]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/linux/mm.h
de2fd86c61549f5eacbea530b61a6d7e63db2d5d
[mirror_ubuntu-focal-kernel.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29
30 struct mempolicy;
31 struct anon_vma;
32 struct anon_vma_chain;
33 struct file_ra_state;
34 struct user_struct;
35 struct writeback_control;
36 struct bdi_writeback;
37
38 void init_mm_internals(void);
39
40 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
42
43 static inline void set_max_mapnr(unsigned long limit)
44 {
45 max_mapnr = limit;
46 }
47 #else
48 static inline void set_max_mapnr(unsigned long limit) { }
49 #endif
50
51 extern unsigned long totalram_pages;
52 extern void * high_memory;
53 extern int page_cluster;
54
55 #ifdef CONFIG_SYSCTL
56 extern int sysctl_legacy_va_layout;
57 #else
58 #define sysctl_legacy_va_layout 0
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 extern const int mmap_rnd_bits_min;
63 extern const int mmap_rnd_bits_max;
64 extern int mmap_rnd_bits __read_mostly;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 extern const int mmap_rnd_compat_bits_min;
68 extern const int mmap_rnd_compat_bits_max;
69 extern int mmap_rnd_compat_bits __read_mostly;
70 #endif
71
72 #include <asm/page.h>
73 #include <asm/pgtable.h>
74 #include <asm/processor.h>
75
76 #ifndef __pa_symbol
77 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
78 #endif
79
80 #ifndef page_to_virt
81 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
82 #endif
83
84 #ifndef lm_alias
85 #define lm_alias(x) __va(__pa_symbol(x))
86 #endif
87
88 /*
89 * To prevent common memory management code establishing
90 * a zero page mapping on a read fault.
91 * This macro should be defined within <asm/pgtable.h>.
92 * s390 does this to prevent multiplexing of hardware bits
93 * related to the physical page in case of virtualization.
94 */
95 #ifndef mm_forbids_zeropage
96 #define mm_forbids_zeropage(X) (0)
97 #endif
98
99 /*
100 * On some architectures it is expensive to call memset() for small sizes.
101 * Those architectures should provide their own implementation of "struct page"
102 * zeroing by defining this macro in <asm/pgtable.h>.
103 */
104 #ifndef mm_zero_struct_page
105 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
106 #endif
107
108 /*
109 * Default maximum number of active map areas, this limits the number of vmas
110 * per mm struct. Users can overwrite this number by sysctl but there is a
111 * problem.
112 *
113 * When a program's coredump is generated as ELF format, a section is created
114 * per a vma. In ELF, the number of sections is represented in unsigned short.
115 * This means the number of sections should be smaller than 65535 at coredump.
116 * Because the kernel adds some informative sections to a image of program at
117 * generating coredump, we need some margin. The number of extra sections is
118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
119 *
120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121 * not a hard limit any more. Although some userspace tools can be surprised by
122 * that.
123 */
124 #define MAPCOUNT_ELF_CORE_MARGIN (5)
125 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126
127 extern int sysctl_max_map_count;
128
129 extern unsigned long sysctl_user_reserve_kbytes;
130 extern unsigned long sysctl_admin_reserve_kbytes;
131
132 extern int sysctl_overcommit_memory;
133 extern int sysctl_overcommit_ratio;
134 extern unsigned long sysctl_overcommit_kbytes;
135
136 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 size_t *, loff_t *);
138 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 size_t *, loff_t *);
140
141 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142
143 /* to align the pointer to the (next) page boundary */
144 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145
146 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
147 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
148
149 /*
150 * Linux kernel virtual memory manager primitives.
151 * The idea being to have a "virtual" mm in the same way
152 * we have a virtual fs - giving a cleaner interface to the
153 * mm details, and allowing different kinds of memory mappings
154 * (from shared memory to executable loading to arbitrary
155 * mmap() functions).
156 */
157
158 struct vm_area_struct *vm_area_alloc(void);
159 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160 void vm_area_free(struct vm_area_struct *);
161
162 #ifndef CONFIG_MMU
163 extern struct rb_root nommu_region_tree;
164 extern struct rw_semaphore nommu_region_sem;
165
166 extern unsigned int kobjsize(const void *objp);
167 #endif
168
169 /*
170 * vm_flags in vm_area_struct, see mm_types.h.
171 * When changing, update also include/trace/events/mmflags.h
172 */
173 #define VM_NONE 0x00000000
174
175 #define VM_READ 0x00000001 /* currently active flags */
176 #define VM_WRITE 0x00000002
177 #define VM_EXEC 0x00000004
178 #define VM_SHARED 0x00000008
179
180 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
181 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
182 #define VM_MAYWRITE 0x00000020
183 #define VM_MAYEXEC 0x00000040
184 #define VM_MAYSHARE 0x00000080
185
186 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
187 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
188 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
189 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
190 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
191
192 #define VM_LOCKED 0x00002000
193 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
194
195 /* Used by sys_madvise() */
196 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
197 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
198
199 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
200 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
201 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
202 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
203 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
204 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
205 #define VM_SYNC 0x00800000 /* Synchronous page faults */
206 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
207 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
208 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
209
210 #ifdef CONFIG_MEM_SOFT_DIRTY
211 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
212 #else
213 # define VM_SOFTDIRTY 0
214 #endif
215
216 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
217 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
218 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
219 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
220
221 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
225 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
226 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
227 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
228 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
229 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
230 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
231 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
232 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233
234 #ifdef CONFIG_ARCH_HAS_PKEYS
235 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
236 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
237 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
238 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
239 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
240 #ifdef CONFIG_PPC
241 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
242 #else
243 # define VM_PKEY_BIT4 0
244 #endif
245 #endif /* CONFIG_ARCH_HAS_PKEYS */
246
247 #if defined(CONFIG_X86)
248 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
249 #elif defined(CONFIG_PPC)
250 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
251 #elif defined(CONFIG_PARISC)
252 # define VM_GROWSUP VM_ARCH_1
253 #elif defined(CONFIG_IA64)
254 # define VM_GROWSUP VM_ARCH_1
255 #elif defined(CONFIG_SPARC64)
256 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
257 # define VM_ARCH_CLEAR VM_SPARC_ADI
258 #elif !defined(CONFIG_MMU)
259 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
260 #endif
261
262 #if defined(CONFIG_X86_INTEL_MPX)
263 /* MPX specific bounds table or bounds directory */
264 # define VM_MPX VM_HIGH_ARCH_4
265 #else
266 # define VM_MPX VM_NONE
267 #endif
268
269 #ifndef VM_GROWSUP
270 # define VM_GROWSUP VM_NONE
271 #endif
272
273 /* Bits set in the VMA until the stack is in its final location */
274 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
275
276 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
277 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278 #endif
279
280 #ifdef CONFIG_STACK_GROWSUP
281 #define VM_STACK VM_GROWSUP
282 #else
283 #define VM_STACK VM_GROWSDOWN
284 #endif
285
286 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287
288 /*
289 * Special vmas that are non-mergable, non-mlock()able.
290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
291 */
292 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
293
294 /* This mask defines which mm->def_flags a process can inherit its parent */
295 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
296
297 /* This mask is used to clear all the VMA flags used by mlock */
298 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
299
300 /* Arch-specific flags to clear when updating VM flags on protection change */
301 #ifndef VM_ARCH_CLEAR
302 # define VM_ARCH_CLEAR VM_NONE
303 #endif
304 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305
306 /*
307 * mapping from the currently active vm_flags protection bits (the
308 * low four bits) to a page protection mask..
309 */
310 extern pgprot_t protection_map[16];
311
312 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
313 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
314 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
315 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
316 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
317 #define FAULT_FLAG_TRIED 0x20 /* Second try */
318 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
319 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
320 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
321
322 #define FAULT_FLAG_TRACE \
323 { FAULT_FLAG_WRITE, "WRITE" }, \
324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
328 { FAULT_FLAG_TRIED, "TRIED" }, \
329 { FAULT_FLAG_USER, "USER" }, \
330 { FAULT_FLAG_REMOTE, "REMOTE" }, \
331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
332
333 /*
334 * vm_fault is filled by the the pagefault handler and passed to the vma's
335 * ->fault function. The vma's ->fault is responsible for returning a bitmask
336 * of VM_FAULT_xxx flags that give details about how the fault was handled.
337 *
338 * MM layer fills up gfp_mask for page allocations but fault handler might
339 * alter it if its implementation requires a different allocation context.
340 *
341 * pgoff should be used in favour of virtual_address, if possible.
342 */
343 struct vm_fault {
344 struct vm_area_struct *vma; /* Target VMA */
345 unsigned int flags; /* FAULT_FLAG_xxx flags */
346 gfp_t gfp_mask; /* gfp mask to be used for allocations */
347 pgoff_t pgoff; /* Logical page offset based on vma */
348 unsigned long address; /* Faulting virtual address */
349 pmd_t *pmd; /* Pointer to pmd entry matching
350 * the 'address' */
351 pud_t *pud; /* Pointer to pud entry matching
352 * the 'address'
353 */
354 pte_t orig_pte; /* Value of PTE at the time of fault */
355
356 struct page *cow_page; /* Page handler may use for COW fault */
357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
358 struct page *page; /* ->fault handlers should return a
359 * page here, unless VM_FAULT_NOPAGE
360 * is set (which is also implied by
361 * VM_FAULT_ERROR).
362 */
363 /* These three entries are valid only while holding ptl lock */
364 pte_t *pte; /* Pointer to pte entry matching
365 * the 'address'. NULL if the page
366 * table hasn't been allocated.
367 */
368 spinlock_t *ptl; /* Page table lock.
369 * Protects pte page table if 'pte'
370 * is not NULL, otherwise pmd.
371 */
372 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
373 * vm_ops->map_pages() calls
374 * alloc_set_pte() from atomic context.
375 * do_fault_around() pre-allocates
376 * page table to avoid allocation from
377 * atomic context.
378 */
379 };
380
381 /* page entry size for vm->huge_fault() */
382 enum page_entry_size {
383 PE_SIZE_PTE = 0,
384 PE_SIZE_PMD,
385 PE_SIZE_PUD,
386 };
387
388 /*
389 * These are the virtual MM functions - opening of an area, closing and
390 * unmapping it (needed to keep files on disk up-to-date etc), pointer
391 * to the functions called when a no-page or a wp-page exception occurs.
392 */
393 struct vm_operations_struct {
394 void (*open)(struct vm_area_struct * area);
395 void (*close)(struct vm_area_struct * area);
396 int (*split)(struct vm_area_struct * area, unsigned long addr);
397 int (*mremap)(struct vm_area_struct * area);
398 vm_fault_t (*fault)(struct vm_fault *vmf);
399 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 enum page_entry_size pe_size);
401 void (*map_pages)(struct vm_fault *vmf,
402 pgoff_t start_pgoff, pgoff_t end_pgoff);
403 unsigned long (*pagesize)(struct vm_area_struct * area);
404
405 /* notification that a previously read-only page is about to become
406 * writable, if an error is returned it will cause a SIGBUS */
407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
408
409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
411
412 /* called by access_process_vm when get_user_pages() fails, typically
413 * for use by special VMAs that can switch between memory and hardware
414 */
415 int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 void *buf, int len, int write);
417
418 /* Called by the /proc/PID/maps code to ask the vma whether it
419 * has a special name. Returning non-NULL will also cause this
420 * vma to be dumped unconditionally. */
421 const char *(*name)(struct vm_area_struct *vma);
422
423 #ifdef CONFIG_NUMA
424 /*
425 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 * to hold the policy upon return. Caller should pass NULL @new to
427 * remove a policy and fall back to surrounding context--i.e. do not
428 * install a MPOL_DEFAULT policy, nor the task or system default
429 * mempolicy.
430 */
431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
432
433 /*
434 * get_policy() op must add reference [mpol_get()] to any policy at
435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
436 * in mm/mempolicy.c will do this automatically.
437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 * must return NULL--i.e., do not "fallback" to task or system default
441 * policy.
442 */
443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 unsigned long addr);
445 #endif
446 /*
447 * Called by vm_normal_page() for special PTEs to find the
448 * page for @addr. This is useful if the default behavior
449 * (using pte_page()) would not find the correct page.
450 */
451 struct page *(*find_special_page)(struct vm_area_struct *vma,
452 unsigned long addr);
453 };
454
455 struct mmu_gather;
456 struct inode;
457
458 #define page_private(page) ((page)->private)
459 #define set_page_private(page, v) ((page)->private = (v))
460
461 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
462 static inline int pmd_devmap(pmd_t pmd)
463 {
464 return 0;
465 }
466 static inline int pud_devmap(pud_t pud)
467 {
468 return 0;
469 }
470 static inline int pgd_devmap(pgd_t pgd)
471 {
472 return 0;
473 }
474 #endif
475
476 /*
477 * FIXME: take this include out, include page-flags.h in
478 * files which need it (119 of them)
479 */
480 #include <linux/page-flags.h>
481 #include <linux/huge_mm.h>
482
483 /*
484 * Methods to modify the page usage count.
485 *
486 * What counts for a page usage:
487 * - cache mapping (page->mapping)
488 * - private data (page->private)
489 * - page mapped in a task's page tables, each mapping
490 * is counted separately
491 *
492 * Also, many kernel routines increase the page count before a critical
493 * routine so they can be sure the page doesn't go away from under them.
494 */
495
496 /*
497 * Drop a ref, return true if the refcount fell to zero (the page has no users)
498 */
499 static inline int put_page_testzero(struct page *page)
500 {
501 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
502 return page_ref_dec_and_test(page);
503 }
504
505 /*
506 * Try to grab a ref unless the page has a refcount of zero, return false if
507 * that is the case.
508 * This can be called when MMU is off so it must not access
509 * any of the virtual mappings.
510 */
511 static inline int get_page_unless_zero(struct page *page)
512 {
513 return page_ref_add_unless(page, 1, 0);
514 }
515
516 extern int page_is_ram(unsigned long pfn);
517
518 enum {
519 REGION_INTERSECTS,
520 REGION_DISJOINT,
521 REGION_MIXED,
522 };
523
524 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
525 unsigned long desc);
526
527 /* Support for virtually mapped pages */
528 struct page *vmalloc_to_page(const void *addr);
529 unsigned long vmalloc_to_pfn(const void *addr);
530
531 /*
532 * Determine if an address is within the vmalloc range
533 *
534 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
535 * is no special casing required.
536 */
537 static inline bool is_vmalloc_addr(const void *x)
538 {
539 #ifdef CONFIG_MMU
540 unsigned long addr = (unsigned long)x;
541
542 return addr >= VMALLOC_START && addr < VMALLOC_END;
543 #else
544 return false;
545 #endif
546 }
547 #ifdef CONFIG_MMU
548 extern int is_vmalloc_or_module_addr(const void *x);
549 #else
550 static inline int is_vmalloc_or_module_addr(const void *x)
551 {
552 return 0;
553 }
554 #endif
555
556 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
557 static inline void *kvmalloc(size_t size, gfp_t flags)
558 {
559 return kvmalloc_node(size, flags, NUMA_NO_NODE);
560 }
561 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
562 {
563 return kvmalloc_node(size, flags | __GFP_ZERO, node);
564 }
565 static inline void *kvzalloc(size_t size, gfp_t flags)
566 {
567 return kvmalloc(size, flags | __GFP_ZERO);
568 }
569
570 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
571 {
572 size_t bytes;
573
574 if (unlikely(check_mul_overflow(n, size, &bytes)))
575 return NULL;
576
577 return kvmalloc(bytes, flags);
578 }
579
580 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
581 {
582 return kvmalloc_array(n, size, flags | __GFP_ZERO);
583 }
584
585 extern void kvfree(const void *addr);
586
587 static inline atomic_t *compound_mapcount_ptr(struct page *page)
588 {
589 return &page[1].compound_mapcount;
590 }
591
592 static inline int compound_mapcount(struct page *page)
593 {
594 VM_BUG_ON_PAGE(!PageCompound(page), page);
595 page = compound_head(page);
596 return atomic_read(compound_mapcount_ptr(page)) + 1;
597 }
598
599 /*
600 * The atomic page->_mapcount, starts from -1: so that transitions
601 * both from it and to it can be tracked, using atomic_inc_and_test
602 * and atomic_add_negative(-1).
603 */
604 static inline void page_mapcount_reset(struct page *page)
605 {
606 atomic_set(&(page)->_mapcount, -1);
607 }
608
609 int __page_mapcount(struct page *page);
610
611 static inline int page_mapcount(struct page *page)
612 {
613 VM_BUG_ON_PAGE(PageSlab(page), page);
614
615 if (unlikely(PageCompound(page)))
616 return __page_mapcount(page);
617 return atomic_read(&page->_mapcount) + 1;
618 }
619
620 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
621 int total_mapcount(struct page *page);
622 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
623 #else
624 static inline int total_mapcount(struct page *page)
625 {
626 return page_mapcount(page);
627 }
628 static inline int page_trans_huge_mapcount(struct page *page,
629 int *total_mapcount)
630 {
631 int mapcount = page_mapcount(page);
632 if (total_mapcount)
633 *total_mapcount = mapcount;
634 return mapcount;
635 }
636 #endif
637
638 static inline struct page *virt_to_head_page(const void *x)
639 {
640 struct page *page = virt_to_page(x);
641
642 return compound_head(page);
643 }
644
645 void __put_page(struct page *page);
646
647 void put_pages_list(struct list_head *pages);
648
649 void split_page(struct page *page, unsigned int order);
650
651 /*
652 * Compound pages have a destructor function. Provide a
653 * prototype for that function and accessor functions.
654 * These are _only_ valid on the head of a compound page.
655 */
656 typedef void compound_page_dtor(struct page *);
657
658 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
659 enum compound_dtor_id {
660 NULL_COMPOUND_DTOR,
661 COMPOUND_PAGE_DTOR,
662 #ifdef CONFIG_HUGETLB_PAGE
663 HUGETLB_PAGE_DTOR,
664 #endif
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 TRANSHUGE_PAGE_DTOR,
667 #endif
668 NR_COMPOUND_DTORS,
669 };
670 extern compound_page_dtor * const compound_page_dtors[];
671
672 static inline void set_compound_page_dtor(struct page *page,
673 enum compound_dtor_id compound_dtor)
674 {
675 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
676 page[1].compound_dtor = compound_dtor;
677 }
678
679 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
680 {
681 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
682 return compound_page_dtors[page[1].compound_dtor];
683 }
684
685 static inline unsigned int compound_order(struct page *page)
686 {
687 if (!PageHead(page))
688 return 0;
689 return page[1].compound_order;
690 }
691
692 static inline void set_compound_order(struct page *page, unsigned int order)
693 {
694 page[1].compound_order = order;
695 }
696
697 void free_compound_page(struct page *page);
698
699 #ifdef CONFIG_MMU
700 /*
701 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
702 * servicing faults for write access. In the normal case, do always want
703 * pte_mkwrite. But get_user_pages can cause write faults for mappings
704 * that do not have writing enabled, when used by access_process_vm.
705 */
706 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
707 {
708 if (likely(vma->vm_flags & VM_WRITE))
709 pte = pte_mkwrite(pte);
710 return pte;
711 }
712
713 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
714 struct page *page);
715 int finish_fault(struct vm_fault *vmf);
716 int finish_mkwrite_fault(struct vm_fault *vmf);
717 #endif
718
719 /*
720 * Multiple processes may "see" the same page. E.g. for untouched
721 * mappings of /dev/null, all processes see the same page full of
722 * zeroes, and text pages of executables and shared libraries have
723 * only one copy in memory, at most, normally.
724 *
725 * For the non-reserved pages, page_count(page) denotes a reference count.
726 * page_count() == 0 means the page is free. page->lru is then used for
727 * freelist management in the buddy allocator.
728 * page_count() > 0 means the page has been allocated.
729 *
730 * Pages are allocated by the slab allocator in order to provide memory
731 * to kmalloc and kmem_cache_alloc. In this case, the management of the
732 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
733 * unless a particular usage is carefully commented. (the responsibility of
734 * freeing the kmalloc memory is the caller's, of course).
735 *
736 * A page may be used by anyone else who does a __get_free_page().
737 * In this case, page_count still tracks the references, and should only
738 * be used through the normal accessor functions. The top bits of page->flags
739 * and page->virtual store page management information, but all other fields
740 * are unused and could be used privately, carefully. The management of this
741 * page is the responsibility of the one who allocated it, and those who have
742 * subsequently been given references to it.
743 *
744 * The other pages (we may call them "pagecache pages") are completely
745 * managed by the Linux memory manager: I/O, buffers, swapping etc.
746 * The following discussion applies only to them.
747 *
748 * A pagecache page contains an opaque `private' member, which belongs to the
749 * page's address_space. Usually, this is the address of a circular list of
750 * the page's disk buffers. PG_private must be set to tell the VM to call
751 * into the filesystem to release these pages.
752 *
753 * A page may belong to an inode's memory mapping. In this case, page->mapping
754 * is the pointer to the inode, and page->index is the file offset of the page,
755 * in units of PAGE_SIZE.
756 *
757 * If pagecache pages are not associated with an inode, they are said to be
758 * anonymous pages. These may become associated with the swapcache, and in that
759 * case PG_swapcache is set, and page->private is an offset into the swapcache.
760 *
761 * In either case (swapcache or inode backed), the pagecache itself holds one
762 * reference to the page. Setting PG_private should also increment the
763 * refcount. The each user mapping also has a reference to the page.
764 *
765 * The pagecache pages are stored in a per-mapping radix tree, which is
766 * rooted at mapping->i_pages, and indexed by offset.
767 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
768 * lists, we instead now tag pages as dirty/writeback in the radix tree.
769 *
770 * All pagecache pages may be subject to I/O:
771 * - inode pages may need to be read from disk,
772 * - inode pages which have been modified and are MAP_SHARED may need
773 * to be written back to the inode on disk,
774 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
775 * modified may need to be swapped out to swap space and (later) to be read
776 * back into memory.
777 */
778
779 /*
780 * The zone field is never updated after free_area_init_core()
781 * sets it, so none of the operations on it need to be atomic.
782 */
783
784 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
785 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
786 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
787 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
788 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
789
790 /*
791 * Define the bit shifts to access each section. For non-existent
792 * sections we define the shift as 0; that plus a 0 mask ensures
793 * the compiler will optimise away reference to them.
794 */
795 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
796 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
797 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
798 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
799
800 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
801 #ifdef NODE_NOT_IN_PAGE_FLAGS
802 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
803 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
804 SECTIONS_PGOFF : ZONES_PGOFF)
805 #else
806 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
807 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
808 NODES_PGOFF : ZONES_PGOFF)
809 #endif
810
811 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
812
813 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
814 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
815 #endif
816
817 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
818 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
819 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
820 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
821 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
822
823 static inline enum zone_type page_zonenum(const struct page *page)
824 {
825 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
826 }
827
828 #ifdef CONFIG_ZONE_DEVICE
829 static inline bool is_zone_device_page(const struct page *page)
830 {
831 return page_zonenum(page) == ZONE_DEVICE;
832 }
833 #else
834 static inline bool is_zone_device_page(const struct page *page)
835 {
836 return false;
837 }
838 #endif
839
840 #ifdef CONFIG_DEV_PAGEMAP_OPS
841 void dev_pagemap_get_ops(void);
842 void dev_pagemap_put_ops(void);
843 void __put_devmap_managed_page(struct page *page);
844 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
845 static inline bool put_devmap_managed_page(struct page *page)
846 {
847 if (!static_branch_unlikely(&devmap_managed_key))
848 return false;
849 if (!is_zone_device_page(page))
850 return false;
851 switch (page->pgmap->type) {
852 case MEMORY_DEVICE_PRIVATE:
853 case MEMORY_DEVICE_PUBLIC:
854 case MEMORY_DEVICE_FS_DAX:
855 __put_devmap_managed_page(page);
856 return true;
857 default:
858 break;
859 }
860 return false;
861 }
862
863 static inline bool is_device_private_page(const struct page *page)
864 {
865 return is_zone_device_page(page) &&
866 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
867 }
868
869 static inline bool is_device_public_page(const struct page *page)
870 {
871 return is_zone_device_page(page) &&
872 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
873 }
874
875 #else /* CONFIG_DEV_PAGEMAP_OPS */
876 static inline void dev_pagemap_get_ops(void)
877 {
878 }
879
880 static inline void dev_pagemap_put_ops(void)
881 {
882 }
883
884 static inline bool put_devmap_managed_page(struct page *page)
885 {
886 return false;
887 }
888
889 static inline bool is_device_private_page(const struct page *page)
890 {
891 return false;
892 }
893
894 static inline bool is_device_public_page(const struct page *page)
895 {
896 return false;
897 }
898 #endif /* CONFIG_DEV_PAGEMAP_OPS */
899
900 static inline void get_page(struct page *page)
901 {
902 page = compound_head(page);
903 /*
904 * Getting a normal page or the head of a compound page
905 * requires to already have an elevated page->_refcount.
906 */
907 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
908 page_ref_inc(page);
909 }
910
911 static inline void put_page(struct page *page)
912 {
913 page = compound_head(page);
914
915 /*
916 * For devmap managed pages we need to catch refcount transition from
917 * 2 to 1, when refcount reach one it means the page is free and we
918 * need to inform the device driver through callback. See
919 * include/linux/memremap.h and HMM for details.
920 */
921 if (put_devmap_managed_page(page))
922 return;
923
924 if (put_page_testzero(page))
925 __put_page(page);
926 }
927
928 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
929 #define SECTION_IN_PAGE_FLAGS
930 #endif
931
932 /*
933 * The identification function is mainly used by the buddy allocator for
934 * determining if two pages could be buddies. We are not really identifying
935 * the zone since we could be using the section number id if we do not have
936 * node id available in page flags.
937 * We only guarantee that it will return the same value for two combinable
938 * pages in a zone.
939 */
940 static inline int page_zone_id(struct page *page)
941 {
942 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
943 }
944
945 static inline int zone_to_nid(struct zone *zone)
946 {
947 #ifdef CONFIG_NUMA
948 return zone->node;
949 #else
950 return 0;
951 #endif
952 }
953
954 #ifdef NODE_NOT_IN_PAGE_FLAGS
955 extern int page_to_nid(const struct page *page);
956 #else
957 static inline int page_to_nid(const struct page *page)
958 {
959 struct page *p = (struct page *)page;
960
961 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
962 }
963 #endif
964
965 #ifdef CONFIG_NUMA_BALANCING
966 static inline int cpu_pid_to_cpupid(int cpu, int pid)
967 {
968 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
969 }
970
971 static inline int cpupid_to_pid(int cpupid)
972 {
973 return cpupid & LAST__PID_MASK;
974 }
975
976 static inline int cpupid_to_cpu(int cpupid)
977 {
978 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
979 }
980
981 static inline int cpupid_to_nid(int cpupid)
982 {
983 return cpu_to_node(cpupid_to_cpu(cpupid));
984 }
985
986 static inline bool cpupid_pid_unset(int cpupid)
987 {
988 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
989 }
990
991 static inline bool cpupid_cpu_unset(int cpupid)
992 {
993 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
994 }
995
996 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
997 {
998 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
999 }
1000
1001 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1002 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1003 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1004 {
1005 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1006 }
1007
1008 static inline int page_cpupid_last(struct page *page)
1009 {
1010 return page->_last_cpupid;
1011 }
1012 static inline void page_cpupid_reset_last(struct page *page)
1013 {
1014 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1015 }
1016 #else
1017 static inline int page_cpupid_last(struct page *page)
1018 {
1019 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1020 }
1021
1022 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1023
1024 static inline void page_cpupid_reset_last(struct page *page)
1025 {
1026 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1027 }
1028 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1029 #else /* !CONFIG_NUMA_BALANCING */
1030 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1031 {
1032 return page_to_nid(page); /* XXX */
1033 }
1034
1035 static inline int page_cpupid_last(struct page *page)
1036 {
1037 return page_to_nid(page); /* XXX */
1038 }
1039
1040 static inline int cpupid_to_nid(int cpupid)
1041 {
1042 return -1;
1043 }
1044
1045 static inline int cpupid_to_pid(int cpupid)
1046 {
1047 return -1;
1048 }
1049
1050 static inline int cpupid_to_cpu(int cpupid)
1051 {
1052 return -1;
1053 }
1054
1055 static inline int cpu_pid_to_cpupid(int nid, int pid)
1056 {
1057 return -1;
1058 }
1059
1060 static inline bool cpupid_pid_unset(int cpupid)
1061 {
1062 return 1;
1063 }
1064
1065 static inline void page_cpupid_reset_last(struct page *page)
1066 {
1067 }
1068
1069 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1070 {
1071 return false;
1072 }
1073 #endif /* CONFIG_NUMA_BALANCING */
1074
1075 static inline struct zone *page_zone(const struct page *page)
1076 {
1077 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1078 }
1079
1080 static inline pg_data_t *page_pgdat(const struct page *page)
1081 {
1082 return NODE_DATA(page_to_nid(page));
1083 }
1084
1085 #ifdef SECTION_IN_PAGE_FLAGS
1086 static inline void set_page_section(struct page *page, unsigned long section)
1087 {
1088 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1089 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1090 }
1091
1092 static inline unsigned long page_to_section(const struct page *page)
1093 {
1094 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1095 }
1096 #endif
1097
1098 static inline void set_page_zone(struct page *page, enum zone_type zone)
1099 {
1100 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1101 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1102 }
1103
1104 static inline void set_page_node(struct page *page, unsigned long node)
1105 {
1106 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1107 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1108 }
1109
1110 static inline void set_page_links(struct page *page, enum zone_type zone,
1111 unsigned long node, unsigned long pfn)
1112 {
1113 set_page_zone(page, zone);
1114 set_page_node(page, node);
1115 #ifdef SECTION_IN_PAGE_FLAGS
1116 set_page_section(page, pfn_to_section_nr(pfn));
1117 #endif
1118 }
1119
1120 #ifdef CONFIG_MEMCG
1121 static inline struct mem_cgroup *page_memcg(struct page *page)
1122 {
1123 return page->mem_cgroup;
1124 }
1125 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1126 {
1127 WARN_ON_ONCE(!rcu_read_lock_held());
1128 return READ_ONCE(page->mem_cgroup);
1129 }
1130 #else
1131 static inline struct mem_cgroup *page_memcg(struct page *page)
1132 {
1133 return NULL;
1134 }
1135 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1136 {
1137 WARN_ON_ONCE(!rcu_read_lock_held());
1138 return NULL;
1139 }
1140 #endif
1141
1142 /*
1143 * Some inline functions in vmstat.h depend on page_zone()
1144 */
1145 #include <linux/vmstat.h>
1146
1147 static __always_inline void *lowmem_page_address(const struct page *page)
1148 {
1149 return page_to_virt(page);
1150 }
1151
1152 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1153 #define HASHED_PAGE_VIRTUAL
1154 #endif
1155
1156 #if defined(WANT_PAGE_VIRTUAL)
1157 static inline void *page_address(const struct page *page)
1158 {
1159 return page->virtual;
1160 }
1161 static inline void set_page_address(struct page *page, void *address)
1162 {
1163 page->virtual = address;
1164 }
1165 #define page_address_init() do { } while(0)
1166 #endif
1167
1168 #if defined(HASHED_PAGE_VIRTUAL)
1169 void *page_address(const struct page *page);
1170 void set_page_address(struct page *page, void *virtual);
1171 void page_address_init(void);
1172 #endif
1173
1174 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1175 #define page_address(page) lowmem_page_address(page)
1176 #define set_page_address(page, address) do { } while(0)
1177 #define page_address_init() do { } while(0)
1178 #endif
1179
1180 extern void *page_rmapping(struct page *page);
1181 extern struct anon_vma *page_anon_vma(struct page *page);
1182 extern struct address_space *page_mapping(struct page *page);
1183
1184 extern struct address_space *__page_file_mapping(struct page *);
1185
1186 static inline
1187 struct address_space *page_file_mapping(struct page *page)
1188 {
1189 if (unlikely(PageSwapCache(page)))
1190 return __page_file_mapping(page);
1191
1192 return page->mapping;
1193 }
1194
1195 extern pgoff_t __page_file_index(struct page *page);
1196
1197 /*
1198 * Return the pagecache index of the passed page. Regular pagecache pages
1199 * use ->index whereas swapcache pages use swp_offset(->private)
1200 */
1201 static inline pgoff_t page_index(struct page *page)
1202 {
1203 if (unlikely(PageSwapCache(page)))
1204 return __page_file_index(page);
1205 return page->index;
1206 }
1207
1208 bool page_mapped(struct page *page);
1209 struct address_space *page_mapping(struct page *page);
1210 struct address_space *page_mapping_file(struct page *page);
1211
1212 /*
1213 * Return true only if the page has been allocated with
1214 * ALLOC_NO_WATERMARKS and the low watermark was not
1215 * met implying that the system is under some pressure.
1216 */
1217 static inline bool page_is_pfmemalloc(struct page *page)
1218 {
1219 /*
1220 * Page index cannot be this large so this must be
1221 * a pfmemalloc page.
1222 */
1223 return page->index == -1UL;
1224 }
1225
1226 /*
1227 * Only to be called by the page allocator on a freshly allocated
1228 * page.
1229 */
1230 static inline void set_page_pfmemalloc(struct page *page)
1231 {
1232 page->index = -1UL;
1233 }
1234
1235 static inline void clear_page_pfmemalloc(struct page *page)
1236 {
1237 page->index = 0;
1238 }
1239
1240 /*
1241 * Different kinds of faults, as returned by handle_mm_fault().
1242 * Used to decide whether a process gets delivered SIGBUS or
1243 * just gets major/minor fault counters bumped up.
1244 */
1245
1246 #define VM_FAULT_OOM 0x0001
1247 #define VM_FAULT_SIGBUS 0x0002
1248 #define VM_FAULT_MAJOR 0x0004
1249 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1250 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1251 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1252 #define VM_FAULT_SIGSEGV 0x0040
1253
1254 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1255 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1256 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1257 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1258 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1259 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1260 * and needs fsync() to complete (for
1261 * synchronous page faults in DAX) */
1262
1263 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1264 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1265 VM_FAULT_FALLBACK)
1266
1267 #define VM_FAULT_RESULT_TRACE \
1268 { VM_FAULT_OOM, "OOM" }, \
1269 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1270 { VM_FAULT_MAJOR, "MAJOR" }, \
1271 { VM_FAULT_WRITE, "WRITE" }, \
1272 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1273 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1274 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1275 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1276 { VM_FAULT_LOCKED, "LOCKED" }, \
1277 { VM_FAULT_RETRY, "RETRY" }, \
1278 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1279 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1280 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1281
1282 /* Encode hstate index for a hwpoisoned large page */
1283 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1284 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1285
1286 /*
1287 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1288 */
1289 extern void pagefault_out_of_memory(void);
1290
1291 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1292
1293 /*
1294 * Flags passed to show_mem() and show_free_areas() to suppress output in
1295 * various contexts.
1296 */
1297 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1298
1299 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1300
1301 extern bool can_do_mlock(void);
1302 extern int user_shm_lock(size_t, struct user_struct *);
1303 extern void user_shm_unlock(size_t, struct user_struct *);
1304
1305 /*
1306 * Parameter block passed down to zap_pte_range in exceptional cases.
1307 */
1308 struct zap_details {
1309 struct address_space *check_mapping; /* Check page->mapping if set */
1310 pgoff_t first_index; /* Lowest page->index to unmap */
1311 pgoff_t last_index; /* Highest page->index to unmap */
1312 };
1313
1314 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1315 pte_t pte, bool with_public_device);
1316 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1317
1318 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1319 pmd_t pmd);
1320
1321 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1322 unsigned long size);
1323 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1324 unsigned long size);
1325 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1326 unsigned long start, unsigned long end);
1327
1328 /**
1329 * mm_walk - callbacks for walk_page_range
1330 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1331 * this handler should only handle pud_trans_huge() puds.
1332 * the pmd_entry or pte_entry callbacks will be used for
1333 * regular PUDs.
1334 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1335 * this handler is required to be able to handle
1336 * pmd_trans_huge() pmds. They may simply choose to
1337 * split_huge_page() instead of handling it explicitly.
1338 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1339 * @pte_hole: if set, called for each hole at all levels
1340 * @hugetlb_entry: if set, called for each hugetlb entry
1341 * @test_walk: caller specific callback function to determine whether
1342 * we walk over the current vma or not. Returning 0
1343 * value means "do page table walk over the current vma,"
1344 * and a negative one means "abort current page table walk
1345 * right now." 1 means "skip the current vma."
1346 * @mm: mm_struct representing the target process of page table walk
1347 * @vma: vma currently walked (NULL if walking outside vmas)
1348 * @private: private data for callbacks' usage
1349 *
1350 * (see the comment on walk_page_range() for more details)
1351 */
1352 struct mm_walk {
1353 int (*pud_entry)(pud_t *pud, unsigned long addr,
1354 unsigned long next, struct mm_walk *walk);
1355 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1356 unsigned long next, struct mm_walk *walk);
1357 int (*pte_entry)(pte_t *pte, unsigned long addr,
1358 unsigned long next, struct mm_walk *walk);
1359 int (*pte_hole)(unsigned long addr, unsigned long next,
1360 struct mm_walk *walk);
1361 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1362 unsigned long addr, unsigned long next,
1363 struct mm_walk *walk);
1364 int (*test_walk)(unsigned long addr, unsigned long next,
1365 struct mm_walk *walk);
1366 struct mm_struct *mm;
1367 struct vm_area_struct *vma;
1368 void *private;
1369 };
1370
1371 int walk_page_range(unsigned long addr, unsigned long end,
1372 struct mm_walk *walk);
1373 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1374 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1375 unsigned long end, unsigned long floor, unsigned long ceiling);
1376 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1377 struct vm_area_struct *vma);
1378 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1379 unsigned long *start, unsigned long *end,
1380 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1381 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1382 unsigned long *pfn);
1383 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1384 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1385 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1386 void *buf, int len, int write);
1387
1388 extern void truncate_pagecache(struct inode *inode, loff_t new);
1389 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1390 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1391 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1392 int truncate_inode_page(struct address_space *mapping, struct page *page);
1393 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1394 int invalidate_inode_page(struct page *page);
1395
1396 #ifdef CONFIG_MMU
1397 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1398 unsigned int flags);
1399 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1400 unsigned long address, unsigned int fault_flags,
1401 bool *unlocked);
1402 void unmap_mapping_pages(struct address_space *mapping,
1403 pgoff_t start, pgoff_t nr, bool even_cows);
1404 void unmap_mapping_range(struct address_space *mapping,
1405 loff_t const holebegin, loff_t const holelen, int even_cows);
1406 #else
1407 static inline int handle_mm_fault(struct vm_area_struct *vma,
1408 unsigned long address, unsigned int flags)
1409 {
1410 /* should never happen if there's no MMU */
1411 BUG();
1412 return VM_FAULT_SIGBUS;
1413 }
1414 static inline int fixup_user_fault(struct task_struct *tsk,
1415 struct mm_struct *mm, unsigned long address,
1416 unsigned int fault_flags, bool *unlocked)
1417 {
1418 /* should never happen if there's no MMU */
1419 BUG();
1420 return -EFAULT;
1421 }
1422 static inline void unmap_mapping_pages(struct address_space *mapping,
1423 pgoff_t start, pgoff_t nr, bool even_cows) { }
1424 static inline void unmap_mapping_range(struct address_space *mapping,
1425 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1426 #endif
1427
1428 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1429 loff_t const holebegin, loff_t const holelen)
1430 {
1431 unmap_mapping_range(mapping, holebegin, holelen, 0);
1432 }
1433
1434 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1435 void *buf, int len, unsigned int gup_flags);
1436 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1437 void *buf, int len, unsigned int gup_flags);
1438 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1439 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1440
1441 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1442 unsigned long start, unsigned long nr_pages,
1443 unsigned int gup_flags, struct page **pages,
1444 struct vm_area_struct **vmas, int *locked);
1445 long get_user_pages(unsigned long start, unsigned long nr_pages,
1446 unsigned int gup_flags, struct page **pages,
1447 struct vm_area_struct **vmas);
1448 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1449 unsigned int gup_flags, struct page **pages, int *locked);
1450 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1451 struct page **pages, unsigned int gup_flags);
1452 #ifdef CONFIG_FS_DAX
1453 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1454 unsigned int gup_flags, struct page **pages,
1455 struct vm_area_struct **vmas);
1456 #else
1457 static inline long get_user_pages_longterm(unsigned long start,
1458 unsigned long nr_pages, unsigned int gup_flags,
1459 struct page **pages, struct vm_area_struct **vmas)
1460 {
1461 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1462 }
1463 #endif /* CONFIG_FS_DAX */
1464
1465 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1466 struct page **pages);
1467
1468 /* Container for pinned pfns / pages */
1469 struct frame_vector {
1470 unsigned int nr_allocated; /* Number of frames we have space for */
1471 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1472 bool got_ref; /* Did we pin pages by getting page ref? */
1473 bool is_pfns; /* Does array contain pages or pfns? */
1474 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1475 * pfns_vector_pages() or pfns_vector_pfns()
1476 * for access */
1477 };
1478
1479 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1480 void frame_vector_destroy(struct frame_vector *vec);
1481 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1482 unsigned int gup_flags, struct frame_vector *vec);
1483 void put_vaddr_frames(struct frame_vector *vec);
1484 int frame_vector_to_pages(struct frame_vector *vec);
1485 void frame_vector_to_pfns(struct frame_vector *vec);
1486
1487 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1488 {
1489 return vec->nr_frames;
1490 }
1491
1492 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1493 {
1494 if (vec->is_pfns) {
1495 int err = frame_vector_to_pages(vec);
1496
1497 if (err)
1498 return ERR_PTR(err);
1499 }
1500 return (struct page **)(vec->ptrs);
1501 }
1502
1503 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1504 {
1505 if (!vec->is_pfns)
1506 frame_vector_to_pfns(vec);
1507 return (unsigned long *)(vec->ptrs);
1508 }
1509
1510 struct kvec;
1511 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1512 struct page **pages);
1513 int get_kernel_page(unsigned long start, int write, struct page **pages);
1514 struct page *get_dump_page(unsigned long addr);
1515
1516 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1517 extern void do_invalidatepage(struct page *page, unsigned int offset,
1518 unsigned int length);
1519
1520 void __set_page_dirty(struct page *, struct address_space *, int warn);
1521 int __set_page_dirty_nobuffers(struct page *page);
1522 int __set_page_dirty_no_writeback(struct page *page);
1523 int redirty_page_for_writepage(struct writeback_control *wbc,
1524 struct page *page);
1525 void account_page_dirtied(struct page *page, struct address_space *mapping);
1526 void account_page_cleaned(struct page *page, struct address_space *mapping,
1527 struct bdi_writeback *wb);
1528 int set_page_dirty(struct page *page);
1529 int set_page_dirty_lock(struct page *page);
1530 void __cancel_dirty_page(struct page *page);
1531 static inline void cancel_dirty_page(struct page *page)
1532 {
1533 /* Avoid atomic ops, locking, etc. when not actually needed. */
1534 if (PageDirty(page))
1535 __cancel_dirty_page(page);
1536 }
1537 int clear_page_dirty_for_io(struct page *page);
1538
1539 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1540
1541 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1542 {
1543 return !vma->vm_ops;
1544 }
1545
1546 #ifdef CONFIG_SHMEM
1547 /*
1548 * The vma_is_shmem is not inline because it is used only by slow
1549 * paths in userfault.
1550 */
1551 bool vma_is_shmem(struct vm_area_struct *vma);
1552 #else
1553 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1554 #endif
1555
1556 int vma_is_stack_for_current(struct vm_area_struct *vma);
1557
1558 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1559 unsigned long old_addr, struct vm_area_struct *new_vma,
1560 unsigned long new_addr, unsigned long len,
1561 bool need_rmap_locks);
1562 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1563 unsigned long end, pgprot_t newprot,
1564 int dirty_accountable, int prot_numa);
1565 extern int mprotect_fixup(struct vm_area_struct *vma,
1566 struct vm_area_struct **pprev, unsigned long start,
1567 unsigned long end, unsigned long newflags);
1568
1569 /*
1570 * doesn't attempt to fault and will return short.
1571 */
1572 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1573 struct page **pages);
1574 /*
1575 * per-process(per-mm_struct) statistics.
1576 */
1577 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1578 {
1579 long val = atomic_long_read(&mm->rss_stat.count[member]);
1580
1581 #ifdef SPLIT_RSS_COUNTING
1582 /*
1583 * counter is updated in asynchronous manner and may go to minus.
1584 * But it's never be expected number for users.
1585 */
1586 if (val < 0)
1587 val = 0;
1588 #endif
1589 return (unsigned long)val;
1590 }
1591
1592 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1593 {
1594 atomic_long_add(value, &mm->rss_stat.count[member]);
1595 }
1596
1597 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1598 {
1599 atomic_long_inc(&mm->rss_stat.count[member]);
1600 }
1601
1602 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1603 {
1604 atomic_long_dec(&mm->rss_stat.count[member]);
1605 }
1606
1607 /* Optimized variant when page is already known not to be PageAnon */
1608 static inline int mm_counter_file(struct page *page)
1609 {
1610 if (PageSwapBacked(page))
1611 return MM_SHMEMPAGES;
1612 return MM_FILEPAGES;
1613 }
1614
1615 static inline int mm_counter(struct page *page)
1616 {
1617 if (PageAnon(page))
1618 return MM_ANONPAGES;
1619 return mm_counter_file(page);
1620 }
1621
1622 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1623 {
1624 return get_mm_counter(mm, MM_FILEPAGES) +
1625 get_mm_counter(mm, MM_ANONPAGES) +
1626 get_mm_counter(mm, MM_SHMEMPAGES);
1627 }
1628
1629 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1630 {
1631 return max(mm->hiwater_rss, get_mm_rss(mm));
1632 }
1633
1634 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1635 {
1636 return max(mm->hiwater_vm, mm->total_vm);
1637 }
1638
1639 static inline void update_hiwater_rss(struct mm_struct *mm)
1640 {
1641 unsigned long _rss = get_mm_rss(mm);
1642
1643 if ((mm)->hiwater_rss < _rss)
1644 (mm)->hiwater_rss = _rss;
1645 }
1646
1647 static inline void update_hiwater_vm(struct mm_struct *mm)
1648 {
1649 if (mm->hiwater_vm < mm->total_vm)
1650 mm->hiwater_vm = mm->total_vm;
1651 }
1652
1653 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1654 {
1655 mm->hiwater_rss = get_mm_rss(mm);
1656 }
1657
1658 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1659 struct mm_struct *mm)
1660 {
1661 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1662
1663 if (*maxrss < hiwater_rss)
1664 *maxrss = hiwater_rss;
1665 }
1666
1667 #if defined(SPLIT_RSS_COUNTING)
1668 void sync_mm_rss(struct mm_struct *mm);
1669 #else
1670 static inline void sync_mm_rss(struct mm_struct *mm)
1671 {
1672 }
1673 #endif
1674
1675 #ifndef __HAVE_ARCH_PTE_DEVMAP
1676 static inline int pte_devmap(pte_t pte)
1677 {
1678 return 0;
1679 }
1680 #endif
1681
1682 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1683
1684 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1685 spinlock_t **ptl);
1686 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1687 spinlock_t **ptl)
1688 {
1689 pte_t *ptep;
1690 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1691 return ptep;
1692 }
1693
1694 #ifdef __PAGETABLE_P4D_FOLDED
1695 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1696 unsigned long address)
1697 {
1698 return 0;
1699 }
1700 #else
1701 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1702 #endif
1703
1704 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1705 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1706 unsigned long address)
1707 {
1708 return 0;
1709 }
1710 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1711 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1712
1713 #else
1714 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1715
1716 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1717 {
1718 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1719 }
1720
1721 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1722 {
1723 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1724 }
1725 #endif
1726
1727 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1728 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1729 unsigned long address)
1730 {
1731 return 0;
1732 }
1733
1734 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1735 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1736
1737 #else
1738 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1739
1740 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1741 {
1742 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1743 }
1744
1745 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1746 {
1747 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1748 }
1749 #endif
1750
1751 #ifdef CONFIG_MMU
1752 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1753 {
1754 atomic_long_set(&mm->pgtables_bytes, 0);
1755 }
1756
1757 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1758 {
1759 return atomic_long_read(&mm->pgtables_bytes);
1760 }
1761
1762 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1763 {
1764 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1765 }
1766
1767 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1768 {
1769 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1770 }
1771 #else
1772
1773 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1774 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1775 {
1776 return 0;
1777 }
1778
1779 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1780 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1781 #endif
1782
1783 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1784 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1785
1786 /*
1787 * The following ifdef needed to get the 4level-fixup.h header to work.
1788 * Remove it when 4level-fixup.h has been removed.
1789 */
1790 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1791
1792 #ifndef __ARCH_HAS_5LEVEL_HACK
1793 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1794 unsigned long address)
1795 {
1796 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1797 NULL : p4d_offset(pgd, address);
1798 }
1799
1800 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1801 unsigned long address)
1802 {
1803 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1804 NULL : pud_offset(p4d, address);
1805 }
1806 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1807
1808 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1809 {
1810 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1811 NULL: pmd_offset(pud, address);
1812 }
1813 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1814
1815 #if USE_SPLIT_PTE_PTLOCKS
1816 #if ALLOC_SPLIT_PTLOCKS
1817 void __init ptlock_cache_init(void);
1818 extern bool ptlock_alloc(struct page *page);
1819 extern void ptlock_free(struct page *page);
1820
1821 static inline spinlock_t *ptlock_ptr(struct page *page)
1822 {
1823 return page->ptl;
1824 }
1825 #else /* ALLOC_SPLIT_PTLOCKS */
1826 static inline void ptlock_cache_init(void)
1827 {
1828 }
1829
1830 static inline bool ptlock_alloc(struct page *page)
1831 {
1832 return true;
1833 }
1834
1835 static inline void ptlock_free(struct page *page)
1836 {
1837 }
1838
1839 static inline spinlock_t *ptlock_ptr(struct page *page)
1840 {
1841 return &page->ptl;
1842 }
1843 #endif /* ALLOC_SPLIT_PTLOCKS */
1844
1845 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1846 {
1847 return ptlock_ptr(pmd_page(*pmd));
1848 }
1849
1850 static inline bool ptlock_init(struct page *page)
1851 {
1852 /*
1853 * prep_new_page() initialize page->private (and therefore page->ptl)
1854 * with 0. Make sure nobody took it in use in between.
1855 *
1856 * It can happen if arch try to use slab for page table allocation:
1857 * slab code uses page->slab_cache, which share storage with page->ptl.
1858 */
1859 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1860 if (!ptlock_alloc(page))
1861 return false;
1862 spin_lock_init(ptlock_ptr(page));
1863 return true;
1864 }
1865
1866 /* Reset page->mapping so free_pages_check won't complain. */
1867 static inline void pte_lock_deinit(struct page *page)
1868 {
1869 page->mapping = NULL;
1870 ptlock_free(page);
1871 }
1872
1873 #else /* !USE_SPLIT_PTE_PTLOCKS */
1874 /*
1875 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1876 */
1877 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1878 {
1879 return &mm->page_table_lock;
1880 }
1881 static inline void ptlock_cache_init(void) {}
1882 static inline bool ptlock_init(struct page *page) { return true; }
1883 static inline void pte_lock_deinit(struct page *page) {}
1884 #endif /* USE_SPLIT_PTE_PTLOCKS */
1885
1886 static inline void pgtable_init(void)
1887 {
1888 ptlock_cache_init();
1889 pgtable_cache_init();
1890 }
1891
1892 static inline bool pgtable_page_ctor(struct page *page)
1893 {
1894 if (!ptlock_init(page))
1895 return false;
1896 __SetPageTable(page);
1897 inc_zone_page_state(page, NR_PAGETABLE);
1898 return true;
1899 }
1900
1901 static inline void pgtable_page_dtor(struct page *page)
1902 {
1903 pte_lock_deinit(page);
1904 __ClearPageTable(page);
1905 dec_zone_page_state(page, NR_PAGETABLE);
1906 }
1907
1908 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1909 ({ \
1910 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1911 pte_t *__pte = pte_offset_map(pmd, address); \
1912 *(ptlp) = __ptl; \
1913 spin_lock(__ptl); \
1914 __pte; \
1915 })
1916
1917 #define pte_unmap_unlock(pte, ptl) do { \
1918 spin_unlock(ptl); \
1919 pte_unmap(pte); \
1920 } while (0)
1921
1922 #define pte_alloc(mm, pmd, address) \
1923 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1924
1925 #define pte_alloc_map(mm, pmd, address) \
1926 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1927
1928 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1929 (pte_alloc(mm, pmd, address) ? \
1930 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1931
1932 #define pte_alloc_kernel(pmd, address) \
1933 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1934 NULL: pte_offset_kernel(pmd, address))
1935
1936 #if USE_SPLIT_PMD_PTLOCKS
1937
1938 static struct page *pmd_to_page(pmd_t *pmd)
1939 {
1940 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1941 return virt_to_page((void *)((unsigned long) pmd & mask));
1942 }
1943
1944 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1945 {
1946 return ptlock_ptr(pmd_to_page(pmd));
1947 }
1948
1949 static inline bool pgtable_pmd_page_ctor(struct page *page)
1950 {
1951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1952 page->pmd_huge_pte = NULL;
1953 #endif
1954 return ptlock_init(page);
1955 }
1956
1957 static inline void pgtable_pmd_page_dtor(struct page *page)
1958 {
1959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1960 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1961 #endif
1962 ptlock_free(page);
1963 }
1964
1965 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1966
1967 #else
1968
1969 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1970 {
1971 return &mm->page_table_lock;
1972 }
1973
1974 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1975 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1976
1977 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1978
1979 #endif
1980
1981 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1982 {
1983 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1984 spin_lock(ptl);
1985 return ptl;
1986 }
1987
1988 /*
1989 * No scalability reason to split PUD locks yet, but follow the same pattern
1990 * as the PMD locks to make it easier if we decide to. The VM should not be
1991 * considered ready to switch to split PUD locks yet; there may be places
1992 * which need to be converted from page_table_lock.
1993 */
1994 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1995 {
1996 return &mm->page_table_lock;
1997 }
1998
1999 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2000 {
2001 spinlock_t *ptl = pud_lockptr(mm, pud);
2002
2003 spin_lock(ptl);
2004 return ptl;
2005 }
2006
2007 extern void __init pagecache_init(void);
2008 extern void free_area_init(unsigned long * zones_size);
2009 extern void free_area_init_node(int nid, unsigned long * zones_size,
2010 unsigned long zone_start_pfn, unsigned long *zholes_size);
2011 extern void free_initmem(void);
2012
2013 /*
2014 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2015 * into the buddy system. The freed pages will be poisoned with pattern
2016 * "poison" if it's within range [0, UCHAR_MAX].
2017 * Return pages freed into the buddy system.
2018 */
2019 extern unsigned long free_reserved_area(void *start, void *end,
2020 int poison, char *s);
2021
2022 #ifdef CONFIG_HIGHMEM
2023 /*
2024 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2025 * and totalram_pages.
2026 */
2027 extern void free_highmem_page(struct page *page);
2028 #endif
2029
2030 extern void adjust_managed_page_count(struct page *page, long count);
2031 extern void mem_init_print_info(const char *str);
2032
2033 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2034
2035 /* Free the reserved page into the buddy system, so it gets managed. */
2036 static inline void __free_reserved_page(struct page *page)
2037 {
2038 ClearPageReserved(page);
2039 init_page_count(page);
2040 __free_page(page);
2041 }
2042
2043 static inline void free_reserved_page(struct page *page)
2044 {
2045 __free_reserved_page(page);
2046 adjust_managed_page_count(page, 1);
2047 }
2048
2049 static inline void mark_page_reserved(struct page *page)
2050 {
2051 SetPageReserved(page);
2052 adjust_managed_page_count(page, -1);
2053 }
2054
2055 /*
2056 * Default method to free all the __init memory into the buddy system.
2057 * The freed pages will be poisoned with pattern "poison" if it's within
2058 * range [0, UCHAR_MAX].
2059 * Return pages freed into the buddy system.
2060 */
2061 static inline unsigned long free_initmem_default(int poison)
2062 {
2063 extern char __init_begin[], __init_end[];
2064
2065 return free_reserved_area(&__init_begin, &__init_end,
2066 poison, "unused kernel");
2067 }
2068
2069 static inline unsigned long get_num_physpages(void)
2070 {
2071 int nid;
2072 unsigned long phys_pages = 0;
2073
2074 for_each_online_node(nid)
2075 phys_pages += node_present_pages(nid);
2076
2077 return phys_pages;
2078 }
2079
2080 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2081 /*
2082 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2083 * zones, allocate the backing mem_map and account for memory holes in a more
2084 * architecture independent manner. This is a substitute for creating the
2085 * zone_sizes[] and zholes_size[] arrays and passing them to
2086 * free_area_init_node()
2087 *
2088 * An architecture is expected to register range of page frames backed by
2089 * physical memory with memblock_add[_node]() before calling
2090 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2091 * usage, an architecture is expected to do something like
2092 *
2093 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2094 * max_highmem_pfn};
2095 * for_each_valid_physical_page_range()
2096 * memblock_add_node(base, size, nid)
2097 * free_area_init_nodes(max_zone_pfns);
2098 *
2099 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2100 * registered physical page range. Similarly
2101 * sparse_memory_present_with_active_regions() calls memory_present() for
2102 * each range when SPARSEMEM is enabled.
2103 *
2104 * See mm/page_alloc.c for more information on each function exposed by
2105 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2106 */
2107 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2108 unsigned long node_map_pfn_alignment(void);
2109 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2110 unsigned long end_pfn);
2111 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2112 unsigned long end_pfn);
2113 extern void get_pfn_range_for_nid(unsigned int nid,
2114 unsigned long *start_pfn, unsigned long *end_pfn);
2115 extern unsigned long find_min_pfn_with_active_regions(void);
2116 extern void free_bootmem_with_active_regions(int nid,
2117 unsigned long max_low_pfn);
2118 extern void sparse_memory_present_with_active_regions(int nid);
2119
2120 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2121
2122 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2123 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2124 static inline int __early_pfn_to_nid(unsigned long pfn,
2125 struct mminit_pfnnid_cache *state)
2126 {
2127 return 0;
2128 }
2129 #else
2130 /* please see mm/page_alloc.c */
2131 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2132 /* there is a per-arch backend function. */
2133 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2134 struct mminit_pfnnid_cache *state);
2135 #endif
2136
2137 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
2138 void zero_resv_unavail(void);
2139 #else
2140 static inline void zero_resv_unavail(void) {}
2141 #endif
2142
2143 extern void set_dma_reserve(unsigned long new_dma_reserve);
2144 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2145 enum memmap_context, struct vmem_altmap *);
2146 extern void setup_per_zone_wmarks(void);
2147 extern int __meminit init_per_zone_wmark_min(void);
2148 extern void mem_init(void);
2149 extern void __init mmap_init(void);
2150 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2151 extern long si_mem_available(void);
2152 extern void si_meminfo(struct sysinfo * val);
2153 extern void si_meminfo_node(struct sysinfo *val, int nid);
2154 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2155 extern unsigned long arch_reserved_kernel_pages(void);
2156 #endif
2157
2158 extern __printf(3, 4)
2159 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2160
2161 extern void setup_per_cpu_pageset(void);
2162
2163 extern void zone_pcp_update(struct zone *zone);
2164 extern void zone_pcp_reset(struct zone *zone);
2165
2166 /* page_alloc.c */
2167 extern int min_free_kbytes;
2168 extern int watermark_scale_factor;
2169
2170 /* nommu.c */
2171 extern atomic_long_t mmap_pages_allocated;
2172 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2173
2174 /* interval_tree.c */
2175 void vma_interval_tree_insert(struct vm_area_struct *node,
2176 struct rb_root_cached *root);
2177 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2178 struct vm_area_struct *prev,
2179 struct rb_root_cached *root);
2180 void vma_interval_tree_remove(struct vm_area_struct *node,
2181 struct rb_root_cached *root);
2182 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2183 unsigned long start, unsigned long last);
2184 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2185 unsigned long start, unsigned long last);
2186
2187 #define vma_interval_tree_foreach(vma, root, start, last) \
2188 for (vma = vma_interval_tree_iter_first(root, start, last); \
2189 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2190
2191 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2192 struct rb_root_cached *root);
2193 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2194 struct rb_root_cached *root);
2195 struct anon_vma_chain *
2196 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2197 unsigned long start, unsigned long last);
2198 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2199 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2200 #ifdef CONFIG_DEBUG_VM_RB
2201 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2202 #endif
2203
2204 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2205 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2206 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2207
2208 /* mmap.c */
2209 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2210 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2211 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2212 struct vm_area_struct *expand);
2213 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2214 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2215 {
2216 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2217 }
2218 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2219 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2220 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2221 struct mempolicy *, struct vm_userfaultfd_ctx);
2222 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2223 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2224 unsigned long addr, int new_below);
2225 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2226 unsigned long addr, int new_below);
2227 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2228 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2229 struct rb_node **, struct rb_node *);
2230 extern void unlink_file_vma(struct vm_area_struct *);
2231 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2232 unsigned long addr, unsigned long len, pgoff_t pgoff,
2233 bool *need_rmap_locks);
2234 extern void exit_mmap(struct mm_struct *);
2235
2236 static inline int check_data_rlimit(unsigned long rlim,
2237 unsigned long new,
2238 unsigned long start,
2239 unsigned long end_data,
2240 unsigned long start_data)
2241 {
2242 if (rlim < RLIM_INFINITY) {
2243 if (((new - start) + (end_data - start_data)) > rlim)
2244 return -ENOSPC;
2245 }
2246
2247 return 0;
2248 }
2249
2250 extern int mm_take_all_locks(struct mm_struct *mm);
2251 extern void mm_drop_all_locks(struct mm_struct *mm);
2252
2253 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2254 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2255 extern struct file *get_task_exe_file(struct task_struct *task);
2256
2257 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2258 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2259
2260 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2261 const struct vm_special_mapping *sm);
2262 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2263 unsigned long addr, unsigned long len,
2264 unsigned long flags,
2265 const struct vm_special_mapping *spec);
2266 /* This is an obsolete alternative to _install_special_mapping. */
2267 extern int install_special_mapping(struct mm_struct *mm,
2268 unsigned long addr, unsigned long len,
2269 unsigned long flags, struct page **pages);
2270
2271 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2272
2273 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2274 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2275 struct list_head *uf);
2276 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2277 unsigned long len, unsigned long prot, unsigned long flags,
2278 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2279 struct list_head *uf);
2280 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2281 struct list_head *uf);
2282
2283 static inline unsigned long
2284 do_mmap_pgoff(struct file *file, unsigned long addr,
2285 unsigned long len, unsigned long prot, unsigned long flags,
2286 unsigned long pgoff, unsigned long *populate,
2287 struct list_head *uf)
2288 {
2289 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2290 }
2291
2292 #ifdef CONFIG_MMU
2293 extern int __mm_populate(unsigned long addr, unsigned long len,
2294 int ignore_errors);
2295 static inline void mm_populate(unsigned long addr, unsigned long len)
2296 {
2297 /* Ignore errors */
2298 (void) __mm_populate(addr, len, 1);
2299 }
2300 #else
2301 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2302 #endif
2303
2304 /* These take the mm semaphore themselves */
2305 extern int __must_check vm_brk(unsigned long, unsigned long);
2306 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2307 extern int vm_munmap(unsigned long, size_t);
2308 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2309 unsigned long, unsigned long,
2310 unsigned long, unsigned long);
2311
2312 struct vm_unmapped_area_info {
2313 #define VM_UNMAPPED_AREA_TOPDOWN 1
2314 unsigned long flags;
2315 unsigned long length;
2316 unsigned long low_limit;
2317 unsigned long high_limit;
2318 unsigned long align_mask;
2319 unsigned long align_offset;
2320 };
2321
2322 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2323 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2324
2325 /*
2326 * Search for an unmapped address range.
2327 *
2328 * We are looking for a range that:
2329 * - does not intersect with any VMA;
2330 * - is contained within the [low_limit, high_limit) interval;
2331 * - is at least the desired size.
2332 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2333 */
2334 static inline unsigned long
2335 vm_unmapped_area(struct vm_unmapped_area_info *info)
2336 {
2337 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2338 return unmapped_area_topdown(info);
2339 else
2340 return unmapped_area(info);
2341 }
2342
2343 /* truncate.c */
2344 extern void truncate_inode_pages(struct address_space *, loff_t);
2345 extern void truncate_inode_pages_range(struct address_space *,
2346 loff_t lstart, loff_t lend);
2347 extern void truncate_inode_pages_final(struct address_space *);
2348
2349 /* generic vm_area_ops exported for stackable file systems */
2350 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2351 extern void filemap_map_pages(struct vm_fault *vmf,
2352 pgoff_t start_pgoff, pgoff_t end_pgoff);
2353 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2354
2355 /* mm/page-writeback.c */
2356 int __must_check write_one_page(struct page *page);
2357 void task_dirty_inc(struct task_struct *tsk);
2358
2359 /* readahead.c */
2360 #define VM_MAX_READAHEAD 128 /* kbytes */
2361 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2362
2363 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2364 pgoff_t offset, unsigned long nr_to_read);
2365
2366 void page_cache_sync_readahead(struct address_space *mapping,
2367 struct file_ra_state *ra,
2368 struct file *filp,
2369 pgoff_t offset,
2370 unsigned long size);
2371
2372 void page_cache_async_readahead(struct address_space *mapping,
2373 struct file_ra_state *ra,
2374 struct file *filp,
2375 struct page *pg,
2376 pgoff_t offset,
2377 unsigned long size);
2378
2379 extern unsigned long stack_guard_gap;
2380 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2381 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2382
2383 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2384 extern int expand_downwards(struct vm_area_struct *vma,
2385 unsigned long address);
2386 #if VM_GROWSUP
2387 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2388 #else
2389 #define expand_upwards(vma, address) (0)
2390 #endif
2391
2392 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2393 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2394 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2395 struct vm_area_struct **pprev);
2396
2397 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2398 NULL if none. Assume start_addr < end_addr. */
2399 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2400 {
2401 struct vm_area_struct * vma = find_vma(mm,start_addr);
2402
2403 if (vma && end_addr <= vma->vm_start)
2404 vma = NULL;
2405 return vma;
2406 }
2407
2408 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2409 {
2410 unsigned long vm_start = vma->vm_start;
2411
2412 if (vma->vm_flags & VM_GROWSDOWN) {
2413 vm_start -= stack_guard_gap;
2414 if (vm_start > vma->vm_start)
2415 vm_start = 0;
2416 }
2417 return vm_start;
2418 }
2419
2420 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2421 {
2422 unsigned long vm_end = vma->vm_end;
2423
2424 if (vma->vm_flags & VM_GROWSUP) {
2425 vm_end += stack_guard_gap;
2426 if (vm_end < vma->vm_end)
2427 vm_end = -PAGE_SIZE;
2428 }
2429 return vm_end;
2430 }
2431
2432 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2433 {
2434 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2435 }
2436
2437 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2438 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2439 unsigned long vm_start, unsigned long vm_end)
2440 {
2441 struct vm_area_struct *vma = find_vma(mm, vm_start);
2442
2443 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2444 vma = NULL;
2445
2446 return vma;
2447 }
2448
2449 #ifdef CONFIG_MMU
2450 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2451 void vma_set_page_prot(struct vm_area_struct *vma);
2452 #else
2453 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2454 {
2455 return __pgprot(0);
2456 }
2457 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2458 {
2459 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2460 }
2461 #endif
2462
2463 #ifdef CONFIG_NUMA_BALANCING
2464 unsigned long change_prot_numa(struct vm_area_struct *vma,
2465 unsigned long start, unsigned long end);
2466 #endif
2467
2468 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2469 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2470 unsigned long pfn, unsigned long size, pgprot_t);
2471 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2472 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2473 unsigned long pfn);
2474 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2475 unsigned long pfn, pgprot_t pgprot);
2476 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2477 pfn_t pfn);
2478 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2479 unsigned long addr, pfn_t pfn);
2480 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2481
2482 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2483 unsigned long addr, struct page *page)
2484 {
2485 int err = vm_insert_page(vma, addr, page);
2486
2487 if (err == -ENOMEM)
2488 return VM_FAULT_OOM;
2489 if (err < 0 && err != -EBUSY)
2490 return VM_FAULT_SIGBUS;
2491
2492 return VM_FAULT_NOPAGE;
2493 }
2494
2495 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2496 unsigned long addr, pfn_t pfn)
2497 {
2498 int err = vm_insert_mixed(vma, addr, pfn);
2499
2500 if (err == -ENOMEM)
2501 return VM_FAULT_OOM;
2502 if (err < 0 && err != -EBUSY)
2503 return VM_FAULT_SIGBUS;
2504
2505 return VM_FAULT_NOPAGE;
2506 }
2507
2508 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2509 unsigned long addr, unsigned long pfn)
2510 {
2511 int err = vm_insert_pfn(vma, addr, pfn);
2512
2513 if (err == -ENOMEM)
2514 return VM_FAULT_OOM;
2515 if (err < 0 && err != -EBUSY)
2516 return VM_FAULT_SIGBUS;
2517
2518 return VM_FAULT_NOPAGE;
2519 }
2520
2521 static inline vm_fault_t vmf_error(int err)
2522 {
2523 if (err == -ENOMEM)
2524 return VM_FAULT_OOM;
2525 return VM_FAULT_SIGBUS;
2526 }
2527
2528 struct page *follow_page_mask(struct vm_area_struct *vma,
2529 unsigned long address, unsigned int foll_flags,
2530 unsigned int *page_mask);
2531
2532 static inline struct page *follow_page(struct vm_area_struct *vma,
2533 unsigned long address, unsigned int foll_flags)
2534 {
2535 unsigned int unused_page_mask;
2536 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2537 }
2538
2539 #define FOLL_WRITE 0x01 /* check pte is writable */
2540 #define FOLL_TOUCH 0x02 /* mark page accessed */
2541 #define FOLL_GET 0x04 /* do get_page on page */
2542 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2543 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2544 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2545 * and return without waiting upon it */
2546 #define FOLL_POPULATE 0x40 /* fault in page */
2547 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2548 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2549 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2550 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2551 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2552 #define FOLL_MLOCK 0x1000 /* lock present pages */
2553 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2554 #define FOLL_COW 0x4000 /* internal GUP flag */
2555 #define FOLL_ANON 0x8000 /* don't do file mappings */
2556
2557 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2558 {
2559 if (vm_fault & VM_FAULT_OOM)
2560 return -ENOMEM;
2561 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2562 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2563 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2564 return -EFAULT;
2565 return 0;
2566 }
2567
2568 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2569 void *data);
2570 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2571 unsigned long size, pte_fn_t fn, void *data);
2572
2573
2574 #ifdef CONFIG_PAGE_POISONING
2575 extern bool page_poisoning_enabled(void);
2576 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2577 #else
2578 static inline bool page_poisoning_enabled(void) { return false; }
2579 static inline void kernel_poison_pages(struct page *page, int numpages,
2580 int enable) { }
2581 #endif
2582
2583 #ifdef CONFIG_DEBUG_PAGEALLOC
2584 extern bool _debug_pagealloc_enabled;
2585 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2586
2587 static inline bool debug_pagealloc_enabled(void)
2588 {
2589 return _debug_pagealloc_enabled;
2590 }
2591
2592 static inline void
2593 kernel_map_pages(struct page *page, int numpages, int enable)
2594 {
2595 if (!debug_pagealloc_enabled())
2596 return;
2597
2598 __kernel_map_pages(page, numpages, enable);
2599 }
2600 #ifdef CONFIG_HIBERNATION
2601 extern bool kernel_page_present(struct page *page);
2602 #endif /* CONFIG_HIBERNATION */
2603 #else /* CONFIG_DEBUG_PAGEALLOC */
2604 static inline void
2605 kernel_map_pages(struct page *page, int numpages, int enable) {}
2606 #ifdef CONFIG_HIBERNATION
2607 static inline bool kernel_page_present(struct page *page) { return true; }
2608 #endif /* CONFIG_HIBERNATION */
2609 static inline bool debug_pagealloc_enabled(void)
2610 {
2611 return false;
2612 }
2613 #endif /* CONFIG_DEBUG_PAGEALLOC */
2614
2615 #ifdef __HAVE_ARCH_GATE_AREA
2616 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2617 extern int in_gate_area_no_mm(unsigned long addr);
2618 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2619 #else
2620 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2621 {
2622 return NULL;
2623 }
2624 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2625 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2626 {
2627 return 0;
2628 }
2629 #endif /* __HAVE_ARCH_GATE_AREA */
2630
2631 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2632
2633 #ifdef CONFIG_SYSCTL
2634 extern int sysctl_drop_caches;
2635 int drop_caches_sysctl_handler(struct ctl_table *, int,
2636 void __user *, size_t *, loff_t *);
2637 #endif
2638
2639 void drop_slab(void);
2640 void drop_slab_node(int nid);
2641
2642 #ifndef CONFIG_MMU
2643 #define randomize_va_space 0
2644 #else
2645 extern int randomize_va_space;
2646 #endif
2647
2648 const char * arch_vma_name(struct vm_area_struct *vma);
2649 void print_vma_addr(char *prefix, unsigned long rip);
2650
2651 void sparse_mem_maps_populate_node(struct page **map_map,
2652 unsigned long pnum_begin,
2653 unsigned long pnum_end,
2654 unsigned long map_count,
2655 int nodeid);
2656
2657 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2658 struct vmem_altmap *altmap);
2659 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2660 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2661 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2662 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2663 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2664 void *vmemmap_alloc_block(unsigned long size, int node);
2665 struct vmem_altmap;
2666 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2667 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2668 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2669 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2670 int node);
2671 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2672 struct vmem_altmap *altmap);
2673 void vmemmap_populate_print_last(void);
2674 #ifdef CONFIG_MEMORY_HOTPLUG
2675 void vmemmap_free(unsigned long start, unsigned long end,
2676 struct vmem_altmap *altmap);
2677 #endif
2678 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2679 unsigned long nr_pages);
2680
2681 enum mf_flags {
2682 MF_COUNT_INCREASED = 1 << 0,
2683 MF_ACTION_REQUIRED = 1 << 1,
2684 MF_MUST_KILL = 1 << 2,
2685 MF_SOFT_OFFLINE = 1 << 3,
2686 };
2687 extern int memory_failure(unsigned long pfn, int flags);
2688 extern void memory_failure_queue(unsigned long pfn, int flags);
2689 extern int unpoison_memory(unsigned long pfn);
2690 extern int get_hwpoison_page(struct page *page);
2691 #define put_hwpoison_page(page) put_page(page)
2692 extern int sysctl_memory_failure_early_kill;
2693 extern int sysctl_memory_failure_recovery;
2694 extern void shake_page(struct page *p, int access);
2695 extern atomic_long_t num_poisoned_pages __read_mostly;
2696 extern int soft_offline_page(struct page *page, int flags);
2697
2698
2699 /*
2700 * Error handlers for various types of pages.
2701 */
2702 enum mf_result {
2703 MF_IGNORED, /* Error: cannot be handled */
2704 MF_FAILED, /* Error: handling failed */
2705 MF_DELAYED, /* Will be handled later */
2706 MF_RECOVERED, /* Successfully recovered */
2707 };
2708
2709 enum mf_action_page_type {
2710 MF_MSG_KERNEL,
2711 MF_MSG_KERNEL_HIGH_ORDER,
2712 MF_MSG_SLAB,
2713 MF_MSG_DIFFERENT_COMPOUND,
2714 MF_MSG_POISONED_HUGE,
2715 MF_MSG_HUGE,
2716 MF_MSG_FREE_HUGE,
2717 MF_MSG_NON_PMD_HUGE,
2718 MF_MSG_UNMAP_FAILED,
2719 MF_MSG_DIRTY_SWAPCACHE,
2720 MF_MSG_CLEAN_SWAPCACHE,
2721 MF_MSG_DIRTY_MLOCKED_LRU,
2722 MF_MSG_CLEAN_MLOCKED_LRU,
2723 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2724 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2725 MF_MSG_DIRTY_LRU,
2726 MF_MSG_CLEAN_LRU,
2727 MF_MSG_TRUNCATED_LRU,
2728 MF_MSG_BUDDY,
2729 MF_MSG_BUDDY_2ND,
2730 MF_MSG_UNKNOWN,
2731 };
2732
2733 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2734 extern void clear_huge_page(struct page *page,
2735 unsigned long addr_hint,
2736 unsigned int pages_per_huge_page);
2737 extern void copy_user_huge_page(struct page *dst, struct page *src,
2738 unsigned long addr, struct vm_area_struct *vma,
2739 unsigned int pages_per_huge_page);
2740 extern long copy_huge_page_from_user(struct page *dst_page,
2741 const void __user *usr_src,
2742 unsigned int pages_per_huge_page,
2743 bool allow_pagefault);
2744 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2745
2746 extern struct page_ext_operations debug_guardpage_ops;
2747
2748 #ifdef CONFIG_DEBUG_PAGEALLOC
2749 extern unsigned int _debug_guardpage_minorder;
2750 extern bool _debug_guardpage_enabled;
2751
2752 static inline unsigned int debug_guardpage_minorder(void)
2753 {
2754 return _debug_guardpage_minorder;
2755 }
2756
2757 static inline bool debug_guardpage_enabled(void)
2758 {
2759 return _debug_guardpage_enabled;
2760 }
2761
2762 static inline bool page_is_guard(struct page *page)
2763 {
2764 struct page_ext *page_ext;
2765
2766 if (!debug_guardpage_enabled())
2767 return false;
2768
2769 page_ext = lookup_page_ext(page);
2770 if (unlikely(!page_ext))
2771 return false;
2772
2773 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2774 }
2775 #else
2776 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2777 static inline bool debug_guardpage_enabled(void) { return false; }
2778 static inline bool page_is_guard(struct page *page) { return false; }
2779 #endif /* CONFIG_DEBUG_PAGEALLOC */
2780
2781 #if MAX_NUMNODES > 1
2782 void __init setup_nr_node_ids(void);
2783 #else
2784 static inline void setup_nr_node_ids(void) {}
2785 #endif
2786
2787 #endif /* __KERNEL__ */
2788 #endif /* _LINUX_MM_H */