_vector_pages() or pfns_vector_pfns()
1435 * for access */
1436 };
1437
1438 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1439 void frame_vector_destroy(struct frame_vector *vec);
1440 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1441 unsigned int gup_flags, struct frame_vector *vec);
1442 void put_vaddr_frames(struct frame_vector *vec);
1443 int frame_vector_to_pages(struct frame_vector *vec);
1444 void frame_vector_to_pfns(struct frame_vector *vec);
1445
1446 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1447 {
1448 return vec->nr_frames;
1449 }
1450
1451 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1452 {
1453 if (vec->is_pfns) {
1454 int err = frame_vector_to_pages(vec);
1455
1456 if (err)
1457 return ERR_PTR(err);
1458 }
1459 return (struct page **)(vec->ptrs);
1460 }
1461
1462 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1463 {
1464 if (!vec->is_pfns)
1465 frame_vector_to_pfns(vec);
1466 return (unsigned long *)(vec->ptrs);
1467 }
1468
1469 struct kvec;
1470 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1471 struct page **pages);
1472 int get_kernel_page(unsigned long start, int write, struct page **pages);
1473 struct page *get_dump_page(unsigned long addr);
1474
1475 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1476 extern void do_invalidatepage(struct page *page, unsigned int offset,
1477 unsigned int length);
1478
1479 int __set_page_dirty_nobuffers(struct page *page);
1480 int __set_page_dirty_no_writeback(struct page *page);
1481 int redirty_page_for_writepage(struct writeback_control *wbc,
1482 struct page *page);
1483 void account_page_dirtied(struct page *page, struct address_space *mapping);
1484 void account_page_cleaned(struct page *page, struct address_space *mapping,
1485 struct bdi_writeback *wb);
1486 int set_page_dirty(struct page *page);
1487 int set_page_dirty_lock(struct page *page);
1488 void __cancel_dirty_page(struct page *page);
1489 static inline void cancel_dirty_page(struct page *page)
1490 {
1491 /* Avoid atomic ops, locking, etc. when not actually needed. */
1492 if (PageDirty(page))
1493 __cancel_dirty_page(page);
1494 }
1495 int clear_page_dirty_for_io(struct page *page);
1496
1497 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1498
1499 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1500 {
1501 return !vma->vm_ops;
1502 }
1503
1504 #ifdef CONFIG_SHMEM
1505 /*
1506 * The vma_is_shmem is not inline because it is used only by slow
1507 * paths in userfault.
1508 */
1509 bool vma_is_shmem(struct vm_area_struct *vma);
1510 #else
1511 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1512 #endif
1513
1514 int vma_is_stack_for_current(struct vm_area_struct *vma);
1515
1516 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1517 unsigned long old_addr, struct vm_area_struct *new_vma,
1518 unsigned long new_addr, unsigned long len,
1519 bool need_rmap_locks);
1520 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1521 unsigned long end, pgprot_t newprot,
1522 int dirty_accountable, int prot_numa);
1523 extern int mprotect_fixup(struct vm_area_struct *vma,
1524 struct vm_area_struct **pprev, unsigned long start,
1525 unsigned long end, unsigned long newflags);
1526
1527 /*
1528 * doesn't attempt to fault and will return short.
1529 */
1530 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1531 struct page **pages);
1532 /*
1533 * per-process(per-mm_struct) statistics.
1534 */
1535 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1536 {
1537 long val = atomic_long_read(&mm->rss_stat.count[member]);
1538
1539 #ifdef SPLIT_RSS_COUNTING
1540 /*
1541 * counter is updated in asynchronous manner and may go to minus.
1542 * But it's never be expected number for users.
1543 */
1544 if (val < 0)
1545 val = 0;
1546 #endif
1547 return (unsigned long)val;
1548 }
1549
1550 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1551 {
1552 atomic_long_add(value, &mm->rss_stat.count[member]);
1553 }
1554
1555 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1556 {
1557 atomic_long_inc(&mm->rss_stat.count[member]);
1558 }
1559
1560 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1561 {
1562 atomic_long_dec(&mm->rss_stat.count[member]);
1563 }
1564
1565 /* Optimized variant when page is already known not to be PageAnon */
1566 static inline int mm_counter_file(struct page *page)
1567 {
1568 if (PageSwapBacked(page))
1569 return MM_SHMEMPAGES;
1570 return MM_FILEPAGES;
1571 }
1572
1573 static inline int mm_counter(struct page *page)
1574 {
1575 if (PageAnon(page))
1576 return MM_ANONPAGES;
1577 return mm_counter_file(page);
1578 }
1579
1580 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1581 {
1582 return get_mm_counter(mm, MM_FILEPAGES) +
1583 get_mm_counter(mm, MM_ANONPAGES) +
1584 get_mm_counter(mm, MM_SHMEMPAGES);
1585 }
1586
1587 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1588 {
1589 return max(mm->hiwater_rss, get_mm_rss(mm));
1590 }
1591
1592 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1593 {
1594 return max(mm->hiwater_vm, mm->total_vm);
1595 }
1596
1597 static inline void update_hiwater_rss(struct mm_struct *mm)
1598 {
1599 unsigned long _rss = get_mm_rss(mm);
1600
1601 if ((mm)->hiwater_rss < _rss)
1602 (mm)->hiwater_rss = _rss;
1603 }
1604
1605 static inline void update_hiwater_vm(struct mm_struct *mm)
1606 {
1607 if (mm->hiwater_vm < mm->total_vm)
1608 mm->hiwater_vm = mm->total_vm;
1609 }
1610
1611 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1612 {
1613 mm->hiwater_rss = get_mm_rss(mm);
1614 }
1615
1616 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1617 struct mm_struct *mm)
1618 {
1619 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1620
1621 if (*maxrss < hiwater_rss)
1622 *maxrss = hiwater_rss;
1623 }
1624
1625 #if defined(SPLIT_RSS_COUNTING)
1626 void sync_mm_rss(struct mm_struct *mm);
1627 #else
1628 static inline void sync_mm_rss(struct mm_struct *mm)
1629 {
1630 }
1631 #endif
1632
1633 #ifndef __HAVE_ARCH_PTE_DEVMAP
1634 static inline int pte_devmap(pte_t pte)
1635 {
1636 return 0;
1637 }
1638 #endif
1639
1640 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1641
1642 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1643 spinlock_t **ptl);
1644 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1645 spinlock_t **ptl)
1646 {
1647 pte_t *ptep;
1648 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1649 return ptep;
1650 }
1651
1652 #ifdef __PAGETABLE_P4D_FOLDED
1653 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1654 unsigned long address)
1655 {
1656 return 0;
1657 }
1658 #else
1659 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1660 #endif
1661
1662 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1663 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1664 unsigned long address)
1665 {
1666 return 0;
1667 }
1668 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1669 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1670
1671 #else
1672 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1673
1674 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1675 {
1676 if (mm_pud_folded(mm))
1677 return;
1678 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1679 }
1680
1681 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1682 {
1683 if (mm_pud_folded(mm))
1684 return;
1685 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1686 }
1687 #endif
1688
1689 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1690 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1691 unsigned long address)
1692 {
1693 return 0;
1694 }
1695
1696 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1697 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1698
1699 #else
1700 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1701
1702 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1703 {
1704 if (mm_pmd_folded(mm))
1705 return;
1706 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1707 }
1708
1709 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1710 {
1711 if (mm_pmd_folded(mm))
1712 return;
1713 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1714 }
1715 #endif
1716
1717 #ifdef CONFIG_MMU
1718 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1719 {
1720 atomic_long_set(&mm->pgtables_bytes, 0);
1721 }
1722
1723 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1724 {
1725 return atomic_long_read(&mm->pgtables_bytes);
1726 }
1727
1728 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1729 {
1730 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1731 }
1732
1733 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1734 {
1735 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1736 }
1737 #else
1738
1739 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1740 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1741 {
1742 return 0;
1743 }
1744
1745 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1746 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1747 #endif
1748
1749 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1750 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1751
1752 /*
1753 * The following ifdef needed to get the 4level-fixup.h header to work.
1754 * Remove it when 4level-fixup.h has been removed.
1755 */
1756 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1757
1758 #ifndef __ARCH_HAS_5LEVEL_HACK
1759 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1760 unsigned long address)
1761 {
1762 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1763 NULL : p4d_offset(pgd, address);
1764 }
1765
1766 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1767 unsigned long address)
1768 {
1769 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1770 NULL : pud_offset(p4d, address);
1771 }
1772 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1773
1774 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1775 {
1776 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1777 NULL: pmd_offset(pud, address);
1778 }
1779 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1780
1781 #if USE_SPLIT_PTE_PTLOCKS
1782 #if ALLOC_SPLIT_PTLOCKS
1783 void __init ptlock_cache_init(void);
1784 extern bool ptlock_alloc(struct page *page);
1785 extern void ptlock_free(struct page *page);
1786
1787 static inline spinlock_t *ptlock_ptr(struct page *page)
1788 {
1789 return page->ptl;
1790 }
1791 #else /* ALLOC_SPLIT_PTLOCKS */
1792 static inline void ptlock_cache_init(void)
1793 {
1794 }
1795
1796 static inline bool ptlock_alloc(struct page *page)
1797 {
1798 return true;
1799 }
1800
1801 static inline void ptlock_free(struct page *page)
1802 {
1803 }
1804
1805 static inline spinlock_t *ptlock_ptr(struct page *page)
1806 {
1807 return &page->ptl;
1808 }
1809 #endif /* ALLOC_SPLIT_PTLOCKS */
1810
1811 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1812 {
1813 return ptlock_ptr(pmd_page(*pmd));
1814 }
1815
1816 static inline bool ptlock_init(struct page *page)
1817 {
1818 /*
1819 * prep_new_page() initialize page->private (and therefore page->ptl)
1820 * with 0. Make sure nobody took it in use in between.
1821 *
1822 * It can happen if arch try to use slab for page table allocation:
1823 * slab code uses page->slab_cache, which share storage with page->ptl.
1824 */
1825 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1826 if (!ptlock_alloc(page))
1827 return false;
1828 spin_lock_init(ptlock_ptr(page));
1829 return true;
1830 }
1831
1832 /* Reset page->mapping so free_pages_check won't complain. */
1833 static inline void pte_lock_deinit(struct page *page)
1834 {
1835 page->mapping = NULL;
1836 ptlock_free(page);
1837 }
1838
1839 #else /* !USE_SPLIT_PTE_PTLOCKS */
1840 /*
1841 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1842 */
1843 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1844 {
1845 return &mm->page_table_lock;
1846 }
1847 static inline void ptlock_cache_init(void) {}
1848 static inline bool ptlock_init(struct page *page) { return true; }
1849 static inline void pte_lock_deinit(struct page *page) {}
1850 #endif /* USE_SPLIT_PTE_PTLOCKS */
1851
1852 static inline void pgtable_init(void)
1853 {
1854 ptlock_cache_init();
1855 pgtable_cache_init();
1856 }
1857
1858 static inline bool pgtable_page_ctor(struct page *page)
1859 {
1860 if (!ptlock_init(page))
1861 return false;
1862 inc_zone_page_state(page, NR_PAGETABLE);
1863 return true;
1864 }
1865
1866 static inline void pgtable_page_dtor(struct page *page)
1867 {
1868 pte_lock_deinit(page);
1869 dec_zone_page_state(page, NR_PAGETABLE);
1870 }
1871
1872 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1873 ({ \
1874 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1875 pte_t *__pte = pte_offset_map(pmd, address); \
1876 *(ptlp) = __ptl; \
1877 spin_lock(__ptl); \
1878 __pte; \
1879 })
1880
1881 #define pte_unmap_unlock(pte, ptl) do { \
1882 spin_unlock(ptl); \
1883 pte_unmap(pte); \
1884 } while (0)
1885
1886 #define pte_alloc(mm, pmd, address) \
1887 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1888
1889 #define pte_alloc_map(mm, pmd, address) \
1890 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1891
1892 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1893 (pte_alloc(mm, pmd, address) ? \
1894 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1895
1896 #define pte_alloc_kernel(pmd, address) \
1897 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1898 NULL: pte_offset_kernel(pmd, address))
1899
1900 #if USE_SPLIT_PMD_PTLOCKS
1901
1902 static struct page *pmd_to_page(pmd_t *pmd)
1903 {
1904 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1905 return virt_to_page((void *)((unsigned long) pmd & mask));
1906 }
1907
1908 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1909 {
1910 return ptlock_ptr(pmd_to_page(pmd));
1911 }
1912
1913 static inline bool pgtable_pmd_page_ctor(struct page *page)
1914 {
1915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1916 page->pmd_huge_pte = NULL;
1917 #endif
1918 return ptlock_init(page);
1919 }
1920
1921 static inline void pgtable_pmd_page_dtor(struct page *page)
1922 {
1923 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1924 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1925 #endif
1926 ptlock_free(page);
1927 }
1928
1929 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1930
1931 #else
1932
1933 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1934 {
1935 return &mm->page_table_lock;
1936 }
1937
1938 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1939 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1940
1941 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1942
1943 #endif
1944
1945 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1946 {
1947 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1948 spin_lock(ptl);
1949 return ptl;
1950 }
1951
1952 /*
1953 * No scalability reason to split PUD locks yet, but follow the same pattern
1954 * as the PMD locks to make it easier if we decide to. The VM should not be
1955 * considered ready to switch to split PUD locks yet; there may be places
1956 * which need to be converted from page_table_lock.
1957 */
1958 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1959 {
1960 return &mm->page_table_lock;
1961 }
1962
1963 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1964 {
1965 spinlock_t *ptl = pud_lockptr(mm, pud);
1966
1967 spin_lock(ptl);
1968 return ptl;
1969 }
1970
1971 extern void __init pagecache_init(void);
1972 extern void free_area_init(unsigned long * zones_size);
1973 extern void free_area_init_node(int nid, unsigned long * zones_size,
1974 unsigned long zone_start_pfn, unsigned long *zholes_size);
1975 extern void free_initmem(void);
1976
1977 /*
1978 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1979 * into the buddy system. The freed pages will be poisoned with pattern
1980 * "poison" if it's within range [0, UCHAR_MAX].
1981 * Return pages freed into the buddy system.
1982 */
1983 extern unsigned long free_reserved_area(void *start, void *end,
1984 int poison, char *s);
1985
1986 #ifdef CONFIG_HIGHMEM
1987 /*
1988 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1989 * and totalram_pages.
1990 */
1991 extern void free_highmem_page(struct page *page);
1992 #endif
1993
1994 extern void adjust_managed_page_count(struct page *page, long count);
1995 extern void mem_init_print_info(const char *str);
1996
1997 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1998
1999 /* Free the reserved page into the buddy system, so it gets managed. */
2000 static inline void __free_reserved_page(struct page *page)
2001 {
2002 ClearPageReserved(page);
2003 init_page_count(page);
2004 __free_page(page);
2005 }
2006
2007 static inline void free_reserved_page(struct page *page)
2008 {
2009 __free_reserved_page(page);
2010 adjust_managed_page_count(page, 1);
2011 }
2012
2013 static inline void mark_page_reserved(struct page *page)
2014 {
2015 SetPageReserved(page);
2016 adjust_managed_page_count(page, -1);
2017 }
2018
2019 /*
2020 * Default method to free all the __init memory into the buddy system.
2021 * The freed pages will be poisoned with pattern "poison" if it's within
2022 * range [0, UCHAR_MAX].
2023 * Return pages freed into the buddy system.
2024 */
2025 static inline unsigned long free_initmem_default(int poison)
2026 {
2027 extern char __init_begin[], __init_end[];
2028
2029 return free_reserved_area(&__init_begin, &__init_end,
2030 poison, "unused kernel");
2031 }
2032
2033 static inline unsigned long get_num_physpages(void)
2034 {
2035 int nid;
2036 unsigned long phys_pages = 0;
2037
2038 for_each_online_node(nid)
2039 phys_pages += node_present_pages(nid);
2040
2041 return phys_pages;
2042 }
2043
2044 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2045 /*
2046 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2047 * zones, allocate the backing mem_map and account for memory holes in a more
2048 * architecture independent manner. This is a substitute for creating the
2049 * zone_sizes[] and zholes_size[] arrays and passing them to
2050 * free_area_init_node()
2051 *
2052 * An architecture is expected to register range of page frames backed by
2053 * physical memory with memblock_add[_node]() before calling
2054 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2055 * usage, an architecture is expected to do something like
2056 *
2057 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2058 * max_highmem_pfn};
2059 * for_each_valid_physical_page_range()
2060 * memblock_add_node(base, size, nid)
2061 * free_area_init_nodes(max_zone_pfns);
2062 *
2063 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2064 * registered physical page range. Similarly
2065 * sparse_memory_present_with_active_regions() calls memory_present() for
2066 * each range when SPARSEMEM is enabled.
2067 *
2068 * See mm/page_alloc.c for more information on each function exposed by
2069 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2070 */
2071 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2072 unsigned long node_map_pfn_alignment(void);
2073 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2074 unsigned long end_pfn);
2075 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2076 unsigned long end_pfn);
2077 extern void get_pfn_range_for_nid(unsigned int nid,
2078 unsigned long *start_pfn, unsigned long *end_pfn);
2079 extern unsigned long find_min_pfn_with_active_regions(void);
2080 extern void free_bootmem_with_active_regions(int nid,
2081 unsigned long max_low_pfn);
2082 extern void sparse_memory_present_with_active_regions(int nid);
2083
2084 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2085
2086 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2087 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2088 static inline int __early_pfn_to_nid(unsigned long pfn,
2089 struct mminit_pfnnid_cache *state)
2090 {
2091 return 0;
2092 }
2093 #else
2094 /* please see mm/page_alloc.c */
2095 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2096 /* there is a per-arch backend function. */
2097 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2098 struct mminit_pfnnid_cache *state);
2099 #endif
2100
2101 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
2102 void zero_resv_unavail(void);
2103 #else
2104 static inline void zero_resv_unavail(void) {}
2105 #endif
2106
2107 extern void set_dma_reserve(unsigned long new_dma_reserve);
2108 extern void memmap_init_zone(unsigned long, int, unsigned long,
2109 unsigned long, enum memmap_context);
2110 extern void setup_per_zone_wmarks(void);
2111 extern int __meminit init_per_zone_wmark_min(void);
2112 extern void mem_init(void);
2113 extern void __init mmap_init(void);
2114 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2115 extern long si_mem_available(void);
2116 extern void si_meminfo(struct sysinfo * val);
2117 extern void si_meminfo_node(struct sysinfo *val, int nid);
2118 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2119 extern unsigned long arch_reserved_kernel_pages(void);
2120 #endif
2121
2122 extern __printf(3, 4)
2123 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2124
2125 extern void setup_per_cpu_pageset(void);
2126
2127 extern void zone_pcp_update(struct zone *zone);
2128 extern void zone_pcp_reset(struct zone *zone);
2129
2130 /* page_alloc.c */
2131 extern int min_free_kbytes;
2132 extern int watermark_scale_factor;
2133
2134 /* nommu.c */
2135 extern atomic_long_t mmap_pages_allocated;
2136 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2137
2138 /* interval_tree.c */
2139 void vma_interval_tree_insert(struct vm_area_struct *node,
2140 struct rb_root_cached *root);
2141 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2142 struct vm_area_struct *prev,
2143 struct rb_root_cached *root);
2144 void vma_interval_tree_remove(struct vm_area_struct *node,
2145 struct rb_root_cached *root);
2146 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2147 unsigned long start, unsigned long last);
2148 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2149 unsigned long start, unsigned long last);
2150
2151 #define vma_interval_tree_foreach(vma, root, start, last) \
2152 for (vma = vma_interval_tree_iter_first(root, start, last); \
2153 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2154
2155 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2156 struct rb_root_cached *root);
2157 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2158 struct rb_root_cached *root);
2159 struct anon_vma_chain *
2160 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2161 unsigned long start, unsigned long last);
2162 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2163 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2164 #ifdef CONFIG_DEBUG_VM_RB
2165 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2166 #endif
2167
2168 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2169 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2170 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2171
2172 /* mmap.c */
2173 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2174 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2175 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2176 struct vm_area_struct *expand);
2177 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2178 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2179 {
2180 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2181 }
2182 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2183 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2184 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2185 struct mempolicy *, struct vm_userfaultfd_ctx);
2186 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2187 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2188 unsigned long addr, int new_below);
2189 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2190 unsigned long addr, int new_below);
2191 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2192 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2193 struct rb_node **, struct rb_node *);
2194 extern void unlink_file_vma(struct vm_area_struct *);
2195 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2196 unsigned long addr, unsigned long len, pgoff_t pgoff,
2197 bool *need_rmap_locks);
2198 extern void exit_mmap(struct mm_struct *);
2199
2200 static inline int check_data_rlimit(unsigned long rlim,
2201 unsigned long new,
2202 unsigned long start,
2203 unsigned long end_data,
2204 unsigned long start_data)
2205 {
2206 if (rlim < RLIM_INFINITY) {
2207 if (((new - start) + (end_data - start_data)) > rlim)
2208 return -ENOSPC;
2209 }
2210
2211 return 0;
2212 }
2213
2214 extern int mm_take_all_locks(struct mm_struct *mm);
2215 extern void mm_drop_all_locks(struct mm_struct *mm);
2216
2217 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2218 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2219 extern struct file *get_task_exe_file(struct task_struct *task);
2220
2221 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2222 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2223
2224 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2225 const struct vm_special_mapping *sm);
2226 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2227 unsigned long addr, unsigned long len,
2228 unsigned long flags,
2229 const struct vm_special_mapping *spec);
2230 /* This is an obsolete alternative to _install_special_mapping. */
2231 extern int install_special_mapping(struct mm_struct *mm,
2232 unsigned long addr, unsigned long len,
2233 unsigned long flags, struct page **pages);
2234
2235 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2236
2237 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2238 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2239 struct list_head *uf);
2240 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2241 unsigned long len, unsigned long prot, unsigned long flags,
2242 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2243 struct list_head *uf);
2244 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2245 struct list_head *uf);
2246
2247 static inline unsigned long
2248 do_mmap_pgoff(struct file *file, unsigned long addr,
2249 unsigned long len, unsigned long prot, unsigned long flags,
2250 unsigned long pgoff, unsigned long *populate,
2251 struct list_head *uf)
2252 {
2253 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2254 }
2255
2256 #ifdef CONFIG_MMU
2257 extern int __mm_populate(unsigned long addr, unsigned long len,
2258 int ignore_errors);
2259 static inline void mm_populate(unsigned long addr, unsigned long len)
2260 {
2261 /* Ignore errors */
2262 (void) __mm_populate(addr, len, 1);
2263 }
2264 #else
2265 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2266 #endif
2267
2268 /* These take the mm semaphore themselves */
2269 extern int __must_check vm_brk(unsigned long, unsigned long);
2270 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2271 extern int vm_munmap(unsigned long, size_t);
2272 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2273 unsigned long, unsigned long,
2274 unsigned long, unsigned long);
2275
2276 struct vm_unmapped_area_info {
2277 #define VM_UNMAPPED_AREA_TOPDOWN 1
2278 unsigned long flags;
2279 unsigned long length;
2280 unsigned long low_limit;
2281 unsigned long high_limit;
2282 unsigned long align_mask;
2283 unsigned long align_offset;
2284 };
2285
2286 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2287 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2288
2289 /*
2290 * Search for an unmapped address range.
2291 *
2292 * We are looking for a range that:
2293 * - does not intersect with any VMA;
2294 * - is contained within the [low_limit, high_limit) interval;
2295 * - is at least the desired size.
2296 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2297 */
2298 static inline unsigned long
2299 vm_unmapped_area(struct vm_unmapped_area_info *info)
2300 {
2301 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2302 return unmapped_area_topdown(info);
2303 else
2304 return unmapped_area(info);
2305 }
2306
2307 /* truncate.c */
2308 extern void truncate_inode_pages(struct address_space *, loff_t);
2309 extern void truncate_inode_pages_range(struct address_space *,
2310 loff_t lstart, loff_t lend);
2311 extern void truncate_inode_pages_final(struct address_space *);
2312
2313 /* generic vm_area_ops exported for stackable file systems */
2314 extern int filemap_fault(struct vm_fault *vmf);
2315 extern void filemap_map_pages(struct vm_fault *vmf,
2316 pgoff_t start_pgoff, pgoff_t end_pgoff);
2317 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2318
2319 /* mm/page-writeback.c */
2320 int __must_check write_one_page(struct page *page);
2321 void task_dirty_inc(struct task_struct *tsk);
2322
2323 /* readahead.c */
2324 #define VM_MAX_READAHEAD 128 /* kbytes */
2325 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2326
2327 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2328 pgoff_t offset, unsigned long nr_to_read);
2329
2330 void page_cache_sync_readahead(struct address_space *mapping,
2331 struct file_ra_state *ra,
2332 struct file *filp,
2333 pgoff_t offset,
2334 unsigned long size);
2335
2336 void page_cache_async_readahead(struct address_space *mapping,
2337 struct file_ra_state *ra,
2338 struct file *filp,
2339 struct page *pg,
2340 pgoff_t offset,
2341 unsigned long size);
2342
2343 extern unsigned long stack_guard_gap;
2344 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2345 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2346
2347 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2348 extern int expand_downwards(struct vm_area_struct *vma,
2349 unsigned long address);
2350 #if VM_GROWSUP
2351 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2352 #else
2353 #define expand_upwards(vma, address) (0)
2354 #endif
2355
2356 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2357 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2358 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2359 struct vm_area_struct **pprev);
2360
2361 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2362 NULL if none. Assume start_addr < end_addr. */
2363 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2364 {
2365 struct vm_area_struct * vma = find_vma(mm,start_addr);
2366
2367 if (vma && end_addr <= vma->vm_start)
2368 vma = NULL;
2369 return vma;
2370 }
2371
2372 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2373 {
2374 unsigned long vm_start = vma->vm_start;
2375
2376 if (vma->vm_flags & VM_GROWSDOWN) {
2377 vm_start -= stack_guard_gap;
2378 if (vm_start > vma->vm_start)
2379 vm_start = 0;
2380 }
2381 return vm_start;
2382 }
2383
2384 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2385 {
2386 unsigned long vm_end = vma->vm_end;
2387
2388 if (vma->vm_flags & VM_GROWSUP) {
2389 vm_end += stack_guard_gap;
2390 if (vm_end < vma->vm_end)
2391 vm_end = -PAGE_SIZE;
2392 }
2393 return vm_end;
2394 }
2395
2396 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2397 {
2398 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2399 }
2400
2401 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2402 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2403 unsigned long vm_start, unsigned long vm_end)
2404 {
2405 struct vm_area_struct *vma = find_vma(mm, vm_start);
2406
2407 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2408 vma = NULL;
2409
2410 return vma;
2411 }
2412
2413 static inline bool range_in_vma(struct vm_area_struct *vma,
2414 unsigned long start, unsigned long end)
2415 {
2416 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2417 }
2418
2419 #ifdef CONFIG_MMU
2420 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2421 void vma_set_page_prot(struct vm_area_struct *vma);
2422 #else
2423 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2424 {
2425 return __pgprot(0);
2426 }
2427 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2428 {
2429 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2430 }
2431 #endif
2432
2433 #ifdef CONFIG_NUMA_BALANCING
2434 unsigned long change_prot_numa(struct vm_area_struct *vma,
2435 unsigned long start, unsigned long end);
2436 #endif
2437
2438 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2439 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2440 unsigned long pfn, unsigned long size, pgprot_t);
2441 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2442 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2443 unsigned long pfn);
2444 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2445 unsigned long pfn, pgprot_t pgprot);
2446 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2447 pfn_t pfn);
2448 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2449 pfn_t pfn);
2450 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2451
2452
2453 struct page *follow_page_mask(struct vm_area_struct *vma,
2454 unsigned long address, unsigned int foll_flags,
2455 unsigned int *page_mask);
2456
2457 static inline struct page *follow_page(struct vm_area_struct *vma,
2458 unsigned long address, unsigned int foll_flags)
2459 {
2460 unsigned int unused_page_mask;
2461 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2462 }
2463
2464 #define FOLL_WRITE 0x01 /* check pte is writable */
2465 #define FOLL_TOUCH 0x02 /* mark page accessed */
2466 #define FOLL_GET 0x04 /* do get_page on page */
2467 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2468 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2469 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2470 * and return without waiting upon it */
2471 #define FOLL_POPULATE 0x40 /* fault in page */
2472 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2473 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2474 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2475 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2476 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2477 #define FOLL_MLOCK 0x1000 /* lock present pages */
2478 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2479 #define FOLL_COW 0x4000 /* internal GUP flag */
2480 #define FOLL_ANON 0x8000 /* don't do file mappings */
2481
2482 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2483 {
2484 if (vm_fault & VM_FAULT_OOM)
2485 return -ENOMEM;
2486 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2487 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2488 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2489 return -EFAULT;
2490 return 0;
2491 }
2492
2493 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2494 void *data);
2495 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2496 unsigned long size, pte_fn_t fn, void *data);
2497
2498
2499 #ifdef CONFIG_PAGE_POISONING
2500 extern bool page_poisoning_enabled(void);
2501 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2502 extern bool page_is_poisoned(struct page *page);
2503 #else
2504 static inline bool page_poisoning_enabled(void) { return false; }
2505 static inline void kernel_poison_pages(struct page *page, int numpages,
2506 int enable) { }
2507 static inline bool page_is_poisoned(struct page *page) { return false; }
2508 #endif
2509
2510 #ifdef CONFIG_DEBUG_PAGEALLOC
2511 extern bool _debug_pagealloc_enabled;
2512 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2513
2514 static inline bool debug_pagealloc_enabled(void)
2515 {
2516 return _debug_pagealloc_enabled;
2517 }
2518
2519 static inline void
2520 kernel_map_pages(struct page *page, int numpages, int enable)
2521 {
2522 if (!debug_pagealloc_enabled())
2523 return;
2524
2525 __kernel_map_pages(page, numpages, enable);
2526 }
2527 #ifdef CONFIG_HIBERNATION
2528 extern bool kernel_page_present(struct page *page);
2529 #endif /* CONFIG_HIBERNATION */
2530 #else /* CONFIG_DEBUG_PAGEALLOC */
2531 static inline void
2532 kernel_map_pages(struct page *page, int numpages, int enable) {}
2533 #ifdef CONFIG_HIBERNATION
2534 static inline bool kernel_page_present(struct page *page) { return true; }
2535 #endif /* CONFIG_HIBERNATION */
2536 static inline bool debug_pagealloc_enabled(void)
2537 {
2538 return false;
2539 }
2540 #endif /* CONFIG_DEBUG_PAGEALLOC */
2541
2542 #ifdef __HAVE_ARCH_GATE_AREA
2543 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2544 extern int in_gate_area_no_mm(unsigned long addr);
2545 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2546 #else
2547 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2548 {
2549 return NULL;
2550 }
2551 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2552 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2553 {
2554 return 0;
2555 }
2556 #endif /* __HAVE_ARCH_GATE_AREA */
2557
2558 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2559
2560 #ifdef CONFIG_SYSCTL
2561 extern int sysctl_drop_caches;
2562 int drop_caches_sysctl_handler(struct ctl_table *, int,
2563 void __user *, size_t *, loff_t *);
2564 #endif
2565
2566 void drop_slab(void);
2567 void drop_slab_node(int nid);
2568
2569 #ifndef CONFIG_MMU
2570 #define randomize_va_space 0
2571 #else
2572 extern int randomize_va_space;
2573 #endif
2574
2575 const char * arch_vma_name(struct vm_area_struct *vma);
2576 void print_vma_addr(char *prefix, unsigned long rip);
2577
2578 void sparse_mem_maps_populate_node(struct page **map_map,
2579 unsigned long pnum_begin,
2580 unsigned long pnum_end,
2581 unsigned long map_count,
2582 int nodeid);
2583
2584 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2585 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2586 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2587 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2588 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2589 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2590 void *vmemmap_alloc_block(unsigned long size, int node);
2591 struct vmem_altmap;
2592 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2593 struct vmem_altmap *altmap);
2594 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2595 {
2596 return __vmemmap_alloc_block_buf(size, node, NULL);
2597 }
2598
2599 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2600 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2601 int node);
2602 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2603 void vmemmap_populate_print_last(void);
2604 #ifdef CONFIG_MEMORY_HOTPLUG
2605 void vmemmap_free(unsigned long start, unsigned long end);
2606 #endif
2607 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2608 unsigned long nr_pages);
2609
2610 enum mf_flags {
2611 MF_COUNT_INCREASED = 1 << 0,
2612 MF_ACTION_REQUIRED = 1 << 1,
2613 MF_MUST_KILL = 1 << 2,
2614 MF_SOFT_OFFLINE = 1 << 3,
2615 };
2616 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2617 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2618 extern int unpoison_memory(unsigned long pfn);
2619 extern int get_hwpoison_page(struct page *page);
2620 #define put_hwpoison_page(page) put_page(page)
2621 extern int sysctl_memory_failure_early_kill;
2622 extern int sysctl_memory_failure_recovery;
2623 extern void shake_page(struct page *p, int access);
2624 extern atomic_long_t num_poisoned_pages;
2625 extern int soft_offline_page(struct page *page, int flags);
2626
2627
2628 /*
2629 * Error handlers for various types of pages.
2630 */
2631 enum mf_result {
2632 MF_IGNORED, /* Error: cannot be handled */
2633 MF_FAILED, /* Error: handling failed */
2634 MF_DELAYED, /* Will be handled later */
2635 MF_RECOVERED, /* Successfully recovered */
2636 };
2637
2638 enum mf_action_page_type {
2639 MF_MSG_KERNEL,
2640 MF_MSG_KERNEL_HIGH_ORDER,
2641 MF_MSG_SLAB,
2642 MF_MSG_DIFFERENT_COMPOUND,
2643 MF_MSG_POISONED_HUGE,
2644 MF_MSG_HUGE,
2645 MF_MSG_FREE_HUGE,
2646 MF_MSG_NON_PMD_HUGE,
2647 MF_MSG_UNMAP_FAILED,
2648 MF_MSG_DIRTY_SWAPCACHE,
2649 MF_MSG_CLEAN_SWAPCACHE,
2650 MF_MSG_DIRTY_MLOCKED_LRU,
2651 MF_MSG_CLEAN_MLOCKED_LRU,
2652 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2653 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2654 MF_MSG_DIRTY_LRU,
2655 MF_MSG_CLEAN_LRU,
2656 MF_MSG_TRUNCATED_LRU,
2657 MF_MSG_BUDDY,
2658 MF_MSG_BUDDY_2ND,
2659 MF_MSG_UNKNOWN,
2660 };
2661
2662 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2663 extern void clear_huge_page(struct page *page,
2664 unsigned long addr_hint,
2665 unsigned int pages_per_huge_page);
2666 extern void copy_user_huge_page(struct page *dst, struct page *src,
2667 unsigned long addr, struct vm_area_struct *vma,
2668 unsigned int pages_per_huge_page);
2669 extern long copy_huge_page_from_user(struct page *dst_page,
2670 const void __user *usr_src,
2671 unsigned int pages_per_huge_page,
2672 bool allow_pagefault);
2673 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2674
2675 extern struct page_ext_operations debug_guardpage_ops;
2676
2677 #ifdef CONFIG_DEBUG_PAGEALLOC
2678 extern unsigned int _debug_guardpage_minorder;
2679 extern bool _debug_guardpage_enabled;
2680
2681 static inline unsigned int debug_guardpage_minorder(void)
2682 {
2683 return _debug_guardpage_minorder;
2684 }
2685
2686 static inline bool debug_guardpage_enabled(void)
2687 {
2688 return _debug_guardpage_enabled;
2689 }
2690
2691 static inline bool page_is_guard(struct page *page)
2692 {
2693 struct page_ext *page_ext;
2694
2695 if (!debug_guardpage_enabled())
2696 return false;
2697
2698 page_ext = lookup_page_ext(page);
2699 if (unlikely(!page_ext))
2700 return false;
2701
2702 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2703 }
2704 #else
2705 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2706 static inline bool debug_guardpage_enabled(void) { return false; }
2707 static inline bool page_is_guard(struct page *page) { return false; }
2708 #endif /* CONFIG_DEBUG_PAGEALLOC */
2709
2710 #if MAX_NUMNODES > 1
2711 void __init setup_nr_node_ids(void);
2712 #else
2713 static inline void setup_nr_node_ids(void) {}
2714 #endif
2715
2716 #endif /* __KERNEL__ */
2717 #endif /* _LINUX_MM_H */