]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/mm.h
Merge branch 'x86/mce' into x86/ras
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30
31 static inline void set_max_mapnr(unsigned long limit)
32 {
33 max_mapnr = limit;
34 }
35 #else
36 static inline void set_max_mapnr(unsigned long limit) { }
37 #endif
38
39 extern unsigned long totalram_pages;
40 extern void * high_memory;
41 extern int page_cluster;
42
43 #ifdef CONFIG_SYSCTL
44 extern int sysctl_legacy_va_layout;
45 #else
46 #define sysctl_legacy_va_layout 0
47 #endif
48
49 #include <asm/page.h>
50 #include <asm/pgtable.h>
51 #include <asm/processor.h>
52
53 extern unsigned long sysctl_user_reserve_kbytes;
54 extern unsigned long sysctl_admin_reserve_kbytes;
55
56 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
57
58 /* to align the pointer to the (next) page boundary */
59 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
60
61 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
62 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
63
64 /*
65 * Linux kernel virtual memory manager primitives.
66 * The idea being to have a "virtual" mm in the same way
67 * we have a virtual fs - giving a cleaner interface to the
68 * mm details, and allowing different kinds of memory mappings
69 * (from shared memory to executable loading to arbitrary
70 * mmap() functions).
71 */
72
73 extern struct kmem_cache *vm_area_cachep;
74
75 #ifndef CONFIG_MMU
76 extern struct rb_root nommu_region_tree;
77 extern struct rw_semaphore nommu_region_sem;
78
79 extern unsigned int kobjsize(const void *objp);
80 #endif
81
82 /*
83 * vm_flags in vm_area_struct, see mm_types.h.
84 */
85 #define VM_NONE 0x00000000
86
87 #define VM_READ 0x00000001 /* currently active flags */
88 #define VM_WRITE 0x00000002
89 #define VM_EXEC 0x00000004
90 #define VM_SHARED 0x00000008
91
92 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
93 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
94 #define VM_MAYWRITE 0x00000020
95 #define VM_MAYEXEC 0x00000040
96 #define VM_MAYSHARE 0x00000080
97
98 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
99 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
100 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
101
102 #define VM_LOCKED 0x00002000
103 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
104
105 /* Used by sys_madvise() */
106 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
107 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
108
109 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
110 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
111 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
112 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
113 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
114 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
115 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
116 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
117
118 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
119 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
120 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
121 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
122
123 #if defined(CONFIG_X86)
124 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
125 #elif defined(CONFIG_PPC)
126 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
127 #elif defined(CONFIG_PARISC)
128 # define VM_GROWSUP VM_ARCH_1
129 #elif defined(CONFIG_METAG)
130 # define VM_GROWSUP VM_ARCH_1
131 #elif defined(CONFIG_IA64)
132 # define VM_GROWSUP VM_ARCH_1
133 #elif !defined(CONFIG_MMU)
134 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
135 #endif
136
137 #ifndef VM_GROWSUP
138 # define VM_GROWSUP VM_NONE
139 #endif
140
141 /* Bits set in the VMA until the stack is in its final location */
142 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
143
144 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
145 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
146 #endif
147
148 #ifdef CONFIG_STACK_GROWSUP
149 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
150 #else
151 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
152 #endif
153
154 /*
155 * Special vmas that are non-mergable, non-mlock()able.
156 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
157 */
158 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
159
160 /*
161 * mapping from the currently active vm_flags protection bits (the
162 * low four bits) to a page protection mask..
163 */
164 extern pgprot_t protection_map[16];
165
166 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
167 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
168 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
169 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
170 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
171 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
172 #define FAULT_FLAG_TRIED 0x40 /* second try */
173
174 /*
175 * vm_fault is filled by the the pagefault handler and passed to the vma's
176 * ->fault function. The vma's ->fault is responsible for returning a bitmask
177 * of VM_FAULT_xxx flags that give details about how the fault was handled.
178 *
179 * pgoff should be used in favour of virtual_address, if possible. If pgoff
180 * is used, one may implement ->remap_pages to get nonlinear mapping support.
181 */
182 struct vm_fault {
183 unsigned int flags; /* FAULT_FLAG_xxx flags */
184 pgoff_t pgoff; /* Logical page offset based on vma */
185 void __user *virtual_address; /* Faulting virtual address */
186
187 struct page *page; /* ->fault handlers should return a
188 * page here, unless VM_FAULT_NOPAGE
189 * is set (which is also implied by
190 * VM_FAULT_ERROR).
191 */
192 };
193
194 /*
195 * These are the virtual MM functions - opening of an area, closing and
196 * unmapping it (needed to keep files on disk up-to-date etc), pointer
197 * to the functions called when a no-page or a wp-page exception occurs.
198 */
199 struct vm_operations_struct {
200 void (*open)(struct vm_area_struct * area);
201 void (*close)(struct vm_area_struct * area);
202 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
203
204 /* notification that a previously read-only page is about to become
205 * writable, if an error is returned it will cause a SIGBUS */
206 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
207
208 /* called by access_process_vm when get_user_pages() fails, typically
209 * for use by special VMAs that can switch between memory and hardware
210 */
211 int (*access)(struct vm_area_struct *vma, unsigned long addr,
212 void *buf, int len, int write);
213 #ifdef CONFIG_NUMA
214 /*
215 * set_policy() op must add a reference to any non-NULL @new mempolicy
216 * to hold the policy upon return. Caller should pass NULL @new to
217 * remove a policy and fall back to surrounding context--i.e. do not
218 * install a MPOL_DEFAULT policy, nor the task or system default
219 * mempolicy.
220 */
221 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
222
223 /*
224 * get_policy() op must add reference [mpol_get()] to any policy at
225 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
226 * in mm/mempolicy.c will do this automatically.
227 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
228 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
229 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
230 * must return NULL--i.e., do not "fallback" to task or system default
231 * policy.
232 */
233 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
234 unsigned long addr);
235 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
236 const nodemask_t *to, unsigned long flags);
237 #endif
238 /* called by sys_remap_file_pages() to populate non-linear mapping */
239 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
240 unsigned long size, pgoff_t pgoff);
241 };
242
243 struct mmu_gather;
244 struct inode;
245
246 #define page_private(page) ((page)->private)
247 #define set_page_private(page, v) ((page)->private = (v))
248
249 /* It's valid only if the page is free path or free_list */
250 static inline void set_freepage_migratetype(struct page *page, int migratetype)
251 {
252 page->index = migratetype;
253 }
254
255 /* It's valid only if the page is free path or free_list */
256 static inline int get_freepage_migratetype(struct page *page)
257 {
258 return page->index;
259 }
260
261 /*
262 * FIXME: take this include out, include page-flags.h in
263 * files which need it (119 of them)
264 */
265 #include <linux/page-flags.h>
266 #include <linux/huge_mm.h>
267
268 /*
269 * Methods to modify the page usage count.
270 *
271 * What counts for a page usage:
272 * - cache mapping (page->mapping)
273 * - private data (page->private)
274 * - page mapped in a task's page tables, each mapping
275 * is counted separately
276 *
277 * Also, many kernel routines increase the page count before a critical
278 * routine so they can be sure the page doesn't go away from under them.
279 */
280
281 /*
282 * Drop a ref, return true if the refcount fell to zero (the page has no users)
283 */
284 static inline int put_page_testzero(struct page *page)
285 {
286 VM_BUG_ON(atomic_read(&page->_count) == 0);
287 return atomic_dec_and_test(&page->_count);
288 }
289
290 /*
291 * Try to grab a ref unless the page has a refcount of zero, return false if
292 * that is the case.
293 */
294 static inline int get_page_unless_zero(struct page *page)
295 {
296 return atomic_inc_not_zero(&page->_count);
297 }
298
299 extern int page_is_ram(unsigned long pfn);
300
301 /* Support for virtually mapped pages */
302 struct page *vmalloc_to_page(const void *addr);
303 unsigned long vmalloc_to_pfn(const void *addr);
304
305 /*
306 * Determine if an address is within the vmalloc range
307 *
308 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
309 * is no special casing required.
310 */
311 static inline int is_vmalloc_addr(const void *x)
312 {
313 #ifdef CONFIG_MMU
314 unsigned long addr = (unsigned long)x;
315
316 return addr >= VMALLOC_START && addr < VMALLOC_END;
317 #else
318 return 0;
319 #endif
320 }
321 #ifdef CONFIG_MMU
322 extern int is_vmalloc_or_module_addr(const void *x);
323 #else
324 static inline int is_vmalloc_or_module_addr(const void *x)
325 {
326 return 0;
327 }
328 #endif
329
330 static inline void compound_lock(struct page *page)
331 {
332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 VM_BUG_ON(PageSlab(page));
334 bit_spin_lock(PG_compound_lock, &page->flags);
335 #endif
336 }
337
338 static inline void compound_unlock(struct page *page)
339 {
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 VM_BUG_ON(PageSlab(page));
342 bit_spin_unlock(PG_compound_lock, &page->flags);
343 #endif
344 }
345
346 static inline unsigned long compound_lock_irqsave(struct page *page)
347 {
348 unsigned long uninitialized_var(flags);
349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
350 local_irq_save(flags);
351 compound_lock(page);
352 #endif
353 return flags;
354 }
355
356 static inline void compound_unlock_irqrestore(struct page *page,
357 unsigned long flags)
358 {
359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
360 compound_unlock(page);
361 local_irq_restore(flags);
362 #endif
363 }
364
365 static inline struct page *compound_head(struct page *page)
366 {
367 if (unlikely(PageTail(page)))
368 return page->first_page;
369 return page;
370 }
371
372 /*
373 * The atomic page->_mapcount, starts from -1: so that transitions
374 * both from it and to it can be tracked, using atomic_inc_and_test
375 * and atomic_add_negative(-1).
376 */
377 static inline void page_mapcount_reset(struct page *page)
378 {
379 atomic_set(&(page)->_mapcount, -1);
380 }
381
382 static inline int page_mapcount(struct page *page)
383 {
384 return atomic_read(&(page)->_mapcount) + 1;
385 }
386
387 static inline int page_count(struct page *page)
388 {
389 return atomic_read(&compound_head(page)->_count);
390 }
391
392 static inline void get_huge_page_tail(struct page *page)
393 {
394 /*
395 * __split_huge_page_refcount() cannot run
396 * from under us.
397 */
398 VM_BUG_ON(page_mapcount(page) < 0);
399 VM_BUG_ON(atomic_read(&page->_count) != 0);
400 atomic_inc(&page->_mapcount);
401 }
402
403 extern bool __get_page_tail(struct page *page);
404
405 static inline void get_page(struct page *page)
406 {
407 if (unlikely(PageTail(page)))
408 if (likely(__get_page_tail(page)))
409 return;
410 /*
411 * Getting a normal page or the head of a compound page
412 * requires to already have an elevated page->_count.
413 */
414 VM_BUG_ON(atomic_read(&page->_count) <= 0);
415 atomic_inc(&page->_count);
416 }
417
418 static inline struct page *virt_to_head_page(const void *x)
419 {
420 struct page *page = virt_to_page(x);
421 return compound_head(page);
422 }
423
424 /*
425 * Setup the page count before being freed into the page allocator for
426 * the first time (boot or memory hotplug)
427 */
428 static inline void init_page_count(struct page *page)
429 {
430 atomic_set(&page->_count, 1);
431 }
432
433 /*
434 * PageBuddy() indicate that the page is free and in the buddy system
435 * (see mm/page_alloc.c).
436 *
437 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
438 * -2 so that an underflow of the page_mapcount() won't be mistaken
439 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
440 * efficiently by most CPU architectures.
441 */
442 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
443
444 static inline int PageBuddy(struct page *page)
445 {
446 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
447 }
448
449 static inline void __SetPageBuddy(struct page *page)
450 {
451 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
452 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
453 }
454
455 static inline void __ClearPageBuddy(struct page *page)
456 {
457 VM_BUG_ON(!PageBuddy(page));
458 atomic_set(&page->_mapcount, -1);
459 }
460
461 void put_page(struct page *page);
462 void put_pages_list(struct list_head *pages);
463
464 void split_page(struct page *page, unsigned int order);
465 int split_free_page(struct page *page);
466
467 /*
468 * Compound pages have a destructor function. Provide a
469 * prototype for that function and accessor functions.
470 * These are _only_ valid on the head of a PG_compound page.
471 */
472 typedef void compound_page_dtor(struct page *);
473
474 static inline void set_compound_page_dtor(struct page *page,
475 compound_page_dtor *dtor)
476 {
477 page[1].lru.next = (void *)dtor;
478 }
479
480 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
481 {
482 return (compound_page_dtor *)page[1].lru.next;
483 }
484
485 static inline int compound_order(struct page *page)
486 {
487 if (!PageHead(page))
488 return 0;
489 return (unsigned long)page[1].lru.prev;
490 }
491
492 static inline int compound_trans_order(struct page *page)
493 {
494 int order;
495 unsigned long flags;
496
497 if (!PageHead(page))
498 return 0;
499
500 flags = compound_lock_irqsave(page);
501 order = compound_order(page);
502 compound_unlock_irqrestore(page, flags);
503 return order;
504 }
505
506 static inline void set_compound_order(struct page *page, unsigned long order)
507 {
508 page[1].lru.prev = (void *)order;
509 }
510
511 #ifdef CONFIG_MMU
512 /*
513 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
514 * servicing faults for write access. In the normal case, do always want
515 * pte_mkwrite. But get_user_pages can cause write faults for mappings
516 * that do not have writing enabled, when used by access_process_vm.
517 */
518 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
519 {
520 if (likely(vma->vm_flags & VM_WRITE))
521 pte = pte_mkwrite(pte);
522 return pte;
523 }
524 #endif
525
526 /*
527 * Multiple processes may "see" the same page. E.g. for untouched
528 * mappings of /dev/null, all processes see the same page full of
529 * zeroes, and text pages of executables and shared libraries have
530 * only one copy in memory, at most, normally.
531 *
532 * For the non-reserved pages, page_count(page) denotes a reference count.
533 * page_count() == 0 means the page is free. page->lru is then used for
534 * freelist management in the buddy allocator.
535 * page_count() > 0 means the page has been allocated.
536 *
537 * Pages are allocated by the slab allocator in order to provide memory
538 * to kmalloc and kmem_cache_alloc. In this case, the management of the
539 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
540 * unless a particular usage is carefully commented. (the responsibility of
541 * freeing the kmalloc memory is the caller's, of course).
542 *
543 * A page may be used by anyone else who does a __get_free_page().
544 * In this case, page_count still tracks the references, and should only
545 * be used through the normal accessor functions. The top bits of page->flags
546 * and page->virtual store page management information, but all other fields
547 * are unused and could be used privately, carefully. The management of this
548 * page is the responsibility of the one who allocated it, and those who have
549 * subsequently been given references to it.
550 *
551 * The other pages (we may call them "pagecache pages") are completely
552 * managed by the Linux memory manager: I/O, buffers, swapping etc.
553 * The following discussion applies only to them.
554 *
555 * A pagecache page contains an opaque `private' member, which belongs to the
556 * page's address_space. Usually, this is the address of a circular list of
557 * the page's disk buffers. PG_private must be set to tell the VM to call
558 * into the filesystem to release these pages.
559 *
560 * A page may belong to an inode's memory mapping. In this case, page->mapping
561 * is the pointer to the inode, and page->index is the file offset of the page,
562 * in units of PAGE_CACHE_SIZE.
563 *
564 * If pagecache pages are not associated with an inode, they are said to be
565 * anonymous pages. These may become associated with the swapcache, and in that
566 * case PG_swapcache is set, and page->private is an offset into the swapcache.
567 *
568 * In either case (swapcache or inode backed), the pagecache itself holds one
569 * reference to the page. Setting PG_private should also increment the
570 * refcount. The each user mapping also has a reference to the page.
571 *
572 * The pagecache pages are stored in a per-mapping radix tree, which is
573 * rooted at mapping->page_tree, and indexed by offset.
574 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
575 * lists, we instead now tag pages as dirty/writeback in the radix tree.
576 *
577 * All pagecache pages may be subject to I/O:
578 * - inode pages may need to be read from disk,
579 * - inode pages which have been modified and are MAP_SHARED may need
580 * to be written back to the inode on disk,
581 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
582 * modified may need to be swapped out to swap space and (later) to be read
583 * back into memory.
584 */
585
586 /*
587 * The zone field is never updated after free_area_init_core()
588 * sets it, so none of the operations on it need to be atomic.
589 */
590
591 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
592 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
593 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
594 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
595 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
596
597 /*
598 * Define the bit shifts to access each section. For non-existent
599 * sections we define the shift as 0; that plus a 0 mask ensures
600 * the compiler will optimise away reference to them.
601 */
602 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
603 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
604 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
605 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
606
607 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
608 #ifdef NODE_NOT_IN_PAGE_FLAGS
609 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
610 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
611 SECTIONS_PGOFF : ZONES_PGOFF)
612 #else
613 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
614 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
615 NODES_PGOFF : ZONES_PGOFF)
616 #endif
617
618 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
619
620 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
621 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
622 #endif
623
624 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
625 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
626 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
627 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
628 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
629
630 static inline enum zone_type page_zonenum(const struct page *page)
631 {
632 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
633 }
634
635 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
636 #define SECTION_IN_PAGE_FLAGS
637 #endif
638
639 /*
640 * The identification function is only used by the buddy allocator for
641 * determining if two pages could be buddies. We are not really
642 * identifying a zone since we could be using a the section number
643 * id if we have not node id available in page flags.
644 * We guarantee only that it will return the same value for two
645 * combinable pages in a zone.
646 */
647 static inline int page_zone_id(struct page *page)
648 {
649 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
650 }
651
652 static inline int zone_to_nid(struct zone *zone)
653 {
654 #ifdef CONFIG_NUMA
655 return zone->node;
656 #else
657 return 0;
658 #endif
659 }
660
661 #ifdef NODE_NOT_IN_PAGE_FLAGS
662 extern int page_to_nid(const struct page *page);
663 #else
664 static inline int page_to_nid(const struct page *page)
665 {
666 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
667 }
668 #endif
669
670 #ifdef CONFIG_NUMA_BALANCING
671 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
672 static inline int page_nid_xchg_last(struct page *page, int nid)
673 {
674 return xchg(&page->_last_nid, nid);
675 }
676
677 static inline int page_nid_last(struct page *page)
678 {
679 return page->_last_nid;
680 }
681 static inline void page_nid_reset_last(struct page *page)
682 {
683 page->_last_nid = -1;
684 }
685 #else
686 static inline int page_nid_last(struct page *page)
687 {
688 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
689 }
690
691 extern int page_nid_xchg_last(struct page *page, int nid);
692
693 static inline void page_nid_reset_last(struct page *page)
694 {
695 int nid = (1 << LAST_NID_SHIFT) - 1;
696
697 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
698 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
699 }
700 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
701 #else
702 static inline int page_nid_xchg_last(struct page *page, int nid)
703 {
704 return page_to_nid(page);
705 }
706
707 static inline int page_nid_last(struct page *page)
708 {
709 return page_to_nid(page);
710 }
711
712 static inline void page_nid_reset_last(struct page *page)
713 {
714 }
715 #endif
716
717 static inline struct zone *page_zone(const struct page *page)
718 {
719 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
720 }
721
722 #ifdef SECTION_IN_PAGE_FLAGS
723 static inline void set_page_section(struct page *page, unsigned long section)
724 {
725 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
726 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
727 }
728
729 static inline unsigned long page_to_section(const struct page *page)
730 {
731 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
732 }
733 #endif
734
735 static inline void set_page_zone(struct page *page, enum zone_type zone)
736 {
737 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
738 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
739 }
740
741 static inline void set_page_node(struct page *page, unsigned long node)
742 {
743 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
744 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
745 }
746
747 static inline void set_page_links(struct page *page, enum zone_type zone,
748 unsigned long node, unsigned long pfn)
749 {
750 set_page_zone(page, zone);
751 set_page_node(page, node);
752 #ifdef SECTION_IN_PAGE_FLAGS
753 set_page_section(page, pfn_to_section_nr(pfn));
754 #endif
755 }
756
757 /*
758 * Some inline functions in vmstat.h depend on page_zone()
759 */
760 #include <linux/vmstat.h>
761
762 static __always_inline void *lowmem_page_address(const struct page *page)
763 {
764 return __va(PFN_PHYS(page_to_pfn(page)));
765 }
766
767 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
768 #define HASHED_PAGE_VIRTUAL
769 #endif
770
771 #if defined(WANT_PAGE_VIRTUAL)
772 #define page_address(page) ((page)->virtual)
773 #define set_page_address(page, address) \
774 do { \
775 (page)->virtual = (address); \
776 } while(0)
777 #define page_address_init() do { } while(0)
778 #endif
779
780 #if defined(HASHED_PAGE_VIRTUAL)
781 void *page_address(const struct page *page);
782 void set_page_address(struct page *page, void *virtual);
783 void page_address_init(void);
784 #endif
785
786 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
787 #define page_address(page) lowmem_page_address(page)
788 #define set_page_address(page, address) do { } while(0)
789 #define page_address_init() do { } while(0)
790 #endif
791
792 /*
793 * On an anonymous page mapped into a user virtual memory area,
794 * page->mapping points to its anon_vma, not to a struct address_space;
795 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
796 *
797 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
798 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
799 * and then page->mapping points, not to an anon_vma, but to a private
800 * structure which KSM associates with that merged page. See ksm.h.
801 *
802 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
803 *
804 * Please note that, confusingly, "page_mapping" refers to the inode
805 * address_space which maps the page from disk; whereas "page_mapped"
806 * refers to user virtual address space into which the page is mapped.
807 */
808 #define PAGE_MAPPING_ANON 1
809 #define PAGE_MAPPING_KSM 2
810 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
811
812 extern struct address_space *page_mapping(struct page *page);
813
814 /* Neutral page->mapping pointer to address_space or anon_vma or other */
815 static inline void *page_rmapping(struct page *page)
816 {
817 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
818 }
819
820 extern struct address_space *__page_file_mapping(struct page *);
821
822 static inline
823 struct address_space *page_file_mapping(struct page *page)
824 {
825 if (unlikely(PageSwapCache(page)))
826 return __page_file_mapping(page);
827
828 return page->mapping;
829 }
830
831 static inline int PageAnon(struct page *page)
832 {
833 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
834 }
835
836 /*
837 * Return the pagecache index of the passed page. Regular pagecache pages
838 * use ->index whereas swapcache pages use ->private
839 */
840 static inline pgoff_t page_index(struct page *page)
841 {
842 if (unlikely(PageSwapCache(page)))
843 return page_private(page);
844 return page->index;
845 }
846
847 extern pgoff_t __page_file_index(struct page *page);
848
849 /*
850 * Return the file index of the page. Regular pagecache pages use ->index
851 * whereas swapcache pages use swp_offset(->private)
852 */
853 static inline pgoff_t page_file_index(struct page *page)
854 {
855 if (unlikely(PageSwapCache(page)))
856 return __page_file_index(page);
857
858 return page->index;
859 }
860
861 /*
862 * Return true if this page is mapped into pagetables.
863 */
864 static inline int page_mapped(struct page *page)
865 {
866 return atomic_read(&(page)->_mapcount) >= 0;
867 }
868
869 /*
870 * Different kinds of faults, as returned by handle_mm_fault().
871 * Used to decide whether a process gets delivered SIGBUS or
872 * just gets major/minor fault counters bumped up.
873 */
874
875 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
876
877 #define VM_FAULT_OOM 0x0001
878 #define VM_FAULT_SIGBUS 0x0002
879 #define VM_FAULT_MAJOR 0x0004
880 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
881 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
882 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
883
884 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
885 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
886 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
887
888 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
889
890 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
891 VM_FAULT_HWPOISON_LARGE)
892
893 /* Encode hstate index for a hwpoisoned large page */
894 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
895 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
896
897 /*
898 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
899 */
900 extern void pagefault_out_of_memory(void);
901
902 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
903
904 /*
905 * Flags passed to show_mem() and show_free_areas() to suppress output in
906 * various contexts.
907 */
908 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
909 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
910
911 extern void show_free_areas(unsigned int flags);
912 extern bool skip_free_areas_node(unsigned int flags, int nid);
913
914 int shmem_zero_setup(struct vm_area_struct *);
915
916 extern int can_do_mlock(void);
917 extern int user_shm_lock(size_t, struct user_struct *);
918 extern void user_shm_unlock(size_t, struct user_struct *);
919
920 /*
921 * Parameter block passed down to zap_pte_range in exceptional cases.
922 */
923 struct zap_details {
924 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
925 struct address_space *check_mapping; /* Check page->mapping if set */
926 pgoff_t first_index; /* Lowest page->index to unmap */
927 pgoff_t last_index; /* Highest page->index to unmap */
928 };
929
930 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
931 pte_t pte);
932
933 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
934 unsigned long size);
935 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
936 unsigned long size, struct zap_details *);
937 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
938 unsigned long start, unsigned long end);
939
940 /**
941 * mm_walk - callbacks for walk_page_range
942 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
943 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
944 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
945 * this handler is required to be able to handle
946 * pmd_trans_huge() pmds. They may simply choose to
947 * split_huge_page() instead of handling it explicitly.
948 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
949 * @pte_hole: if set, called for each hole at all levels
950 * @hugetlb_entry: if set, called for each hugetlb entry
951 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
952 * is used.
953 *
954 * (see walk_page_range for more details)
955 */
956 struct mm_walk {
957 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
958 unsigned long next, struct mm_walk *walk);
959 int (*pud_entry)(pud_t *pud, unsigned long addr,
960 unsigned long next, struct mm_walk *walk);
961 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
962 unsigned long next, struct mm_walk *walk);
963 int (*pte_entry)(pte_t *pte, unsigned long addr,
964 unsigned long next, struct mm_walk *walk);
965 int (*pte_hole)(unsigned long addr, unsigned long next,
966 struct mm_walk *walk);
967 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
968 unsigned long addr, unsigned long next,
969 struct mm_walk *walk);
970 struct mm_struct *mm;
971 void *private;
972 };
973
974 int walk_page_range(unsigned long addr, unsigned long end,
975 struct mm_walk *walk);
976 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
977 unsigned long end, unsigned long floor, unsigned long ceiling);
978 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
979 struct vm_area_struct *vma);
980 void unmap_mapping_range(struct address_space *mapping,
981 loff_t const holebegin, loff_t const holelen, int even_cows);
982 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
983 unsigned long *pfn);
984 int follow_phys(struct vm_area_struct *vma, unsigned long address,
985 unsigned int flags, unsigned long *prot, resource_size_t *phys);
986 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
987 void *buf, int len, int write);
988
989 static inline void unmap_shared_mapping_range(struct address_space *mapping,
990 loff_t const holebegin, loff_t const holelen)
991 {
992 unmap_mapping_range(mapping, holebegin, holelen, 0);
993 }
994
995 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
996 extern void truncate_setsize(struct inode *inode, loff_t newsize);
997 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
998 int truncate_inode_page(struct address_space *mapping, struct page *page);
999 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1000 int invalidate_inode_page(struct page *page);
1001
1002 #ifdef CONFIG_MMU
1003 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1004 unsigned long address, unsigned int flags);
1005 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1006 unsigned long address, unsigned int fault_flags);
1007 #else
1008 static inline int handle_mm_fault(struct mm_struct *mm,
1009 struct vm_area_struct *vma, unsigned long address,
1010 unsigned int flags)
1011 {
1012 /* should never happen if there's no MMU */
1013 BUG();
1014 return VM_FAULT_SIGBUS;
1015 }
1016 static inline int fixup_user_fault(struct task_struct *tsk,
1017 struct mm_struct *mm, unsigned long address,
1018 unsigned int fault_flags)
1019 {
1020 /* should never happen if there's no MMU */
1021 BUG();
1022 return -EFAULT;
1023 }
1024 #endif
1025
1026 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1027 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1028 void *buf, int len, int write);
1029
1030 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1031 unsigned long start, unsigned long nr_pages,
1032 unsigned int foll_flags, struct page **pages,
1033 struct vm_area_struct **vmas, int *nonblocking);
1034 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1035 unsigned long start, unsigned long nr_pages,
1036 int write, int force, struct page **pages,
1037 struct vm_area_struct **vmas);
1038 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1039 struct page **pages);
1040 struct kvec;
1041 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1042 struct page **pages);
1043 int get_kernel_page(unsigned long start, int write, struct page **pages);
1044 struct page *get_dump_page(unsigned long addr);
1045
1046 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1047 extern void do_invalidatepage(struct page *page, unsigned int offset,
1048 unsigned int length);
1049
1050 int __set_page_dirty_nobuffers(struct page *page);
1051 int __set_page_dirty_no_writeback(struct page *page);
1052 int redirty_page_for_writepage(struct writeback_control *wbc,
1053 struct page *page);
1054 void account_page_dirtied(struct page *page, struct address_space *mapping);
1055 void account_page_writeback(struct page *page);
1056 int set_page_dirty(struct page *page);
1057 int set_page_dirty_lock(struct page *page);
1058 int clear_page_dirty_for_io(struct page *page);
1059
1060 /* Is the vma a continuation of the stack vma above it? */
1061 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1062 {
1063 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1064 }
1065
1066 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1067 unsigned long addr)
1068 {
1069 return (vma->vm_flags & VM_GROWSDOWN) &&
1070 (vma->vm_start == addr) &&
1071 !vma_growsdown(vma->vm_prev, addr);
1072 }
1073
1074 /* Is the vma a continuation of the stack vma below it? */
1075 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1076 {
1077 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1078 }
1079
1080 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1081 unsigned long addr)
1082 {
1083 return (vma->vm_flags & VM_GROWSUP) &&
1084 (vma->vm_end == addr) &&
1085 !vma_growsup(vma->vm_next, addr);
1086 }
1087
1088 extern pid_t
1089 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1090
1091 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1092 unsigned long old_addr, struct vm_area_struct *new_vma,
1093 unsigned long new_addr, unsigned long len,
1094 bool need_rmap_locks);
1095 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1096 unsigned long end, pgprot_t newprot,
1097 int dirty_accountable, int prot_numa);
1098 extern int mprotect_fixup(struct vm_area_struct *vma,
1099 struct vm_area_struct **pprev, unsigned long start,
1100 unsigned long end, unsigned long newflags);
1101
1102 /*
1103 * doesn't attempt to fault and will return short.
1104 */
1105 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1106 struct page **pages);
1107 /*
1108 * per-process(per-mm_struct) statistics.
1109 */
1110 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1111 {
1112 long val = atomic_long_read(&mm->rss_stat.count[member]);
1113
1114 #ifdef SPLIT_RSS_COUNTING
1115 /*
1116 * counter is updated in asynchronous manner and may go to minus.
1117 * But it's never be expected number for users.
1118 */
1119 if (val < 0)
1120 val = 0;
1121 #endif
1122 return (unsigned long)val;
1123 }
1124
1125 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1126 {
1127 atomic_long_add(value, &mm->rss_stat.count[member]);
1128 }
1129
1130 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1131 {
1132 atomic_long_inc(&mm->rss_stat.count[member]);
1133 }
1134
1135 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1136 {
1137 atomic_long_dec(&mm->rss_stat.count[member]);
1138 }
1139
1140 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1141 {
1142 return get_mm_counter(mm, MM_FILEPAGES) +
1143 get_mm_counter(mm, MM_ANONPAGES);
1144 }
1145
1146 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1147 {
1148 return max(mm->hiwater_rss, get_mm_rss(mm));
1149 }
1150
1151 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1152 {
1153 return max(mm->hiwater_vm, mm->total_vm);
1154 }
1155
1156 static inline void update_hiwater_rss(struct mm_struct *mm)
1157 {
1158 unsigned long _rss = get_mm_rss(mm);
1159
1160 if ((mm)->hiwater_rss < _rss)
1161 (mm)->hiwater_rss = _rss;
1162 }
1163
1164 static inline void update_hiwater_vm(struct mm_struct *mm)
1165 {
1166 if (mm->hiwater_vm < mm->total_vm)
1167 mm->hiwater_vm = mm->total_vm;
1168 }
1169
1170 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1171 struct mm_struct *mm)
1172 {
1173 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1174
1175 if (*maxrss < hiwater_rss)
1176 *maxrss = hiwater_rss;
1177 }
1178
1179 #if defined(SPLIT_RSS_COUNTING)
1180 void sync_mm_rss(struct mm_struct *mm);
1181 #else
1182 static inline void sync_mm_rss(struct mm_struct *mm)
1183 {
1184 }
1185 #endif
1186
1187 int vma_wants_writenotify(struct vm_area_struct *vma);
1188
1189 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1190 spinlock_t **ptl);
1191 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1192 spinlock_t **ptl)
1193 {
1194 pte_t *ptep;
1195 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1196 return ptep;
1197 }
1198
1199 #ifdef __PAGETABLE_PUD_FOLDED
1200 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1201 unsigned long address)
1202 {
1203 return 0;
1204 }
1205 #else
1206 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1207 #endif
1208
1209 #ifdef __PAGETABLE_PMD_FOLDED
1210 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1211 unsigned long address)
1212 {
1213 return 0;
1214 }
1215 #else
1216 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1217 #endif
1218
1219 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1220 pmd_t *pmd, unsigned long address);
1221 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1222
1223 /*
1224 * The following ifdef needed to get the 4level-fixup.h header to work.
1225 * Remove it when 4level-fixup.h has been removed.
1226 */
1227 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1228 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1229 {
1230 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1231 NULL: pud_offset(pgd, address);
1232 }
1233
1234 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1235 {
1236 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1237 NULL: pmd_offset(pud, address);
1238 }
1239 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1240
1241 #if USE_SPLIT_PTLOCKS
1242 /*
1243 * We tuck a spinlock to guard each pagetable page into its struct page,
1244 * at page->private, with BUILD_BUG_ON to make sure that this will not
1245 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1246 * When freeing, reset page->mapping so free_pages_check won't complain.
1247 */
1248 #define __pte_lockptr(page) &((page)->ptl)
1249 #define pte_lock_init(_page) do { \
1250 spin_lock_init(__pte_lockptr(_page)); \
1251 } while (0)
1252 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1253 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1254 #else /* !USE_SPLIT_PTLOCKS */
1255 /*
1256 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1257 */
1258 #define pte_lock_init(page) do {} while (0)
1259 #define pte_lock_deinit(page) do {} while (0)
1260 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1261 #endif /* USE_SPLIT_PTLOCKS */
1262
1263 static inline void pgtable_page_ctor(struct page *page)
1264 {
1265 pte_lock_init(page);
1266 inc_zone_page_state(page, NR_PAGETABLE);
1267 }
1268
1269 static inline void pgtable_page_dtor(struct page *page)
1270 {
1271 pte_lock_deinit(page);
1272 dec_zone_page_state(page, NR_PAGETABLE);
1273 }
1274
1275 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1276 ({ \
1277 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1278 pte_t *__pte = pte_offset_map(pmd, address); \
1279 *(ptlp) = __ptl; \
1280 spin_lock(__ptl); \
1281 __pte; \
1282 })
1283
1284 #define pte_unmap_unlock(pte, ptl) do { \
1285 spin_unlock(ptl); \
1286 pte_unmap(pte); \
1287 } while (0)
1288
1289 #define pte_alloc_map(mm, vma, pmd, address) \
1290 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1291 pmd, address))? \
1292 NULL: pte_offset_map(pmd, address))
1293
1294 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1295 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1296 pmd, address))? \
1297 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1298
1299 #define pte_alloc_kernel(pmd, address) \
1300 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1301 NULL: pte_offset_kernel(pmd, address))
1302
1303 extern void free_area_init(unsigned long * zones_size);
1304 extern void free_area_init_node(int nid, unsigned long * zones_size,
1305 unsigned long zone_start_pfn, unsigned long *zholes_size);
1306 extern void free_initmem(void);
1307
1308 /*
1309 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1310 * into the buddy system. The freed pages will be poisoned with pattern
1311 * "poison" if it's within range [0, UCHAR_MAX].
1312 * Return pages freed into the buddy system.
1313 */
1314 extern unsigned long free_reserved_area(void *start, void *end,
1315 int poison, char *s);
1316
1317 #ifdef CONFIG_HIGHMEM
1318 /*
1319 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1320 * and totalram_pages.
1321 */
1322 extern void free_highmem_page(struct page *page);
1323 #endif
1324
1325 extern void adjust_managed_page_count(struct page *page, long count);
1326 extern void mem_init_print_info(const char *str);
1327
1328 /* Free the reserved page into the buddy system, so it gets managed. */
1329 static inline void __free_reserved_page(struct page *page)
1330 {
1331 ClearPageReserved(page);
1332 init_page_count(page);
1333 __free_page(page);
1334 }
1335
1336 static inline void free_reserved_page(struct page *page)
1337 {
1338 __free_reserved_page(page);
1339 adjust_managed_page_count(page, 1);
1340 }
1341
1342 static inline void mark_page_reserved(struct page *page)
1343 {
1344 SetPageReserved(page);
1345 adjust_managed_page_count(page, -1);
1346 }
1347
1348 /*
1349 * Default method to free all the __init memory into the buddy system.
1350 * The freed pages will be poisoned with pattern "poison" if it's within
1351 * range [0, UCHAR_MAX].
1352 * Return pages freed into the buddy system.
1353 */
1354 static inline unsigned long free_initmem_default(int poison)
1355 {
1356 extern char __init_begin[], __init_end[];
1357
1358 return free_reserved_area(&__init_begin, &__init_end,
1359 poison, "unused kernel");
1360 }
1361
1362 static inline unsigned long get_num_physpages(void)
1363 {
1364 int nid;
1365 unsigned long phys_pages = 0;
1366
1367 for_each_online_node(nid)
1368 phys_pages += node_present_pages(nid);
1369
1370 return phys_pages;
1371 }
1372
1373 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1374 /*
1375 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1376 * zones, allocate the backing mem_map and account for memory holes in a more
1377 * architecture independent manner. This is a substitute for creating the
1378 * zone_sizes[] and zholes_size[] arrays and passing them to
1379 * free_area_init_node()
1380 *
1381 * An architecture is expected to register range of page frames backed by
1382 * physical memory with memblock_add[_node]() before calling
1383 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1384 * usage, an architecture is expected to do something like
1385 *
1386 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1387 * max_highmem_pfn};
1388 * for_each_valid_physical_page_range()
1389 * memblock_add_node(base, size, nid)
1390 * free_area_init_nodes(max_zone_pfns);
1391 *
1392 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1393 * registered physical page range. Similarly
1394 * sparse_memory_present_with_active_regions() calls memory_present() for
1395 * each range when SPARSEMEM is enabled.
1396 *
1397 * See mm/page_alloc.c for more information on each function exposed by
1398 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1399 */
1400 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1401 unsigned long node_map_pfn_alignment(void);
1402 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1403 unsigned long end_pfn);
1404 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1405 unsigned long end_pfn);
1406 extern void get_pfn_range_for_nid(unsigned int nid,
1407 unsigned long *start_pfn, unsigned long *end_pfn);
1408 extern unsigned long find_min_pfn_with_active_regions(void);
1409 extern void free_bootmem_with_active_regions(int nid,
1410 unsigned long max_low_pfn);
1411 extern void sparse_memory_present_with_active_regions(int nid);
1412
1413 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1414
1415 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1416 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1417 static inline int __early_pfn_to_nid(unsigned long pfn)
1418 {
1419 return 0;
1420 }
1421 #else
1422 /* please see mm/page_alloc.c */
1423 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1424 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1425 /* there is a per-arch backend function. */
1426 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1427 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1428 #endif
1429
1430 extern void set_dma_reserve(unsigned long new_dma_reserve);
1431 extern void memmap_init_zone(unsigned long, int, unsigned long,
1432 unsigned long, enum memmap_context);
1433 extern void setup_per_zone_wmarks(void);
1434 extern int __meminit init_per_zone_wmark_min(void);
1435 extern void mem_init(void);
1436 extern void __init mmap_init(void);
1437 extern void show_mem(unsigned int flags);
1438 extern void si_meminfo(struct sysinfo * val);
1439 extern void si_meminfo_node(struct sysinfo *val, int nid);
1440
1441 extern __printf(3, 4)
1442 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1443
1444 extern void setup_per_cpu_pageset(void);
1445
1446 extern void zone_pcp_update(struct zone *zone);
1447 extern void zone_pcp_reset(struct zone *zone);
1448
1449 /* page_alloc.c */
1450 extern int min_free_kbytes;
1451
1452 /* nommu.c */
1453 extern atomic_long_t mmap_pages_allocated;
1454 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1455
1456 /* interval_tree.c */
1457 void vma_interval_tree_insert(struct vm_area_struct *node,
1458 struct rb_root *root);
1459 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1460 struct vm_area_struct *prev,
1461 struct rb_root *root);
1462 void vma_interval_tree_remove(struct vm_area_struct *node,
1463 struct rb_root *root);
1464 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1465 unsigned long start, unsigned long last);
1466 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1467 unsigned long start, unsigned long last);
1468
1469 #define vma_interval_tree_foreach(vma, root, start, last) \
1470 for (vma = vma_interval_tree_iter_first(root, start, last); \
1471 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1472
1473 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1474 struct list_head *list)
1475 {
1476 list_add_tail(&vma->shared.nonlinear, list);
1477 }
1478
1479 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1480 struct rb_root *root);
1481 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1482 struct rb_root *root);
1483 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1484 struct rb_root *root, unsigned long start, unsigned long last);
1485 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1486 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1487 #ifdef CONFIG_DEBUG_VM_RB
1488 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1489 #endif
1490
1491 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1492 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1493 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1494
1495 /* mmap.c */
1496 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1497 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1498 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1499 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1500 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1501 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1502 struct mempolicy *);
1503 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1504 extern int split_vma(struct mm_struct *,
1505 struct vm_area_struct *, unsigned long addr, int new_below);
1506 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1507 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1508 struct rb_node **, struct rb_node *);
1509 extern void unlink_file_vma(struct vm_area_struct *);
1510 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1511 unsigned long addr, unsigned long len, pgoff_t pgoff,
1512 bool *need_rmap_locks);
1513 extern void exit_mmap(struct mm_struct *);
1514
1515 extern int mm_take_all_locks(struct mm_struct *mm);
1516 extern void mm_drop_all_locks(struct mm_struct *mm);
1517
1518 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1519 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1520
1521 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1522 extern int install_special_mapping(struct mm_struct *mm,
1523 unsigned long addr, unsigned long len,
1524 unsigned long flags, struct page **pages);
1525
1526 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1527
1528 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1529 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1530 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1531 unsigned long len, unsigned long prot, unsigned long flags,
1532 unsigned long pgoff, unsigned long *populate);
1533 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1534
1535 #ifdef CONFIG_MMU
1536 extern int __mm_populate(unsigned long addr, unsigned long len,
1537 int ignore_errors);
1538 static inline void mm_populate(unsigned long addr, unsigned long len)
1539 {
1540 /* Ignore errors */
1541 (void) __mm_populate(addr, len, 1);
1542 }
1543 #else
1544 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1545 #endif
1546
1547 /* These take the mm semaphore themselves */
1548 extern unsigned long vm_brk(unsigned long, unsigned long);
1549 extern int vm_munmap(unsigned long, size_t);
1550 extern unsigned long vm_mmap(struct file *, unsigned long,
1551 unsigned long, unsigned long,
1552 unsigned long, unsigned long);
1553
1554 struct vm_unmapped_area_info {
1555 #define VM_UNMAPPED_AREA_TOPDOWN 1
1556 unsigned long flags;
1557 unsigned long length;
1558 unsigned long low_limit;
1559 unsigned long high_limit;
1560 unsigned long align_mask;
1561 unsigned long align_offset;
1562 };
1563
1564 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1565 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1566
1567 /*
1568 * Search for an unmapped address range.
1569 *
1570 * We are looking for a range that:
1571 * - does not intersect with any VMA;
1572 * - is contained within the [low_limit, high_limit) interval;
1573 * - is at least the desired size.
1574 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1575 */
1576 static inline unsigned long
1577 vm_unmapped_area(struct vm_unmapped_area_info *info)
1578 {
1579 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1580 return unmapped_area(info);
1581 else
1582 return unmapped_area_topdown(info);
1583 }
1584
1585 /* truncate.c */
1586 extern void truncate_inode_pages(struct address_space *, loff_t);
1587 extern void truncate_inode_pages_range(struct address_space *,
1588 loff_t lstart, loff_t lend);
1589
1590 /* generic vm_area_ops exported for stackable file systems */
1591 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1592 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1593
1594 /* mm/page-writeback.c */
1595 int write_one_page(struct page *page, int wait);
1596 void task_dirty_inc(struct task_struct *tsk);
1597
1598 /* readahead.c */
1599 #define VM_MAX_READAHEAD 128 /* kbytes */
1600 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1601
1602 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1603 pgoff_t offset, unsigned long nr_to_read);
1604
1605 void page_cache_sync_readahead(struct address_space *mapping,
1606 struct file_ra_state *ra,
1607 struct file *filp,
1608 pgoff_t offset,
1609 unsigned long size);
1610
1611 void page_cache_async_readahead(struct address_space *mapping,
1612 struct file_ra_state *ra,
1613 struct file *filp,
1614 struct page *pg,
1615 pgoff_t offset,
1616 unsigned long size);
1617
1618 unsigned long max_sane_readahead(unsigned long nr);
1619 unsigned long ra_submit(struct file_ra_state *ra,
1620 struct address_space *mapping,
1621 struct file *filp);
1622
1623 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1624 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1625
1626 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1627 extern int expand_downwards(struct vm_area_struct *vma,
1628 unsigned long address);
1629 #if VM_GROWSUP
1630 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1631 #else
1632 #define expand_upwards(vma, address) do { } while (0)
1633 #endif
1634
1635 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1636 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1637 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1638 struct vm_area_struct **pprev);
1639
1640 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1641 NULL if none. Assume start_addr < end_addr. */
1642 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1643 {
1644 struct vm_area_struct * vma = find_vma(mm,start_addr);
1645
1646 if (vma && end_addr <= vma->vm_start)
1647 vma = NULL;
1648 return vma;
1649 }
1650
1651 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1652 {
1653 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1654 }
1655
1656 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1657 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1658 unsigned long vm_start, unsigned long vm_end)
1659 {
1660 struct vm_area_struct *vma = find_vma(mm, vm_start);
1661
1662 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1663 vma = NULL;
1664
1665 return vma;
1666 }
1667
1668 #ifdef CONFIG_MMU
1669 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1670 #else
1671 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1672 {
1673 return __pgprot(0);
1674 }
1675 #endif
1676
1677 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1678 unsigned long change_prot_numa(struct vm_area_struct *vma,
1679 unsigned long start, unsigned long end);
1680 #endif
1681
1682 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1683 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1684 unsigned long pfn, unsigned long size, pgprot_t);
1685 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1686 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1687 unsigned long pfn);
1688 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1689 unsigned long pfn);
1690 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1691
1692
1693 struct page *follow_page_mask(struct vm_area_struct *vma,
1694 unsigned long address, unsigned int foll_flags,
1695 unsigned int *page_mask);
1696
1697 static inline struct page *follow_page(struct vm_area_struct *vma,
1698 unsigned long address, unsigned int foll_flags)
1699 {
1700 unsigned int unused_page_mask;
1701 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1702 }
1703
1704 #define FOLL_WRITE 0x01 /* check pte is writable */
1705 #define FOLL_TOUCH 0x02 /* mark page accessed */
1706 #define FOLL_GET 0x04 /* do get_page on page */
1707 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1708 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1709 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1710 * and return without waiting upon it */
1711 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1712 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1713 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1714 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1715 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1716
1717 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1718 void *data);
1719 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1720 unsigned long size, pte_fn_t fn, void *data);
1721
1722 #ifdef CONFIG_PROC_FS
1723 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1724 #else
1725 static inline void vm_stat_account(struct mm_struct *mm,
1726 unsigned long flags, struct file *file, long pages)
1727 {
1728 mm->total_vm += pages;
1729 }
1730 #endif /* CONFIG_PROC_FS */
1731
1732 #ifdef CONFIG_DEBUG_PAGEALLOC
1733 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1734 #ifdef CONFIG_HIBERNATION
1735 extern bool kernel_page_present(struct page *page);
1736 #endif /* CONFIG_HIBERNATION */
1737 #else
1738 static inline void
1739 kernel_map_pages(struct page *page, int numpages, int enable) {}
1740 #ifdef CONFIG_HIBERNATION
1741 static inline bool kernel_page_present(struct page *page) { return true; }
1742 #endif /* CONFIG_HIBERNATION */
1743 #endif
1744
1745 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1746 #ifdef __HAVE_ARCH_GATE_AREA
1747 int in_gate_area_no_mm(unsigned long addr);
1748 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1749 #else
1750 int in_gate_area_no_mm(unsigned long addr);
1751 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1752 #endif /* __HAVE_ARCH_GATE_AREA */
1753
1754 #ifdef CONFIG_SYSCTL
1755 extern int sysctl_drop_caches;
1756 int drop_caches_sysctl_handler(struct ctl_table *, int,
1757 void __user *, size_t *, loff_t *);
1758 #endif
1759
1760 unsigned long shrink_slab(struct shrink_control *shrink,
1761 unsigned long nr_pages_scanned,
1762 unsigned long lru_pages);
1763
1764 #ifndef CONFIG_MMU
1765 #define randomize_va_space 0
1766 #else
1767 extern int randomize_va_space;
1768 #endif
1769
1770 const char * arch_vma_name(struct vm_area_struct *vma);
1771 void print_vma_addr(char *prefix, unsigned long rip);
1772
1773 void sparse_mem_maps_populate_node(struct page **map_map,
1774 unsigned long pnum_begin,
1775 unsigned long pnum_end,
1776 unsigned long map_count,
1777 int nodeid);
1778
1779 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1780 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1781 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1782 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1783 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1784 void *vmemmap_alloc_block(unsigned long size, int node);
1785 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1786 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1787 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1788 int node);
1789 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1790 void vmemmap_populate_print_last(void);
1791 #ifdef CONFIG_MEMORY_HOTPLUG
1792 void vmemmap_free(unsigned long start, unsigned long end);
1793 #endif
1794 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1795 unsigned long size);
1796
1797 enum mf_flags {
1798 MF_COUNT_INCREASED = 1 << 0,
1799 MF_ACTION_REQUIRED = 1 << 1,
1800 MF_MUST_KILL = 1 << 2,
1801 MF_SOFT_OFFLINE = 1 << 3,
1802 };
1803 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1804 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1805 extern int unpoison_memory(unsigned long pfn);
1806 extern int sysctl_memory_failure_early_kill;
1807 extern int sysctl_memory_failure_recovery;
1808 extern void shake_page(struct page *p, int access);
1809 extern atomic_long_t num_poisoned_pages;
1810 extern int soft_offline_page(struct page *page, int flags);
1811
1812 extern void dump_page(struct page *page);
1813
1814 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1815 extern void clear_huge_page(struct page *page,
1816 unsigned long addr,
1817 unsigned int pages_per_huge_page);
1818 extern void copy_user_huge_page(struct page *dst, struct page *src,
1819 unsigned long addr, struct vm_area_struct *vma,
1820 unsigned int pages_per_huge_page);
1821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1822
1823 #ifdef CONFIG_DEBUG_PAGEALLOC
1824 extern unsigned int _debug_guardpage_minorder;
1825
1826 static inline unsigned int debug_guardpage_minorder(void)
1827 {
1828 return _debug_guardpage_minorder;
1829 }
1830
1831 static inline bool page_is_guard(struct page *page)
1832 {
1833 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1834 }
1835 #else
1836 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1837 static inline bool page_is_guard(struct page *page) { return false; }
1838 #endif /* CONFIG_DEBUG_PAGEALLOC */
1839
1840 #if MAX_NUMNODES > 1
1841 void __init setup_nr_node_ids(void);
1842 #else
1843 static inline void setup_nr_node_ids(void) {}
1844 #endif
1845
1846 #endif /* __KERNEL__ */
1847 #endif /* _LINUX_MM_H */