]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/mm.h
d87a5a5fe87ddc48d8a205a7f3b17627ed0874f7
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21
22 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
23 extern unsigned long max_mapnr;
24 #endif
25
26 extern unsigned long num_physpages;
27 extern void * high_memory;
28 extern int page_cluster;
29
30 #ifdef CONFIG_SYSCTL
31 extern int sysctl_legacy_va_layout;
32 #else
33 #define sysctl_legacy_va_layout 0
34 #endif
35
36 extern unsigned long mmap_min_addr;
37
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44 /* to align the pointer to the (next) page boundary */
45 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
46
47 /*
48 * Linux kernel virtual memory manager primitives.
49 * The idea being to have a "virtual" mm in the same way
50 * we have a virtual fs - giving a cleaner interface to the
51 * mm details, and allowing different kinds of memory mappings
52 * (from shared memory to executable loading to arbitrary
53 * mmap() functions).
54 */
55
56 extern struct kmem_cache *vm_area_cachep;
57
58 /*
59 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
60 * disabled, then there's a single shared list of VMAs maintained by the
61 * system, and mm's subscribe to these individually
62 */
63 struct vm_list_struct {
64 struct vm_list_struct *next;
65 struct vm_area_struct *vma;
66 };
67
68 #ifndef CONFIG_MMU
69 extern struct rb_root nommu_vma_tree;
70 extern struct rw_semaphore nommu_vma_sem;
71
72 extern unsigned int kobjsize(const void *objp);
73 #endif
74
75 /*
76 * vm_flags..
77 */
78 #define VM_READ 0x00000001 /* currently active flags */
79 #define VM_WRITE 0x00000002
80 #define VM_EXEC 0x00000004
81 #define VM_SHARED 0x00000008
82
83 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
84 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85 #define VM_MAYWRITE 0x00000020
86 #define VM_MAYEXEC 0x00000040
87 #define VM_MAYSHARE 0x00000080
88
89 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
90 #define VM_GROWSUP 0x00000200
91 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
92 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
93
94 #define VM_EXECUTABLE 0x00001000
95 #define VM_LOCKED 0x00002000
96 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
97
98 /* Used by sys_madvise() */
99 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
100 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
101
102 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
103 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
104 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
105 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
106 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
107 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
108 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
109 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
110 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
111 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
112
113 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
114 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
115 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
116
117 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
118 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
119 #endif
120
121 #ifdef CONFIG_STACK_GROWSUP
122 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
123 #else
124 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
125 #endif
126
127 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
128 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
129 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
130 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
131 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
132
133 /*
134 * mapping from the currently active vm_flags protection bits (the
135 * low four bits) to a page protection mask..
136 */
137 extern pgprot_t protection_map[16];
138
139 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
140 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
141
142
143 /*
144 * vm_fault is filled by the the pagefault handler and passed to the vma's
145 * ->fault function. The vma's ->fault is responsible for returning a bitmask
146 * of VM_FAULT_xxx flags that give details about how the fault was handled.
147 *
148 * pgoff should be used in favour of virtual_address, if possible. If pgoff
149 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
150 * mapping support.
151 */
152 struct vm_fault {
153 unsigned int flags; /* FAULT_FLAG_xxx flags */
154 pgoff_t pgoff; /* Logical page offset based on vma */
155 void __user *virtual_address; /* Faulting virtual address */
156
157 struct page *page; /* ->fault handlers should return a
158 * page here, unless VM_FAULT_NOPAGE
159 * is set (which is also implied by
160 * VM_FAULT_ERROR).
161 */
162 };
163
164 /*
165 * These are the virtual MM functions - opening of an area, closing and
166 * unmapping it (needed to keep files on disk up-to-date etc), pointer
167 * to the functions called when a no-page or a wp-page exception occurs.
168 */
169 struct vm_operations_struct {
170 void (*open)(struct vm_area_struct * area);
171 void (*close)(struct vm_area_struct * area);
172 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
173
174 /* notification that a previously read-only page is about to become
175 * writable, if an error is returned it will cause a SIGBUS */
176 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
177
178 /* called by access_process_vm when get_user_pages() fails, typically
179 * for use by special VMAs that can switch between memory and hardware
180 */
181 int (*access)(struct vm_area_struct *vma, unsigned long addr,
182 void *buf, int len, int write);
183 #ifdef CONFIG_NUMA
184 /*
185 * set_policy() op must add a reference to any non-NULL @new mempolicy
186 * to hold the policy upon return. Caller should pass NULL @new to
187 * remove a policy and fall back to surrounding context--i.e. do not
188 * install a MPOL_DEFAULT policy, nor the task or system default
189 * mempolicy.
190 */
191 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
192
193 /*
194 * get_policy() op must add reference [mpol_get()] to any policy at
195 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
196 * in mm/mempolicy.c will do this automatically.
197 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
198 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
199 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
200 * must return NULL--i.e., do not "fallback" to task or system default
201 * policy.
202 */
203 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
204 unsigned long addr);
205 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
206 const nodemask_t *to, unsigned long flags);
207 #endif
208 };
209
210 struct mmu_gather;
211 struct inode;
212
213 #define page_private(page) ((page)->private)
214 #define set_page_private(page, v) ((page)->private = (v))
215
216 /*
217 * FIXME: take this include out, include page-flags.h in
218 * files which need it (119 of them)
219 */
220 #include <linux/page-flags.h>
221
222 #ifdef CONFIG_DEBUG_VM
223 #define VM_BUG_ON(cond) BUG_ON(cond)
224 #else
225 #define VM_BUG_ON(condition) do { } while(0)
226 #endif
227
228 /*
229 * Methods to modify the page usage count.
230 *
231 * What counts for a page usage:
232 * - cache mapping (page->mapping)
233 * - private data (page->private)
234 * - page mapped in a task's page tables, each mapping
235 * is counted separately
236 *
237 * Also, many kernel routines increase the page count before a critical
238 * routine so they can be sure the page doesn't go away from under them.
239 */
240
241 /*
242 * Drop a ref, return true if the refcount fell to zero (the page has no users)
243 */
244 static inline int put_page_testzero(struct page *page)
245 {
246 VM_BUG_ON(atomic_read(&page->_count) == 0);
247 return atomic_dec_and_test(&page->_count);
248 }
249
250 /*
251 * Try to grab a ref unless the page has a refcount of zero, return false if
252 * that is the case.
253 */
254 static inline int get_page_unless_zero(struct page *page)
255 {
256 VM_BUG_ON(PageTail(page));
257 return atomic_inc_not_zero(&page->_count);
258 }
259
260 /* Support for virtually mapped pages */
261 struct page *vmalloc_to_page(const void *addr);
262 unsigned long vmalloc_to_pfn(const void *addr);
263
264 /*
265 * Determine if an address is within the vmalloc range
266 *
267 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
268 * is no special casing required.
269 */
270 static inline int is_vmalloc_addr(const void *x)
271 {
272 #ifdef CONFIG_MMU
273 unsigned long addr = (unsigned long)x;
274
275 return addr >= VMALLOC_START && addr < VMALLOC_END;
276 #else
277 return 0;
278 #endif
279 }
280
281 static inline struct page *compound_head(struct page *page)
282 {
283 if (unlikely(PageTail(page)))
284 return page->first_page;
285 return page;
286 }
287
288 static inline int page_count(struct page *page)
289 {
290 return atomic_read(&compound_head(page)->_count);
291 }
292
293 static inline void get_page(struct page *page)
294 {
295 page = compound_head(page);
296 VM_BUG_ON(atomic_read(&page->_count) == 0);
297 atomic_inc(&page->_count);
298 }
299
300 static inline struct page *virt_to_head_page(const void *x)
301 {
302 struct page *page = virt_to_page(x);
303 return compound_head(page);
304 }
305
306 /*
307 * Setup the page count before being freed into the page allocator for
308 * the first time (boot or memory hotplug)
309 */
310 static inline void init_page_count(struct page *page)
311 {
312 atomic_set(&page->_count, 1);
313 }
314
315 void put_page(struct page *page);
316 void put_pages_list(struct list_head *pages);
317
318 void split_page(struct page *page, unsigned int order);
319
320 /*
321 * Compound pages have a destructor function. Provide a
322 * prototype for that function and accessor functions.
323 * These are _only_ valid on the head of a PG_compound page.
324 */
325 typedef void compound_page_dtor(struct page *);
326
327 static inline void set_compound_page_dtor(struct page *page,
328 compound_page_dtor *dtor)
329 {
330 page[1].lru.next = (void *)dtor;
331 }
332
333 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
334 {
335 return (compound_page_dtor *)page[1].lru.next;
336 }
337
338 static inline int compound_order(struct page *page)
339 {
340 if (!PageHead(page))
341 return 0;
342 return (unsigned long)page[1].lru.prev;
343 }
344
345 static inline void set_compound_order(struct page *page, unsigned long order)
346 {
347 page[1].lru.prev = (void *)order;
348 }
349
350 /*
351 * Multiple processes may "see" the same page. E.g. for untouched
352 * mappings of /dev/null, all processes see the same page full of
353 * zeroes, and text pages of executables and shared libraries have
354 * only one copy in memory, at most, normally.
355 *
356 * For the non-reserved pages, page_count(page) denotes a reference count.
357 * page_count() == 0 means the page is free. page->lru is then used for
358 * freelist management in the buddy allocator.
359 * page_count() > 0 means the page has been allocated.
360 *
361 * Pages are allocated by the slab allocator in order to provide memory
362 * to kmalloc and kmem_cache_alloc. In this case, the management of the
363 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
364 * unless a particular usage is carefully commented. (the responsibility of
365 * freeing the kmalloc memory is the caller's, of course).
366 *
367 * A page may be used by anyone else who does a __get_free_page().
368 * In this case, page_count still tracks the references, and should only
369 * be used through the normal accessor functions. The top bits of page->flags
370 * and page->virtual store page management information, but all other fields
371 * are unused and could be used privately, carefully. The management of this
372 * page is the responsibility of the one who allocated it, and those who have
373 * subsequently been given references to it.
374 *
375 * The other pages (we may call them "pagecache pages") are completely
376 * managed by the Linux memory manager: I/O, buffers, swapping etc.
377 * The following discussion applies only to them.
378 *
379 * A pagecache page contains an opaque `private' member, which belongs to the
380 * page's address_space. Usually, this is the address of a circular list of
381 * the page's disk buffers. PG_private must be set to tell the VM to call
382 * into the filesystem to release these pages.
383 *
384 * A page may belong to an inode's memory mapping. In this case, page->mapping
385 * is the pointer to the inode, and page->index is the file offset of the page,
386 * in units of PAGE_CACHE_SIZE.
387 *
388 * If pagecache pages are not associated with an inode, they are said to be
389 * anonymous pages. These may become associated with the swapcache, and in that
390 * case PG_swapcache is set, and page->private is an offset into the swapcache.
391 *
392 * In either case (swapcache or inode backed), the pagecache itself holds one
393 * reference to the page. Setting PG_private should also increment the
394 * refcount. The each user mapping also has a reference to the page.
395 *
396 * The pagecache pages are stored in a per-mapping radix tree, which is
397 * rooted at mapping->page_tree, and indexed by offset.
398 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
399 * lists, we instead now tag pages as dirty/writeback in the radix tree.
400 *
401 * All pagecache pages may be subject to I/O:
402 * - inode pages may need to be read from disk,
403 * - inode pages which have been modified and are MAP_SHARED may need
404 * to be written back to the inode on disk,
405 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
406 * modified may need to be swapped out to swap space and (later) to be read
407 * back into memory.
408 */
409
410 /*
411 * The zone field is never updated after free_area_init_core()
412 * sets it, so none of the operations on it need to be atomic.
413 */
414
415
416 /*
417 * page->flags layout:
418 *
419 * There are three possibilities for how page->flags get
420 * laid out. The first is for the normal case, without
421 * sparsemem. The second is for sparsemem when there is
422 * plenty of space for node and section. The last is when
423 * we have run out of space and have to fall back to an
424 * alternate (slower) way of determining the node.
425 *
426 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
427 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
428 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
429 */
430 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
431 #define SECTIONS_WIDTH SECTIONS_SHIFT
432 #else
433 #define SECTIONS_WIDTH 0
434 #endif
435
436 #define ZONES_WIDTH ZONES_SHIFT
437
438 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
439 #define NODES_WIDTH NODES_SHIFT
440 #else
441 #ifdef CONFIG_SPARSEMEM_VMEMMAP
442 #error "Vmemmap: No space for nodes field in page flags"
443 #endif
444 #define NODES_WIDTH 0
445 #endif
446
447 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
448 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
449 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
450 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
451
452 /*
453 * We are going to use the flags for the page to node mapping if its in
454 * there. This includes the case where there is no node, so it is implicit.
455 */
456 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
457 #define NODE_NOT_IN_PAGE_FLAGS
458 #endif
459
460 #ifndef PFN_SECTION_SHIFT
461 #define PFN_SECTION_SHIFT 0
462 #endif
463
464 /*
465 * Define the bit shifts to access each section. For non-existant
466 * sections we define the shift as 0; that plus a 0 mask ensures
467 * the compiler will optimise away reference to them.
468 */
469 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
470 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
471 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
472
473 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
474 #ifdef NODE_NOT_IN_PAGEFLAGS
475 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
476 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
477 SECTIONS_PGOFF : ZONES_PGOFF)
478 #else
479 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
480 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
481 NODES_PGOFF : ZONES_PGOFF)
482 #endif
483
484 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
485
486 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
487 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
488 #endif
489
490 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
491 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
492 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
493 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
494
495 static inline enum zone_type page_zonenum(struct page *page)
496 {
497 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
498 }
499
500 /*
501 * The identification function is only used by the buddy allocator for
502 * determining if two pages could be buddies. We are not really
503 * identifying a zone since we could be using a the section number
504 * id if we have not node id available in page flags.
505 * We guarantee only that it will return the same value for two
506 * combinable pages in a zone.
507 */
508 static inline int page_zone_id(struct page *page)
509 {
510 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
511 }
512
513 static inline int zone_to_nid(struct zone *zone)
514 {
515 #ifdef CONFIG_NUMA
516 return zone->node;
517 #else
518 return 0;
519 #endif
520 }
521
522 #ifdef NODE_NOT_IN_PAGE_FLAGS
523 extern int page_to_nid(struct page *page);
524 #else
525 static inline int page_to_nid(struct page *page)
526 {
527 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
528 }
529 #endif
530
531 static inline struct zone *page_zone(struct page *page)
532 {
533 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
534 }
535
536 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
537 static inline unsigned long page_to_section(struct page *page)
538 {
539 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
540 }
541 #endif
542
543 static inline void set_page_zone(struct page *page, enum zone_type zone)
544 {
545 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
546 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
547 }
548
549 static inline void set_page_node(struct page *page, unsigned long node)
550 {
551 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
552 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
553 }
554
555 static inline void set_page_section(struct page *page, unsigned long section)
556 {
557 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
558 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
559 }
560
561 static inline void set_page_links(struct page *page, enum zone_type zone,
562 unsigned long node, unsigned long pfn)
563 {
564 set_page_zone(page, zone);
565 set_page_node(page, node);
566 set_page_section(page, pfn_to_section_nr(pfn));
567 }
568
569 /*
570 * If a hint addr is less than mmap_min_addr change hint to be as
571 * low as possible but still greater than mmap_min_addr
572 */
573 static inline unsigned long round_hint_to_min(unsigned long hint)
574 {
575 #ifdef CONFIG_SECURITY
576 hint &= PAGE_MASK;
577 if (((void *)hint != NULL) &&
578 (hint < mmap_min_addr))
579 return PAGE_ALIGN(mmap_min_addr);
580 #endif
581 return hint;
582 }
583
584 /*
585 * Some inline functions in vmstat.h depend on page_zone()
586 */
587 #include <linux/vmstat.h>
588
589 static __always_inline void *lowmem_page_address(struct page *page)
590 {
591 return __va(page_to_pfn(page) << PAGE_SHIFT);
592 }
593
594 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
595 #define HASHED_PAGE_VIRTUAL
596 #endif
597
598 #if defined(WANT_PAGE_VIRTUAL)
599 #define page_address(page) ((page)->virtual)
600 #define set_page_address(page, address) \
601 do { \
602 (page)->virtual = (address); \
603 } while(0)
604 #define page_address_init() do { } while(0)
605 #endif
606
607 #if defined(HASHED_PAGE_VIRTUAL)
608 void *page_address(struct page *page);
609 void set_page_address(struct page *page, void *virtual);
610 void page_address_init(void);
611 #endif
612
613 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
614 #define page_address(page) lowmem_page_address(page)
615 #define set_page_address(page, address) do { } while(0)
616 #define page_address_init() do { } while(0)
617 #endif
618
619 /*
620 * On an anonymous page mapped into a user virtual memory area,
621 * page->mapping points to its anon_vma, not to a struct address_space;
622 * with the PAGE_MAPPING_ANON bit set to distinguish it.
623 *
624 * Please note that, confusingly, "page_mapping" refers to the inode
625 * address_space which maps the page from disk; whereas "page_mapped"
626 * refers to user virtual address space into which the page is mapped.
627 */
628 #define PAGE_MAPPING_ANON 1
629
630 extern struct address_space swapper_space;
631 static inline struct address_space *page_mapping(struct page *page)
632 {
633 struct address_space *mapping = page->mapping;
634
635 VM_BUG_ON(PageSlab(page));
636 #ifdef CONFIG_SWAP
637 if (unlikely(PageSwapCache(page)))
638 mapping = &swapper_space;
639 else
640 #endif
641 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
642 mapping = NULL;
643 return mapping;
644 }
645
646 static inline int PageAnon(struct page *page)
647 {
648 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
649 }
650
651 /*
652 * Return the pagecache index of the passed page. Regular pagecache pages
653 * use ->index whereas swapcache pages use ->private
654 */
655 static inline pgoff_t page_index(struct page *page)
656 {
657 if (unlikely(PageSwapCache(page)))
658 return page_private(page);
659 return page->index;
660 }
661
662 /*
663 * The atomic page->_mapcount, like _count, starts from -1:
664 * so that transitions both from it and to it can be tracked,
665 * using atomic_inc_and_test and atomic_add_negative(-1).
666 */
667 static inline void reset_page_mapcount(struct page *page)
668 {
669 atomic_set(&(page)->_mapcount, -1);
670 }
671
672 static inline int page_mapcount(struct page *page)
673 {
674 return atomic_read(&(page)->_mapcount) + 1;
675 }
676
677 /*
678 * Return true if this page is mapped into pagetables.
679 */
680 static inline int page_mapped(struct page *page)
681 {
682 return atomic_read(&(page)->_mapcount) >= 0;
683 }
684
685 /*
686 * Different kinds of faults, as returned by handle_mm_fault().
687 * Used to decide whether a process gets delivered SIGBUS or
688 * just gets major/minor fault counters bumped up.
689 */
690
691 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
692
693 #define VM_FAULT_OOM 0x0001
694 #define VM_FAULT_SIGBUS 0x0002
695 #define VM_FAULT_MAJOR 0x0004
696 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
697
698 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
699 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
700
701 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
702
703 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
704
705 extern void show_free_areas(void);
706
707 #ifdef CONFIG_SHMEM
708 int shmem_lock(struct file *file, int lock, struct user_struct *user);
709 #else
710 static inline int shmem_lock(struct file *file, int lock,
711 struct user_struct *user)
712 {
713 return 0;
714 }
715 #endif
716 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
717
718 int shmem_zero_setup(struct vm_area_struct *);
719
720 #ifndef CONFIG_MMU
721 extern unsigned long shmem_get_unmapped_area(struct file *file,
722 unsigned long addr,
723 unsigned long len,
724 unsigned long pgoff,
725 unsigned long flags);
726 #endif
727
728 extern int can_do_mlock(void);
729 extern int user_shm_lock(size_t, struct user_struct *);
730 extern void user_shm_unlock(size_t, struct user_struct *);
731
732 /*
733 * Parameter block passed down to zap_pte_range in exceptional cases.
734 */
735 struct zap_details {
736 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
737 struct address_space *check_mapping; /* Check page->mapping if set */
738 pgoff_t first_index; /* Lowest page->index to unmap */
739 pgoff_t last_index; /* Highest page->index to unmap */
740 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
741 unsigned long truncate_count; /* Compare vm_truncate_count */
742 };
743
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745 pte_t pte);
746
747 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
748 unsigned long size, struct zap_details *);
749 unsigned long unmap_vmas(struct mmu_gather **tlb,
750 struct vm_area_struct *start_vma, unsigned long start_addr,
751 unsigned long end_addr, unsigned long *nr_accounted,
752 struct zap_details *);
753
754 /**
755 * mm_walk - callbacks for walk_page_range
756 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
757 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
758 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
759 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
760 * @pte_hole: if set, called for each hole at all levels
761 *
762 * (see walk_page_range for more details)
763 */
764 struct mm_walk {
765 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
766 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
767 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
768 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
769 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
770 struct mm_struct *mm;
771 void *private;
772 };
773
774 int walk_page_range(unsigned long addr, unsigned long end,
775 struct mm_walk *walk);
776 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
777 unsigned long end, unsigned long floor, unsigned long ceiling);
778 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
779 struct vm_area_struct *vma);
780 void unmap_mapping_range(struct address_space *mapping,
781 loff_t const holebegin, loff_t const holelen, int even_cows);
782 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
783 void *buf, int len, int write);
784
785 static inline void unmap_shared_mapping_range(struct address_space *mapping,
786 loff_t const holebegin, loff_t const holelen)
787 {
788 unmap_mapping_range(mapping, holebegin, holelen, 0);
789 }
790
791 extern int vmtruncate(struct inode * inode, loff_t offset);
792 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
793
794 #ifdef CONFIG_MMU
795 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
796 unsigned long address, int write_access);
797 #else
798 static inline int handle_mm_fault(struct mm_struct *mm,
799 struct vm_area_struct *vma, unsigned long address,
800 int write_access)
801 {
802 /* should never happen if there's no MMU */
803 BUG();
804 return VM_FAULT_SIGBUS;
805 }
806 #endif
807
808 extern int make_pages_present(unsigned long addr, unsigned long end);
809 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
810
811 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
812 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
813 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
814
815 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
816 extern void do_invalidatepage(struct page *page, unsigned long offset);
817
818 int __set_page_dirty_nobuffers(struct page *page);
819 int __set_page_dirty_no_writeback(struct page *page);
820 int redirty_page_for_writepage(struct writeback_control *wbc,
821 struct page *page);
822 int set_page_dirty(struct page *page);
823 int set_page_dirty_lock(struct page *page);
824 int clear_page_dirty_for_io(struct page *page);
825
826 extern unsigned long move_page_tables(struct vm_area_struct *vma,
827 unsigned long old_addr, struct vm_area_struct *new_vma,
828 unsigned long new_addr, unsigned long len);
829 extern unsigned long do_mremap(unsigned long addr,
830 unsigned long old_len, unsigned long new_len,
831 unsigned long flags, unsigned long new_addr);
832 extern int mprotect_fixup(struct vm_area_struct *vma,
833 struct vm_area_struct **pprev, unsigned long start,
834 unsigned long end, unsigned long newflags);
835
836 /*
837 * A callback you can register to apply pressure to ageable caches.
838 *
839 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
840 * look through the least-recently-used 'nr_to_scan' entries and
841 * attempt to free them up. It should return the number of objects
842 * which remain in the cache. If it returns -1, it means it cannot do
843 * any scanning at this time (eg. there is a risk of deadlock).
844 *
845 * The 'gfpmask' refers to the allocation we are currently trying to
846 * fulfil.
847 *
848 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
849 * querying the cache size, so a fastpath for that case is appropriate.
850 */
851 struct shrinker {
852 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
853 int seeks; /* seeks to recreate an obj */
854
855 /* These are for internal use */
856 struct list_head list;
857 long nr; /* objs pending delete */
858 };
859 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
860 extern void register_shrinker(struct shrinker *);
861 extern void unregister_shrinker(struct shrinker *);
862
863 int vma_wants_writenotify(struct vm_area_struct *vma);
864
865 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
866
867 #ifdef __PAGETABLE_PUD_FOLDED
868 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
869 unsigned long address)
870 {
871 return 0;
872 }
873 #else
874 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
875 #endif
876
877 #ifdef __PAGETABLE_PMD_FOLDED
878 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
879 unsigned long address)
880 {
881 return 0;
882 }
883 #else
884 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
885 #endif
886
887 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
888 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
889
890 /*
891 * The following ifdef needed to get the 4level-fixup.h header to work.
892 * Remove it when 4level-fixup.h has been removed.
893 */
894 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
895 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
896 {
897 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
898 NULL: pud_offset(pgd, address);
899 }
900
901 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
902 {
903 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
904 NULL: pmd_offset(pud, address);
905 }
906 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
907
908 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
909 /*
910 * We tuck a spinlock to guard each pagetable page into its struct page,
911 * at page->private, with BUILD_BUG_ON to make sure that this will not
912 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
913 * When freeing, reset page->mapping so free_pages_check won't complain.
914 */
915 #define __pte_lockptr(page) &((page)->ptl)
916 #define pte_lock_init(_page) do { \
917 spin_lock_init(__pte_lockptr(_page)); \
918 } while (0)
919 #define pte_lock_deinit(page) ((page)->mapping = NULL)
920 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
921 #else
922 /*
923 * We use mm->page_table_lock to guard all pagetable pages of the mm.
924 */
925 #define pte_lock_init(page) do {} while (0)
926 #define pte_lock_deinit(page) do {} while (0)
927 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
928 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
929
930 static inline void pgtable_page_ctor(struct page *page)
931 {
932 pte_lock_init(page);
933 inc_zone_page_state(page, NR_PAGETABLE);
934 }
935
936 static inline void pgtable_page_dtor(struct page *page)
937 {
938 pte_lock_deinit(page);
939 dec_zone_page_state(page, NR_PAGETABLE);
940 }
941
942 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
943 ({ \
944 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
945 pte_t *__pte = pte_offset_map(pmd, address); \
946 *(ptlp) = __ptl; \
947 spin_lock(__ptl); \
948 __pte; \
949 })
950
951 #define pte_unmap_unlock(pte, ptl) do { \
952 spin_unlock(ptl); \
953 pte_unmap(pte); \
954 } while (0)
955
956 #define pte_alloc_map(mm, pmd, address) \
957 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
958 NULL: pte_offset_map(pmd, address))
959
960 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
961 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
962 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
963
964 #define pte_alloc_kernel(pmd, address) \
965 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
966 NULL: pte_offset_kernel(pmd, address))
967
968 extern void free_area_init(unsigned long * zones_size);
969 extern void free_area_init_node(int nid, unsigned long * zones_size,
970 unsigned long zone_start_pfn, unsigned long *zholes_size);
971 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
972 /*
973 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
974 * zones, allocate the backing mem_map and account for memory holes in a more
975 * architecture independent manner. This is a substitute for creating the
976 * zone_sizes[] and zholes_size[] arrays and passing them to
977 * free_area_init_node()
978 *
979 * An architecture is expected to register range of page frames backed by
980 * physical memory with add_active_range() before calling
981 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
982 * usage, an architecture is expected to do something like
983 *
984 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
985 * max_highmem_pfn};
986 * for_each_valid_physical_page_range()
987 * add_active_range(node_id, start_pfn, end_pfn)
988 * free_area_init_nodes(max_zone_pfns);
989 *
990 * If the architecture guarantees that there are no holes in the ranges
991 * registered with add_active_range(), free_bootmem_active_regions()
992 * will call free_bootmem_node() for each registered physical page range.
993 * Similarly sparse_memory_present_with_active_regions() calls
994 * memory_present() for each range when SPARSEMEM is enabled.
995 *
996 * See mm/page_alloc.c for more information on each function exposed by
997 * CONFIG_ARCH_POPULATES_NODE_MAP
998 */
999 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1000 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1001 unsigned long end_pfn);
1002 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1003 unsigned long end_pfn);
1004 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1005 unsigned long end_pfn);
1006 extern void remove_all_active_ranges(void);
1007 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1008 unsigned long end_pfn);
1009 extern void get_pfn_range_for_nid(unsigned int nid,
1010 unsigned long *start_pfn, unsigned long *end_pfn);
1011 extern unsigned long find_min_pfn_with_active_regions(void);
1012 extern unsigned long find_max_pfn_with_active_regions(void);
1013 extern void free_bootmem_with_active_regions(int nid,
1014 unsigned long max_low_pfn);
1015 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1016 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1017 extern void sparse_memory_present_with_active_regions(int nid);
1018 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1019 extern int early_pfn_to_nid(unsigned long pfn);
1020 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1021 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1022 extern void set_dma_reserve(unsigned long new_dma_reserve);
1023 extern void memmap_init_zone(unsigned long, int, unsigned long,
1024 unsigned long, enum memmap_context);
1025 extern void setup_per_zone_pages_min(void);
1026 extern void mem_init(void);
1027 extern void show_mem(void);
1028 extern void si_meminfo(struct sysinfo * val);
1029 extern void si_meminfo_node(struct sysinfo *val, int nid);
1030 extern int after_bootmem;
1031
1032 #ifdef CONFIG_NUMA
1033 extern void setup_per_cpu_pageset(void);
1034 #else
1035 static inline void setup_per_cpu_pageset(void) {}
1036 #endif
1037
1038 /* prio_tree.c */
1039 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1040 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1041 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1042 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1043 struct prio_tree_iter *iter);
1044
1045 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1046 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1047 (vma = vma_prio_tree_next(vma, iter)); )
1048
1049 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1050 struct list_head *list)
1051 {
1052 vma->shared.vm_set.parent = NULL;
1053 list_add_tail(&vma->shared.vm_set.list, list);
1054 }
1055
1056 /* mmap.c */
1057 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1058 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1059 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1060 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1061 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1062 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1063 struct mempolicy *);
1064 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1065 extern int split_vma(struct mm_struct *,
1066 struct vm_area_struct *, unsigned long addr, int new_below);
1067 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1068 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1069 struct rb_node **, struct rb_node *);
1070 extern void unlink_file_vma(struct vm_area_struct *);
1071 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1072 unsigned long addr, unsigned long len, pgoff_t pgoff);
1073 extern void exit_mmap(struct mm_struct *);
1074
1075 #ifdef CONFIG_PROC_FS
1076 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1077 extern void added_exe_file_vma(struct mm_struct *mm);
1078 extern void removed_exe_file_vma(struct mm_struct *mm);
1079 #else
1080 static inline void added_exe_file_vma(struct mm_struct *mm)
1081 {}
1082
1083 static inline void removed_exe_file_vma(struct mm_struct *mm)
1084 {}
1085 #endif /* CONFIG_PROC_FS */
1086
1087 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1088 extern int install_special_mapping(struct mm_struct *mm,
1089 unsigned long addr, unsigned long len,
1090 unsigned long flags, struct page **pages);
1091
1092 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1093
1094 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1095 unsigned long len, unsigned long prot,
1096 unsigned long flag, unsigned long pgoff);
1097 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1098 unsigned long len, unsigned long flags,
1099 unsigned int vm_flags, unsigned long pgoff,
1100 int accountable);
1101
1102 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1103 unsigned long len, unsigned long prot,
1104 unsigned long flag, unsigned long offset)
1105 {
1106 unsigned long ret = -EINVAL;
1107 if ((offset + PAGE_ALIGN(len)) < offset)
1108 goto out;
1109 if (!(offset & ~PAGE_MASK))
1110 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1111 out:
1112 return ret;
1113 }
1114
1115 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1116
1117 extern unsigned long do_brk(unsigned long, unsigned long);
1118
1119 /* filemap.c */
1120 extern unsigned long page_unuse(struct page *);
1121 extern void truncate_inode_pages(struct address_space *, loff_t);
1122 extern void truncate_inode_pages_range(struct address_space *,
1123 loff_t lstart, loff_t lend);
1124
1125 /* generic vm_area_ops exported for stackable file systems */
1126 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1127
1128 /* mm/page-writeback.c */
1129 int write_one_page(struct page *page, int wait);
1130
1131 /* readahead.c */
1132 #define VM_MAX_READAHEAD 128 /* kbytes */
1133 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1134
1135 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1136 pgoff_t offset, unsigned long nr_to_read);
1137 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1138 pgoff_t offset, unsigned long nr_to_read);
1139
1140 void page_cache_sync_readahead(struct address_space *mapping,
1141 struct file_ra_state *ra,
1142 struct file *filp,
1143 pgoff_t offset,
1144 unsigned long size);
1145
1146 void page_cache_async_readahead(struct address_space *mapping,
1147 struct file_ra_state *ra,
1148 struct file *filp,
1149 struct page *pg,
1150 pgoff_t offset,
1151 unsigned long size);
1152
1153 unsigned long max_sane_readahead(unsigned long nr);
1154
1155 /* Do stack extension */
1156 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1157 #ifdef CONFIG_IA64
1158 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1159 #endif
1160 extern int expand_stack_downwards(struct vm_area_struct *vma,
1161 unsigned long address);
1162
1163 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1164 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1165 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1166 struct vm_area_struct **pprev);
1167
1168 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1169 NULL if none. Assume start_addr < end_addr. */
1170 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1171 {
1172 struct vm_area_struct * vma = find_vma(mm,start_addr);
1173
1174 if (vma && end_addr <= vma->vm_start)
1175 vma = NULL;
1176 return vma;
1177 }
1178
1179 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1180 {
1181 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1182 }
1183
1184 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1185 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1186 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1187 unsigned long pfn, unsigned long size, pgprot_t);
1188 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1189 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1190 unsigned long pfn);
1191 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1192 unsigned long pfn);
1193
1194 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1195 unsigned int foll_flags);
1196 #define FOLL_WRITE 0x01 /* check pte is writable */
1197 #define FOLL_TOUCH 0x02 /* mark page accessed */
1198 #define FOLL_GET 0x04 /* do get_page on page */
1199 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1200
1201 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1202 void *data);
1203 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1204 unsigned long size, pte_fn_t fn, void *data);
1205
1206 #ifdef CONFIG_PROC_FS
1207 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1208 #else
1209 static inline void vm_stat_account(struct mm_struct *mm,
1210 unsigned long flags, struct file *file, long pages)
1211 {
1212 }
1213 #endif /* CONFIG_PROC_FS */
1214
1215 #ifdef CONFIG_DEBUG_PAGEALLOC
1216 extern int debug_pagealloc_enabled;
1217
1218 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1219
1220 static inline void enable_debug_pagealloc(void)
1221 {
1222 debug_pagealloc_enabled = 1;
1223 }
1224 #ifdef CONFIG_HIBERNATION
1225 extern bool kernel_page_present(struct page *page);
1226 #endif /* CONFIG_HIBERNATION */
1227 #else
1228 static inline void
1229 kernel_map_pages(struct page *page, int numpages, int enable) {}
1230 static inline void enable_debug_pagealloc(void)
1231 {
1232 }
1233 #ifdef CONFIG_HIBERNATION
1234 static inline bool kernel_page_present(struct page *page) { return true; }
1235 #endif /* CONFIG_HIBERNATION */
1236 #endif
1237
1238 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1239 #ifdef __HAVE_ARCH_GATE_AREA
1240 int in_gate_area_no_task(unsigned long addr);
1241 int in_gate_area(struct task_struct *task, unsigned long addr);
1242 #else
1243 int in_gate_area_no_task(unsigned long addr);
1244 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1245 #endif /* __HAVE_ARCH_GATE_AREA */
1246
1247 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1248 void __user *, size_t *, loff_t *);
1249 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1250 unsigned long lru_pages);
1251
1252 #ifndef CONFIG_MMU
1253 #define randomize_va_space 0
1254 #else
1255 extern int randomize_va_space;
1256 #endif
1257
1258 const char * arch_vma_name(struct vm_area_struct *vma);
1259 void print_vma_addr(char *prefix, unsigned long rip);
1260
1261 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1262 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1263 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1264 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1265 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1266 void *vmemmap_alloc_block(unsigned long size, int node);
1267 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1268 int vmemmap_populate_basepages(struct page *start_page,
1269 unsigned long pages, int node);
1270 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1271 void vmemmap_populate_print_last(void);
1272
1273 #endif /* __KERNEL__ */
1274 #endif /* _LINUX_MM_H */