]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm.h
mm: join struct fault_env and vm_fault
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70
71 #ifndef __pa_symbol
72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74
75 #ifndef page_to_virt
76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77 #endif
78
79 /*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86 #ifndef mm_forbids_zeropage
87 #define mm_forbids_zeropage(X) (0)
88 #endif
89
90 /*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106 #define MAPCOUNT_ELF_CORE_MARGIN (5)
107 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109 extern int sysctl_max_map_count;
110
111 extern unsigned long sysctl_user_reserve_kbytes;
112 extern unsigned long sysctl_admin_reserve_kbytes;
113
114 extern int sysctl_overcommit_memory;
115 extern int sysctl_overcommit_ratio;
116 extern unsigned long sysctl_overcommit_kbytes;
117
118 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
123 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
125 /* to align the pointer to the (next) page boundary */
126 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
128 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
130
131 /*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
140 extern struct kmem_cache *vm_area_cachep;
141
142 #ifndef CONFIG_MMU
143 extern struct rb_root nommu_region_tree;
144 extern struct rw_semaphore nommu_region_sem;
145
146 extern unsigned int kobjsize(const void *objp);
147 #endif
148
149 /*
150 * vm_flags in vm_area_struct, see mm_types.h.
151 * When changing, update also include/trace/events/mmflags.h
152 */
153 #define VM_NONE 0x00000000
154
155 #define VM_READ 0x00000001 /* currently active flags */
156 #define VM_WRITE 0x00000002
157 #define VM_EXEC 0x00000004
158 #define VM_SHARED 0x00000008
159
160 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
161 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162 #define VM_MAYWRITE 0x00000020
163 #define VM_MAYEXEC 0x00000040
164 #define VM_MAYSHARE 0x00000080
165
166 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
167 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
168 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
169 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
170 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
171
172 #define VM_LOCKED 0x00002000
173 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
181 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
182 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
183 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
184 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
185 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
186 #define VM_ARCH_2 0x02000000
187 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
188
189 #ifdef CONFIG_MEM_SOFT_DIRTY
190 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191 #else
192 # define VM_SOFTDIRTY 0
193 #endif
194
195 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
196 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
198 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
199
200 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
211 #if defined(CONFIG_X86)
212 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
213 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219 #endif
220 #elif defined(CONFIG_PPC)
221 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222 #elif defined(CONFIG_PARISC)
223 # define VM_GROWSUP VM_ARCH_1
224 #elif defined(CONFIG_METAG)
225 # define VM_GROWSUP VM_ARCH_1
226 #elif defined(CONFIG_IA64)
227 # define VM_GROWSUP VM_ARCH_1
228 #elif !defined(CONFIG_MMU)
229 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230 #endif
231
232 #if defined(CONFIG_X86)
233 /* MPX specific bounds table or bounds directory */
234 # define VM_MPX VM_ARCH_2
235 #endif
236
237 #ifndef VM_GROWSUP
238 # define VM_GROWSUP VM_NONE
239 #endif
240
241 /* Bits set in the VMA until the stack is in its final location */
242 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
244 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246 #endif
247
248 #ifdef CONFIG_STACK_GROWSUP
249 #define VM_STACK VM_GROWSUP
250 #else
251 #define VM_STACK VM_GROWSDOWN
252 #endif
253
254 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
256 /*
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
259 */
260 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
261
262 /* This mask defines which mm->def_flags a process can inherit its parent */
263 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
265 /* This mask is used to clear all the VMA flags used by mlock */
266 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
268 /*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272 extern pgprot_t protection_map[16];
273
274 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
275 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279 #define FAULT_FLAG_TRIED 0x20 /* Second try */
280 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
281 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
282 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
283
284 /*
285 * vm_fault is filled by the the pagefault handler and passed to the vma's
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
288 *
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
292 * pgoff should be used in favour of virtual_address, if possible.
293 */
294 struct vm_fault {
295 struct vm_area_struct *vma; /* Target VMA */
296 unsigned int flags; /* FAULT_FLAG_xxx flags */
297 gfp_t gfp_mask; /* gfp mask to be used for allocations */
298 pgoff_t pgoff; /* Logical page offset based on vma */
299 unsigned long address; /* Faulting virtual address */
300 void __user *virtual_address; /* Faulting virtual address masked by
301 * PAGE_MASK */
302 pmd_t *pmd; /* Pointer to pmd entry matching
303 * the 'address'
304 */
305
306 struct page *cow_page; /* Handler may choose to COW */
307 struct page *page; /* ->fault handlers should return a
308 * page here, unless VM_FAULT_NOPAGE
309 * is set (which is also implied by
310 * VM_FAULT_ERROR).
311 */
312 void *entry; /* ->fault handler can alternatively
313 * return locked DAX entry. In that
314 * case handler should return
315 * VM_FAULT_DAX_LOCKED and fill in
316 * entry here.
317 */
318 /* These three entries are valid only while holding ptl lock */
319 pte_t *pte; /* Pointer to pte entry matching
320 * the 'address'. NULL if the page
321 * table hasn't been allocated.
322 */
323 spinlock_t *ptl; /* Page table lock.
324 * Protects pte page table if 'pte'
325 * is not NULL, otherwise pmd.
326 */
327 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
328 * vm_ops->map_pages() calls
329 * alloc_set_pte() from atomic context.
330 * do_fault_around() pre-allocates
331 * page table to avoid allocation from
332 * atomic context.
333 */
334 };
335
336 /*
337 * These are the virtual MM functions - opening of an area, closing and
338 * unmapping it (needed to keep files on disk up-to-date etc), pointer
339 * to the functions called when a no-page or a wp-page exception occurs.
340 */
341 struct vm_operations_struct {
342 void (*open)(struct vm_area_struct * area);
343 void (*close)(struct vm_area_struct * area);
344 int (*mremap)(struct vm_area_struct * area);
345 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
346 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
347 pmd_t *, unsigned int flags);
348 void (*map_pages)(struct vm_fault *vmf,
349 pgoff_t start_pgoff, pgoff_t end_pgoff);
350
351 /* notification that a previously read-only page is about to become
352 * writable, if an error is returned it will cause a SIGBUS */
353 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
354
355 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
356 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
357
358 /* called by access_process_vm when get_user_pages() fails, typically
359 * for use by special VMAs that can switch between memory and hardware
360 */
361 int (*access)(struct vm_area_struct *vma, unsigned long addr,
362 void *buf, int len, int write);
363
364 /* Called by the /proc/PID/maps code to ask the vma whether it
365 * has a special name. Returning non-NULL will also cause this
366 * vma to be dumped unconditionally. */
367 const char *(*name)(struct vm_area_struct *vma);
368
369 #ifdef CONFIG_NUMA
370 /*
371 * set_policy() op must add a reference to any non-NULL @new mempolicy
372 * to hold the policy upon return. Caller should pass NULL @new to
373 * remove a policy and fall back to surrounding context--i.e. do not
374 * install a MPOL_DEFAULT policy, nor the task or system default
375 * mempolicy.
376 */
377 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
378
379 /*
380 * get_policy() op must add reference [mpol_get()] to any policy at
381 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
382 * in mm/mempolicy.c will do this automatically.
383 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
384 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
385 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
386 * must return NULL--i.e., do not "fallback" to task or system default
387 * policy.
388 */
389 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
390 unsigned long addr);
391 #endif
392 /*
393 * Called by vm_normal_page() for special PTEs to find the
394 * page for @addr. This is useful if the default behavior
395 * (using pte_page()) would not find the correct page.
396 */
397 struct page *(*find_special_page)(struct vm_area_struct *vma,
398 unsigned long addr);
399 };
400
401 struct mmu_gather;
402 struct inode;
403
404 #define page_private(page) ((page)->private)
405 #define set_page_private(page, v) ((page)->private = (v))
406
407 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
408 static inline int pmd_devmap(pmd_t pmd)
409 {
410 return 0;
411 }
412 #endif
413
414 /*
415 * FIXME: take this include out, include page-flags.h in
416 * files which need it (119 of them)
417 */
418 #include <linux/page-flags.h>
419 #include <linux/huge_mm.h>
420
421 /*
422 * Methods to modify the page usage count.
423 *
424 * What counts for a page usage:
425 * - cache mapping (page->mapping)
426 * - private data (page->private)
427 * - page mapped in a task's page tables, each mapping
428 * is counted separately
429 *
430 * Also, many kernel routines increase the page count before a critical
431 * routine so they can be sure the page doesn't go away from under them.
432 */
433
434 /*
435 * Drop a ref, return true if the refcount fell to zero (the page has no users)
436 */
437 static inline int put_page_testzero(struct page *page)
438 {
439 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
440 return page_ref_dec_and_test(page);
441 }
442
443 /*
444 * Try to grab a ref unless the page has a refcount of zero, return false if
445 * that is the case.
446 * This can be called when MMU is off so it must not access
447 * any of the virtual mappings.
448 */
449 static inline int get_page_unless_zero(struct page *page)
450 {
451 return page_ref_add_unless(page, 1, 0);
452 }
453
454 extern int page_is_ram(unsigned long pfn);
455
456 enum {
457 REGION_INTERSECTS,
458 REGION_DISJOINT,
459 REGION_MIXED,
460 };
461
462 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
463 unsigned long desc);
464
465 /* Support for virtually mapped pages */
466 struct page *vmalloc_to_page(const void *addr);
467 unsigned long vmalloc_to_pfn(const void *addr);
468
469 /*
470 * Determine if an address is within the vmalloc range
471 *
472 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
473 * is no special casing required.
474 */
475 static inline bool is_vmalloc_addr(const void *x)
476 {
477 #ifdef CONFIG_MMU
478 unsigned long addr = (unsigned long)x;
479
480 return addr >= VMALLOC_START && addr < VMALLOC_END;
481 #else
482 return false;
483 #endif
484 }
485 #ifdef CONFIG_MMU
486 extern int is_vmalloc_or_module_addr(const void *x);
487 #else
488 static inline int is_vmalloc_or_module_addr(const void *x)
489 {
490 return 0;
491 }
492 #endif
493
494 extern void kvfree(const void *addr);
495
496 static inline atomic_t *compound_mapcount_ptr(struct page *page)
497 {
498 return &page[1].compound_mapcount;
499 }
500
501 static inline int compound_mapcount(struct page *page)
502 {
503 VM_BUG_ON_PAGE(!PageCompound(page), page);
504 page = compound_head(page);
505 return atomic_read(compound_mapcount_ptr(page)) + 1;
506 }
507
508 /*
509 * The atomic page->_mapcount, starts from -1: so that transitions
510 * both from it and to it can be tracked, using atomic_inc_and_test
511 * and atomic_add_negative(-1).
512 */
513 static inline void page_mapcount_reset(struct page *page)
514 {
515 atomic_set(&(page)->_mapcount, -1);
516 }
517
518 int __page_mapcount(struct page *page);
519
520 static inline int page_mapcount(struct page *page)
521 {
522 VM_BUG_ON_PAGE(PageSlab(page), page);
523
524 if (unlikely(PageCompound(page)))
525 return __page_mapcount(page);
526 return atomic_read(&page->_mapcount) + 1;
527 }
528
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 int total_mapcount(struct page *page);
531 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
532 #else
533 static inline int total_mapcount(struct page *page)
534 {
535 return page_mapcount(page);
536 }
537 static inline int page_trans_huge_mapcount(struct page *page,
538 int *total_mapcount)
539 {
540 int mapcount = page_mapcount(page);
541 if (total_mapcount)
542 *total_mapcount = mapcount;
543 return mapcount;
544 }
545 #endif
546
547 static inline struct page *virt_to_head_page(const void *x)
548 {
549 struct page *page = virt_to_page(x);
550
551 return compound_head(page);
552 }
553
554 void __put_page(struct page *page);
555
556 void put_pages_list(struct list_head *pages);
557
558 void split_page(struct page *page, unsigned int order);
559
560 /*
561 * Compound pages have a destructor function. Provide a
562 * prototype for that function and accessor functions.
563 * These are _only_ valid on the head of a compound page.
564 */
565 typedef void compound_page_dtor(struct page *);
566
567 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
568 enum compound_dtor_id {
569 NULL_COMPOUND_DTOR,
570 COMPOUND_PAGE_DTOR,
571 #ifdef CONFIG_HUGETLB_PAGE
572 HUGETLB_PAGE_DTOR,
573 #endif
574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
575 TRANSHUGE_PAGE_DTOR,
576 #endif
577 NR_COMPOUND_DTORS,
578 };
579 extern compound_page_dtor * const compound_page_dtors[];
580
581 static inline void set_compound_page_dtor(struct page *page,
582 enum compound_dtor_id compound_dtor)
583 {
584 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
585 page[1].compound_dtor = compound_dtor;
586 }
587
588 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
589 {
590 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
591 return compound_page_dtors[page[1].compound_dtor];
592 }
593
594 static inline unsigned int compound_order(struct page *page)
595 {
596 if (!PageHead(page))
597 return 0;
598 return page[1].compound_order;
599 }
600
601 static inline void set_compound_order(struct page *page, unsigned int order)
602 {
603 page[1].compound_order = order;
604 }
605
606 void free_compound_page(struct page *page);
607
608 #ifdef CONFIG_MMU
609 /*
610 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
611 * servicing faults for write access. In the normal case, do always want
612 * pte_mkwrite. But get_user_pages can cause write faults for mappings
613 * that do not have writing enabled, when used by access_process_vm.
614 */
615 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
616 {
617 if (likely(vma->vm_flags & VM_WRITE))
618 pte = pte_mkwrite(pte);
619 return pte;
620 }
621
622 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
623 struct page *page);
624 #endif
625
626 /*
627 * Multiple processes may "see" the same page. E.g. for untouched
628 * mappings of /dev/null, all processes see the same page full of
629 * zeroes, and text pages of executables and shared libraries have
630 * only one copy in memory, at most, normally.
631 *
632 * For the non-reserved pages, page_count(page) denotes a reference count.
633 * page_count() == 0 means the page is free. page->lru is then used for
634 * freelist management in the buddy allocator.
635 * page_count() > 0 means the page has been allocated.
636 *
637 * Pages are allocated by the slab allocator in order to provide memory
638 * to kmalloc and kmem_cache_alloc. In this case, the management of the
639 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
640 * unless a particular usage is carefully commented. (the responsibility of
641 * freeing the kmalloc memory is the caller's, of course).
642 *
643 * A page may be used by anyone else who does a __get_free_page().
644 * In this case, page_count still tracks the references, and should only
645 * be used through the normal accessor functions. The top bits of page->flags
646 * and page->virtual store page management information, but all other fields
647 * are unused and could be used privately, carefully. The management of this
648 * page is the responsibility of the one who allocated it, and those who have
649 * subsequently been given references to it.
650 *
651 * The other pages (we may call them "pagecache pages") are completely
652 * managed by the Linux memory manager: I/O, buffers, swapping etc.
653 * The following discussion applies only to them.
654 *
655 * A pagecache page contains an opaque `private' member, which belongs to the
656 * page's address_space. Usually, this is the address of a circular list of
657 * the page's disk buffers. PG_private must be set to tell the VM to call
658 * into the filesystem to release these pages.
659 *
660 * A page may belong to an inode's memory mapping. In this case, page->mapping
661 * is the pointer to the inode, and page->index is the file offset of the page,
662 * in units of PAGE_SIZE.
663 *
664 * If pagecache pages are not associated with an inode, they are said to be
665 * anonymous pages. These may become associated with the swapcache, and in that
666 * case PG_swapcache is set, and page->private is an offset into the swapcache.
667 *
668 * In either case (swapcache or inode backed), the pagecache itself holds one
669 * reference to the page. Setting PG_private should also increment the
670 * refcount. The each user mapping also has a reference to the page.
671 *
672 * The pagecache pages are stored in a per-mapping radix tree, which is
673 * rooted at mapping->page_tree, and indexed by offset.
674 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
675 * lists, we instead now tag pages as dirty/writeback in the radix tree.
676 *
677 * All pagecache pages may be subject to I/O:
678 * - inode pages may need to be read from disk,
679 * - inode pages which have been modified and are MAP_SHARED may need
680 * to be written back to the inode on disk,
681 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
682 * modified may need to be swapped out to swap space and (later) to be read
683 * back into memory.
684 */
685
686 /*
687 * The zone field is never updated after free_area_init_core()
688 * sets it, so none of the operations on it need to be atomic.
689 */
690
691 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
692 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
693 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
694 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
695 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
696
697 /*
698 * Define the bit shifts to access each section. For non-existent
699 * sections we define the shift as 0; that plus a 0 mask ensures
700 * the compiler will optimise away reference to them.
701 */
702 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
703 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
704 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
705 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
706
707 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
708 #ifdef NODE_NOT_IN_PAGE_FLAGS
709 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
710 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
711 SECTIONS_PGOFF : ZONES_PGOFF)
712 #else
713 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
714 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
715 NODES_PGOFF : ZONES_PGOFF)
716 #endif
717
718 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
719
720 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
721 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
722 #endif
723
724 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
725 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
726 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
727 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
728 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
729
730 static inline enum zone_type page_zonenum(const struct page *page)
731 {
732 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
733 }
734
735 #ifdef CONFIG_ZONE_DEVICE
736 void get_zone_device_page(struct page *page);
737 void put_zone_device_page(struct page *page);
738 static inline bool is_zone_device_page(const struct page *page)
739 {
740 return page_zonenum(page) == ZONE_DEVICE;
741 }
742 #else
743 static inline void get_zone_device_page(struct page *page)
744 {
745 }
746 static inline void put_zone_device_page(struct page *page)
747 {
748 }
749 static inline bool is_zone_device_page(const struct page *page)
750 {
751 return false;
752 }
753 #endif
754
755 static inline void get_page(struct page *page)
756 {
757 page = compound_head(page);
758 /*
759 * Getting a normal page or the head of a compound page
760 * requires to already have an elevated page->_refcount.
761 */
762 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
763 page_ref_inc(page);
764
765 if (unlikely(is_zone_device_page(page)))
766 get_zone_device_page(page);
767 }
768
769 static inline void put_page(struct page *page)
770 {
771 page = compound_head(page);
772
773 if (put_page_testzero(page))
774 __put_page(page);
775
776 if (unlikely(is_zone_device_page(page)))
777 put_zone_device_page(page);
778 }
779
780 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
781 #define SECTION_IN_PAGE_FLAGS
782 #endif
783
784 /*
785 * The identification function is mainly used by the buddy allocator for
786 * determining if two pages could be buddies. We are not really identifying
787 * the zone since we could be using the section number id if we do not have
788 * node id available in page flags.
789 * We only guarantee that it will return the same value for two combinable
790 * pages in a zone.
791 */
792 static inline int page_zone_id(struct page *page)
793 {
794 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
795 }
796
797 static inline int zone_to_nid(struct zone *zone)
798 {
799 #ifdef CONFIG_NUMA
800 return zone->node;
801 #else
802 return 0;
803 #endif
804 }
805
806 #ifdef NODE_NOT_IN_PAGE_FLAGS
807 extern int page_to_nid(const struct page *page);
808 #else
809 static inline int page_to_nid(const struct page *page)
810 {
811 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
812 }
813 #endif
814
815 #ifdef CONFIG_NUMA_BALANCING
816 static inline int cpu_pid_to_cpupid(int cpu, int pid)
817 {
818 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
819 }
820
821 static inline int cpupid_to_pid(int cpupid)
822 {
823 return cpupid & LAST__PID_MASK;
824 }
825
826 static inline int cpupid_to_cpu(int cpupid)
827 {
828 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
829 }
830
831 static inline int cpupid_to_nid(int cpupid)
832 {
833 return cpu_to_node(cpupid_to_cpu(cpupid));
834 }
835
836 static inline bool cpupid_pid_unset(int cpupid)
837 {
838 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
839 }
840
841 static inline bool cpupid_cpu_unset(int cpupid)
842 {
843 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
844 }
845
846 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
847 {
848 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
849 }
850
851 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
852 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
853 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
854 {
855 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
856 }
857
858 static inline int page_cpupid_last(struct page *page)
859 {
860 return page->_last_cpupid;
861 }
862 static inline void page_cpupid_reset_last(struct page *page)
863 {
864 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
865 }
866 #else
867 static inline int page_cpupid_last(struct page *page)
868 {
869 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
870 }
871
872 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
873
874 static inline void page_cpupid_reset_last(struct page *page)
875 {
876 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
877 }
878 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
879 #else /* !CONFIG_NUMA_BALANCING */
880 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
881 {
882 return page_to_nid(page); /* XXX */
883 }
884
885 static inline int page_cpupid_last(struct page *page)
886 {
887 return page_to_nid(page); /* XXX */
888 }
889
890 static inline int cpupid_to_nid(int cpupid)
891 {
892 return -1;
893 }
894
895 static inline int cpupid_to_pid(int cpupid)
896 {
897 return -1;
898 }
899
900 static inline int cpupid_to_cpu(int cpupid)
901 {
902 return -1;
903 }
904
905 static inline int cpu_pid_to_cpupid(int nid, int pid)
906 {
907 return -1;
908 }
909
910 static inline bool cpupid_pid_unset(int cpupid)
911 {
912 return 1;
913 }
914
915 static inline void page_cpupid_reset_last(struct page *page)
916 {
917 }
918
919 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
920 {
921 return false;
922 }
923 #endif /* CONFIG_NUMA_BALANCING */
924
925 static inline struct zone *page_zone(const struct page *page)
926 {
927 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
928 }
929
930 static inline pg_data_t *page_pgdat(const struct page *page)
931 {
932 return NODE_DATA(page_to_nid(page));
933 }
934
935 #ifdef SECTION_IN_PAGE_FLAGS
936 static inline void set_page_section(struct page *page, unsigned long section)
937 {
938 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
939 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
940 }
941
942 static inline unsigned long page_to_section(const struct page *page)
943 {
944 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
945 }
946 #endif
947
948 static inline void set_page_zone(struct page *page, enum zone_type zone)
949 {
950 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
951 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
952 }
953
954 static inline void set_page_node(struct page *page, unsigned long node)
955 {
956 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
957 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
958 }
959
960 static inline void set_page_links(struct page *page, enum zone_type zone,
961 unsigned long node, unsigned long pfn)
962 {
963 set_page_zone(page, zone);
964 set_page_node(page, node);
965 #ifdef SECTION_IN_PAGE_FLAGS
966 set_page_section(page, pfn_to_section_nr(pfn));
967 #endif
968 }
969
970 #ifdef CONFIG_MEMCG
971 static inline struct mem_cgroup *page_memcg(struct page *page)
972 {
973 return page->mem_cgroup;
974 }
975 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
976 {
977 WARN_ON_ONCE(!rcu_read_lock_held());
978 return READ_ONCE(page->mem_cgroup);
979 }
980 #else
981 static inline struct mem_cgroup *page_memcg(struct page *page)
982 {
983 return NULL;
984 }
985 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
986 {
987 WARN_ON_ONCE(!rcu_read_lock_held());
988 return NULL;
989 }
990 #endif
991
992 /*
993 * Some inline functions in vmstat.h depend on page_zone()
994 */
995 #include <linux/vmstat.h>
996
997 static __always_inline void *lowmem_page_address(const struct page *page)
998 {
999 return page_to_virt(page);
1000 }
1001
1002 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1003 #define HASHED_PAGE_VIRTUAL
1004 #endif
1005
1006 #if defined(WANT_PAGE_VIRTUAL)
1007 static inline void *page_address(const struct page *page)
1008 {
1009 return page->virtual;
1010 }
1011 static inline void set_page_address(struct page *page, void *address)
1012 {
1013 page->virtual = address;
1014 }
1015 #define page_address_init() do { } while(0)
1016 #endif
1017
1018 #if defined(HASHED_PAGE_VIRTUAL)
1019 void *page_address(const struct page *page);
1020 void set_page_address(struct page *page, void *virtual);
1021 void page_address_init(void);
1022 #endif
1023
1024 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1025 #define page_address(page) lowmem_page_address(page)
1026 #define set_page_address(page, address) do { } while(0)
1027 #define page_address_init() do { } while(0)
1028 #endif
1029
1030 extern void *page_rmapping(struct page *page);
1031 extern struct anon_vma *page_anon_vma(struct page *page);
1032 extern struct address_space *page_mapping(struct page *page);
1033
1034 extern struct address_space *__page_file_mapping(struct page *);
1035
1036 static inline
1037 struct address_space *page_file_mapping(struct page *page)
1038 {
1039 if (unlikely(PageSwapCache(page)))
1040 return __page_file_mapping(page);
1041
1042 return page->mapping;
1043 }
1044
1045 extern pgoff_t __page_file_index(struct page *page);
1046
1047 /*
1048 * Return the pagecache index of the passed page. Regular pagecache pages
1049 * use ->index whereas swapcache pages use swp_offset(->private)
1050 */
1051 static inline pgoff_t page_index(struct page *page)
1052 {
1053 if (unlikely(PageSwapCache(page)))
1054 return __page_file_index(page);
1055 return page->index;
1056 }
1057
1058 bool page_mapped(struct page *page);
1059 struct address_space *page_mapping(struct page *page);
1060
1061 /*
1062 * Return true only if the page has been allocated with
1063 * ALLOC_NO_WATERMARKS and the low watermark was not
1064 * met implying that the system is under some pressure.
1065 */
1066 static inline bool page_is_pfmemalloc(struct page *page)
1067 {
1068 /*
1069 * Page index cannot be this large so this must be
1070 * a pfmemalloc page.
1071 */
1072 return page->index == -1UL;
1073 }
1074
1075 /*
1076 * Only to be called by the page allocator on a freshly allocated
1077 * page.
1078 */
1079 static inline void set_page_pfmemalloc(struct page *page)
1080 {
1081 page->index = -1UL;
1082 }
1083
1084 static inline void clear_page_pfmemalloc(struct page *page)
1085 {
1086 page->index = 0;
1087 }
1088
1089 /*
1090 * Different kinds of faults, as returned by handle_mm_fault().
1091 * Used to decide whether a process gets delivered SIGBUS or
1092 * just gets major/minor fault counters bumped up.
1093 */
1094
1095 #define VM_FAULT_OOM 0x0001
1096 #define VM_FAULT_SIGBUS 0x0002
1097 #define VM_FAULT_MAJOR 0x0004
1098 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1099 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1100 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1101 #define VM_FAULT_SIGSEGV 0x0040
1102
1103 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1104 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1105 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1106 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1107 #define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
1108
1109 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1110
1111 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1112 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1113 VM_FAULT_FALLBACK)
1114
1115 /* Encode hstate index for a hwpoisoned large page */
1116 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1117 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1118
1119 /*
1120 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1121 */
1122 extern void pagefault_out_of_memory(void);
1123
1124 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1125
1126 /*
1127 * Flags passed to show_mem() and show_free_areas() to suppress output in
1128 * various contexts.
1129 */
1130 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1131
1132 extern void show_free_areas(unsigned int flags);
1133 extern bool skip_free_areas_node(unsigned int flags, int nid);
1134
1135 int shmem_zero_setup(struct vm_area_struct *);
1136 #ifdef CONFIG_SHMEM
1137 bool shmem_mapping(struct address_space *mapping);
1138 #else
1139 static inline bool shmem_mapping(struct address_space *mapping)
1140 {
1141 return false;
1142 }
1143 #endif
1144
1145 extern bool can_do_mlock(void);
1146 extern int user_shm_lock(size_t, struct user_struct *);
1147 extern void user_shm_unlock(size_t, struct user_struct *);
1148
1149 /*
1150 * Parameter block passed down to zap_pte_range in exceptional cases.
1151 */
1152 struct zap_details {
1153 struct address_space *check_mapping; /* Check page->mapping if set */
1154 pgoff_t first_index; /* Lowest page->index to unmap */
1155 pgoff_t last_index; /* Highest page->index to unmap */
1156 bool ignore_dirty; /* Ignore dirty pages */
1157 bool check_swap_entries; /* Check also swap entries */
1158 };
1159
1160 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1161 pte_t pte);
1162 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1163 pmd_t pmd);
1164
1165 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1166 unsigned long size);
1167 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1168 unsigned long size, struct zap_details *);
1169 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1170 unsigned long start, unsigned long end);
1171
1172 /**
1173 * mm_walk - callbacks for walk_page_range
1174 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1175 * this handler is required to be able to handle
1176 * pmd_trans_huge() pmds. They may simply choose to
1177 * split_huge_page() instead of handling it explicitly.
1178 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1179 * @pte_hole: if set, called for each hole at all levels
1180 * @hugetlb_entry: if set, called for each hugetlb entry
1181 * @test_walk: caller specific callback function to determine whether
1182 * we walk over the current vma or not. Returning 0
1183 * value means "do page table walk over the current vma,"
1184 * and a negative one means "abort current page table walk
1185 * right now." 1 means "skip the current vma."
1186 * @mm: mm_struct representing the target process of page table walk
1187 * @vma: vma currently walked (NULL if walking outside vmas)
1188 * @private: private data for callbacks' usage
1189 *
1190 * (see the comment on walk_page_range() for more details)
1191 */
1192 struct mm_walk {
1193 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1194 unsigned long next, struct mm_walk *walk);
1195 int (*pte_entry)(pte_t *pte, unsigned long addr,
1196 unsigned long next, struct mm_walk *walk);
1197 int (*pte_hole)(unsigned long addr, unsigned long next,
1198 struct mm_walk *walk);
1199 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1200 unsigned long addr, unsigned long next,
1201 struct mm_walk *walk);
1202 int (*test_walk)(unsigned long addr, unsigned long next,
1203 struct mm_walk *walk);
1204 struct mm_struct *mm;
1205 struct vm_area_struct *vma;
1206 void *private;
1207 };
1208
1209 int walk_page_range(unsigned long addr, unsigned long end,
1210 struct mm_walk *walk);
1211 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1212 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1213 unsigned long end, unsigned long floor, unsigned long ceiling);
1214 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1215 struct vm_area_struct *vma);
1216 void unmap_mapping_range(struct address_space *mapping,
1217 loff_t const holebegin, loff_t const holelen, int even_cows);
1218 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1219 unsigned long *pfn);
1220 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1221 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1222 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1223 void *buf, int len, int write);
1224
1225 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1226 loff_t const holebegin, loff_t const holelen)
1227 {
1228 unmap_mapping_range(mapping, holebegin, holelen, 0);
1229 }
1230
1231 extern void truncate_pagecache(struct inode *inode, loff_t new);
1232 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1233 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1234 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1235 int truncate_inode_page(struct address_space *mapping, struct page *page);
1236 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1237 int invalidate_inode_page(struct page *page);
1238
1239 #ifdef CONFIG_MMU
1240 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1241 unsigned int flags);
1242 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1243 unsigned long address, unsigned int fault_flags,
1244 bool *unlocked);
1245 #else
1246 static inline int handle_mm_fault(struct vm_area_struct *vma,
1247 unsigned long address, unsigned int flags)
1248 {
1249 /* should never happen if there's no MMU */
1250 BUG();
1251 return VM_FAULT_SIGBUS;
1252 }
1253 static inline int fixup_user_fault(struct task_struct *tsk,
1254 struct mm_struct *mm, unsigned long address,
1255 unsigned int fault_flags, bool *unlocked)
1256 {
1257 /* should never happen if there's no MMU */
1258 BUG();
1259 return -EFAULT;
1260 }
1261 #endif
1262
1263 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1264 unsigned int gup_flags);
1265 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1266 void *buf, int len, unsigned int gup_flags);
1267
1268 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1269 unsigned long start, unsigned long nr_pages,
1270 unsigned int gup_flags, struct page **pages,
1271 struct vm_area_struct **vmas, int *locked);
1272 long get_user_pages(unsigned long start, unsigned long nr_pages,
1273 unsigned int gup_flags, struct page **pages,
1274 struct vm_area_struct **vmas);
1275 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1276 unsigned int gup_flags, struct page **pages, int *locked);
1277 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1278 struct page **pages, unsigned int gup_flags);
1279 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1280 struct page **pages);
1281
1282 /* Container for pinned pfns / pages */
1283 struct frame_vector {
1284 unsigned int nr_allocated; /* Number of frames we have space for */
1285 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1286 bool got_ref; /* Did we pin pages by getting page ref? */
1287 bool is_pfns; /* Does array contain pages or pfns? */
1288 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1289 * pfns_vector_pages() or pfns_vector_pfns()
1290 * for access */
1291 };
1292
1293 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1294 void frame_vector_destroy(struct frame_vector *vec);
1295 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1296 unsigned int gup_flags, struct frame_vector *vec);
1297 void put_vaddr_frames(struct frame_vector *vec);
1298 int frame_vector_to_pages(struct frame_vector *vec);
1299 void frame_vector_to_pfns(struct frame_vector *vec);
1300
1301 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1302 {
1303 return vec->nr_frames;
1304 }
1305
1306 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1307 {
1308 if (vec->is_pfns) {
1309 int err = frame_vector_to_pages(vec);
1310
1311 if (err)
1312 return ERR_PTR(err);
1313 }
1314 return (struct page **)(vec->ptrs);
1315 }
1316
1317 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1318 {
1319 if (!vec->is_pfns)
1320 frame_vector_to_pfns(vec);
1321 return (unsigned long *)(vec->ptrs);
1322 }
1323
1324 struct kvec;
1325 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1326 struct page **pages);
1327 int get_kernel_page(unsigned long start, int write, struct page **pages);
1328 struct page *get_dump_page(unsigned long addr);
1329
1330 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1331 extern void do_invalidatepage(struct page *page, unsigned int offset,
1332 unsigned int length);
1333
1334 int __set_page_dirty_nobuffers(struct page *page);
1335 int __set_page_dirty_no_writeback(struct page *page);
1336 int redirty_page_for_writepage(struct writeback_control *wbc,
1337 struct page *page);
1338 void account_page_dirtied(struct page *page, struct address_space *mapping);
1339 void account_page_cleaned(struct page *page, struct address_space *mapping,
1340 struct bdi_writeback *wb);
1341 int set_page_dirty(struct page *page);
1342 int set_page_dirty_lock(struct page *page);
1343 void cancel_dirty_page(struct page *page);
1344 int clear_page_dirty_for_io(struct page *page);
1345
1346 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1347
1348 /* Is the vma a continuation of the stack vma above it? */
1349 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1350 {
1351 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1352 }
1353
1354 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1355 {
1356 return !vma->vm_ops;
1357 }
1358
1359 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1360 unsigned long addr)
1361 {
1362 return (vma->vm_flags & VM_GROWSDOWN) &&
1363 (vma->vm_start == addr) &&
1364 !vma_growsdown(vma->vm_prev, addr);
1365 }
1366
1367 /* Is the vma a continuation of the stack vma below it? */
1368 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1369 {
1370 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1371 }
1372
1373 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1374 unsigned long addr)
1375 {
1376 return (vma->vm_flags & VM_GROWSUP) &&
1377 (vma->vm_end == addr) &&
1378 !vma_growsup(vma->vm_next, addr);
1379 }
1380
1381 int vma_is_stack_for_current(struct vm_area_struct *vma);
1382
1383 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1384 unsigned long old_addr, struct vm_area_struct *new_vma,
1385 unsigned long new_addr, unsigned long len,
1386 bool need_rmap_locks);
1387 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1388 unsigned long end, pgprot_t newprot,
1389 int dirty_accountable, int prot_numa);
1390 extern int mprotect_fixup(struct vm_area_struct *vma,
1391 struct vm_area_struct **pprev, unsigned long start,
1392 unsigned long end, unsigned long newflags);
1393
1394 /*
1395 * doesn't attempt to fault and will return short.
1396 */
1397 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1398 struct page **pages);
1399 /*
1400 * per-process(per-mm_struct) statistics.
1401 */
1402 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1403 {
1404 long val = atomic_long_read(&mm->rss_stat.count[member]);
1405
1406 #ifdef SPLIT_RSS_COUNTING
1407 /*
1408 * counter is updated in asynchronous manner and may go to minus.
1409 * But it's never be expected number for users.
1410 */
1411 if (val < 0)
1412 val = 0;
1413 #endif
1414 return (unsigned long)val;
1415 }
1416
1417 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1418 {
1419 atomic_long_add(value, &mm->rss_stat.count[member]);
1420 }
1421
1422 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1423 {
1424 atomic_long_inc(&mm->rss_stat.count[member]);
1425 }
1426
1427 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1428 {
1429 atomic_long_dec(&mm->rss_stat.count[member]);
1430 }
1431
1432 /* Optimized variant when page is already known not to be PageAnon */
1433 static inline int mm_counter_file(struct page *page)
1434 {
1435 if (PageSwapBacked(page))
1436 return MM_SHMEMPAGES;
1437 return MM_FILEPAGES;
1438 }
1439
1440 static inline int mm_counter(struct page *page)
1441 {
1442 if (PageAnon(page))
1443 return MM_ANONPAGES;
1444 return mm_counter_file(page);
1445 }
1446
1447 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1448 {
1449 return get_mm_counter(mm, MM_FILEPAGES) +
1450 get_mm_counter(mm, MM_ANONPAGES) +
1451 get_mm_counter(mm, MM_SHMEMPAGES);
1452 }
1453
1454 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1455 {
1456 return max(mm->hiwater_rss, get_mm_rss(mm));
1457 }
1458
1459 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1460 {
1461 return max(mm->hiwater_vm, mm->total_vm);
1462 }
1463
1464 static inline void update_hiwater_rss(struct mm_struct *mm)
1465 {
1466 unsigned long _rss = get_mm_rss(mm);
1467
1468 if ((mm)->hiwater_rss < _rss)
1469 (mm)->hiwater_rss = _rss;
1470 }
1471
1472 static inline void update_hiwater_vm(struct mm_struct *mm)
1473 {
1474 if (mm->hiwater_vm < mm->total_vm)
1475 mm->hiwater_vm = mm->total_vm;
1476 }
1477
1478 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1479 {
1480 mm->hiwater_rss = get_mm_rss(mm);
1481 }
1482
1483 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1484 struct mm_struct *mm)
1485 {
1486 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1487
1488 if (*maxrss < hiwater_rss)
1489 *maxrss = hiwater_rss;
1490 }
1491
1492 #if defined(SPLIT_RSS_COUNTING)
1493 void sync_mm_rss(struct mm_struct *mm);
1494 #else
1495 static inline void sync_mm_rss(struct mm_struct *mm)
1496 {
1497 }
1498 #endif
1499
1500 #ifndef __HAVE_ARCH_PTE_DEVMAP
1501 static inline int pte_devmap(pte_t pte)
1502 {
1503 return 0;
1504 }
1505 #endif
1506
1507 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1508
1509 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1510 spinlock_t **ptl);
1511 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1512 spinlock_t **ptl)
1513 {
1514 pte_t *ptep;
1515 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1516 return ptep;
1517 }
1518
1519 #ifdef __PAGETABLE_PUD_FOLDED
1520 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1521 unsigned long address)
1522 {
1523 return 0;
1524 }
1525 #else
1526 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1527 #endif
1528
1529 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1530 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1531 unsigned long address)
1532 {
1533 return 0;
1534 }
1535
1536 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1537
1538 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1539 {
1540 return 0;
1541 }
1542
1543 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1544 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1545
1546 #else
1547 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1548
1549 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1550 {
1551 atomic_long_set(&mm->nr_pmds, 0);
1552 }
1553
1554 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1555 {
1556 return atomic_long_read(&mm->nr_pmds);
1557 }
1558
1559 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1560 {
1561 atomic_long_inc(&mm->nr_pmds);
1562 }
1563
1564 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1565 {
1566 atomic_long_dec(&mm->nr_pmds);
1567 }
1568 #endif
1569
1570 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1571 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1572
1573 /*
1574 * The following ifdef needed to get the 4level-fixup.h header to work.
1575 * Remove it when 4level-fixup.h has been removed.
1576 */
1577 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1578 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1579 {
1580 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1581 NULL: pud_offset(pgd, address);
1582 }
1583
1584 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1585 {
1586 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1587 NULL: pmd_offset(pud, address);
1588 }
1589 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1590
1591 #if USE_SPLIT_PTE_PTLOCKS
1592 #if ALLOC_SPLIT_PTLOCKS
1593 void __init ptlock_cache_init(void);
1594 extern bool ptlock_alloc(struct page *page);
1595 extern void ptlock_free(struct page *page);
1596
1597 static inline spinlock_t *ptlock_ptr(struct page *page)
1598 {
1599 return page->ptl;
1600 }
1601 #else /* ALLOC_SPLIT_PTLOCKS */
1602 static inline void ptlock_cache_init(void)
1603 {
1604 }
1605
1606 static inline bool ptlock_alloc(struct page *page)
1607 {
1608 return true;
1609 }
1610
1611 static inline void ptlock_free(struct page *page)
1612 {
1613 }
1614
1615 static inline spinlock_t *ptlock_ptr(struct page *page)
1616 {
1617 return &page->ptl;
1618 }
1619 #endif /* ALLOC_SPLIT_PTLOCKS */
1620
1621 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1622 {
1623 return ptlock_ptr(pmd_page(*pmd));
1624 }
1625
1626 static inline bool ptlock_init(struct page *page)
1627 {
1628 /*
1629 * prep_new_page() initialize page->private (and therefore page->ptl)
1630 * with 0. Make sure nobody took it in use in between.
1631 *
1632 * It can happen if arch try to use slab for page table allocation:
1633 * slab code uses page->slab_cache, which share storage with page->ptl.
1634 */
1635 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1636 if (!ptlock_alloc(page))
1637 return false;
1638 spin_lock_init(ptlock_ptr(page));
1639 return true;
1640 }
1641
1642 /* Reset page->mapping so free_pages_check won't complain. */
1643 static inline void pte_lock_deinit(struct page *page)
1644 {
1645 page->mapping = NULL;
1646 ptlock_free(page);
1647 }
1648
1649 #else /* !USE_SPLIT_PTE_PTLOCKS */
1650 /*
1651 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1652 */
1653 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1654 {
1655 return &mm->page_table_lock;
1656 }
1657 static inline void ptlock_cache_init(void) {}
1658 static inline bool ptlock_init(struct page *page) { return true; }
1659 static inline void pte_lock_deinit(struct page *page) {}
1660 #endif /* USE_SPLIT_PTE_PTLOCKS */
1661
1662 static inline void pgtable_init(void)
1663 {
1664 ptlock_cache_init();
1665 pgtable_cache_init();
1666 }
1667
1668 static inline bool pgtable_page_ctor(struct page *page)
1669 {
1670 if (!ptlock_init(page))
1671 return false;
1672 inc_zone_page_state(page, NR_PAGETABLE);
1673 return true;
1674 }
1675
1676 static inline void pgtable_page_dtor(struct page *page)
1677 {
1678 pte_lock_deinit(page);
1679 dec_zone_page_state(page, NR_PAGETABLE);
1680 }
1681
1682 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1683 ({ \
1684 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1685 pte_t *__pte = pte_offset_map(pmd, address); \
1686 *(ptlp) = __ptl; \
1687 spin_lock(__ptl); \
1688 __pte; \
1689 })
1690
1691 #define pte_unmap_unlock(pte, ptl) do { \
1692 spin_unlock(ptl); \
1693 pte_unmap(pte); \
1694 } while (0)
1695
1696 #define pte_alloc(mm, pmd, address) \
1697 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1698
1699 #define pte_alloc_map(mm, pmd, address) \
1700 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1701
1702 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1703 (pte_alloc(mm, pmd, address) ? \
1704 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1705
1706 #define pte_alloc_kernel(pmd, address) \
1707 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1708 NULL: pte_offset_kernel(pmd, address))
1709
1710 #if USE_SPLIT_PMD_PTLOCKS
1711
1712 static struct page *pmd_to_page(pmd_t *pmd)
1713 {
1714 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1715 return virt_to_page((void *)((unsigned long) pmd & mask));
1716 }
1717
1718 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1719 {
1720 return ptlock_ptr(pmd_to_page(pmd));
1721 }
1722
1723 static inline bool pgtable_pmd_page_ctor(struct page *page)
1724 {
1725 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1726 page->pmd_huge_pte = NULL;
1727 #endif
1728 return ptlock_init(page);
1729 }
1730
1731 static inline void pgtable_pmd_page_dtor(struct page *page)
1732 {
1733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1734 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1735 #endif
1736 ptlock_free(page);
1737 }
1738
1739 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1740
1741 #else
1742
1743 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1744 {
1745 return &mm->page_table_lock;
1746 }
1747
1748 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1749 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1750
1751 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1752
1753 #endif
1754
1755 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1756 {
1757 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1758 spin_lock(ptl);
1759 return ptl;
1760 }
1761
1762 extern void free_area_init(unsigned long * zones_size);
1763 extern void free_area_init_node(int nid, unsigned long * zones_size,
1764 unsigned long zone_start_pfn, unsigned long *zholes_size);
1765 extern void free_initmem(void);
1766
1767 /*
1768 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1769 * into the buddy system. The freed pages will be poisoned with pattern
1770 * "poison" if it's within range [0, UCHAR_MAX].
1771 * Return pages freed into the buddy system.
1772 */
1773 extern unsigned long free_reserved_area(void *start, void *end,
1774 int poison, char *s);
1775
1776 #ifdef CONFIG_HIGHMEM
1777 /*
1778 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1779 * and totalram_pages.
1780 */
1781 extern void free_highmem_page(struct page *page);
1782 #endif
1783
1784 extern void adjust_managed_page_count(struct page *page, long count);
1785 extern void mem_init_print_info(const char *str);
1786
1787 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1788
1789 /* Free the reserved page into the buddy system, so it gets managed. */
1790 static inline void __free_reserved_page(struct page *page)
1791 {
1792 ClearPageReserved(page);
1793 init_page_count(page);
1794 __free_page(page);
1795 }
1796
1797 static inline void free_reserved_page(struct page *page)
1798 {
1799 __free_reserved_page(page);
1800 adjust_managed_page_count(page, 1);
1801 }
1802
1803 static inline void mark_page_reserved(struct page *page)
1804 {
1805 SetPageReserved(page);
1806 adjust_managed_page_count(page, -1);
1807 }
1808
1809 /*
1810 * Default method to free all the __init memory into the buddy system.
1811 * The freed pages will be poisoned with pattern "poison" if it's within
1812 * range [0, UCHAR_MAX].
1813 * Return pages freed into the buddy system.
1814 */
1815 static inline unsigned long free_initmem_default(int poison)
1816 {
1817 extern char __init_begin[], __init_end[];
1818
1819 return free_reserved_area(&__init_begin, &__init_end,
1820 poison, "unused kernel");
1821 }
1822
1823 static inline unsigned long get_num_physpages(void)
1824 {
1825 int nid;
1826 unsigned long phys_pages = 0;
1827
1828 for_each_online_node(nid)
1829 phys_pages += node_present_pages(nid);
1830
1831 return phys_pages;
1832 }
1833
1834 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1835 /*
1836 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1837 * zones, allocate the backing mem_map and account for memory holes in a more
1838 * architecture independent manner. This is a substitute for creating the
1839 * zone_sizes[] and zholes_size[] arrays and passing them to
1840 * free_area_init_node()
1841 *
1842 * An architecture is expected to register range of page frames backed by
1843 * physical memory with memblock_add[_node]() before calling
1844 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1845 * usage, an architecture is expected to do something like
1846 *
1847 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1848 * max_highmem_pfn};
1849 * for_each_valid_physical_page_range()
1850 * memblock_add_node(base, size, nid)
1851 * free_area_init_nodes(max_zone_pfns);
1852 *
1853 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1854 * registered physical page range. Similarly
1855 * sparse_memory_present_with_active_regions() calls memory_present() for
1856 * each range when SPARSEMEM is enabled.
1857 *
1858 * See mm/page_alloc.c for more information on each function exposed by
1859 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1860 */
1861 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1862 unsigned long node_map_pfn_alignment(void);
1863 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1864 unsigned long end_pfn);
1865 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1866 unsigned long end_pfn);
1867 extern void get_pfn_range_for_nid(unsigned int nid,
1868 unsigned long *start_pfn, unsigned long *end_pfn);
1869 extern unsigned long find_min_pfn_with_active_regions(void);
1870 extern void free_bootmem_with_active_regions(int nid,
1871 unsigned long max_low_pfn);
1872 extern void sparse_memory_present_with_active_regions(int nid);
1873
1874 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1875
1876 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1877 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1878 static inline int __early_pfn_to_nid(unsigned long pfn,
1879 struct mminit_pfnnid_cache *state)
1880 {
1881 return 0;
1882 }
1883 #else
1884 /* please see mm/page_alloc.c */
1885 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1886 /* there is a per-arch backend function. */
1887 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1888 struct mminit_pfnnid_cache *state);
1889 #endif
1890
1891 extern void set_dma_reserve(unsigned long new_dma_reserve);
1892 extern void memmap_init_zone(unsigned long, int, unsigned long,
1893 unsigned long, enum memmap_context);
1894 extern void setup_per_zone_wmarks(void);
1895 extern int __meminit init_per_zone_wmark_min(void);
1896 extern void mem_init(void);
1897 extern void __init mmap_init(void);
1898 extern void show_mem(unsigned int flags);
1899 extern long si_mem_available(void);
1900 extern void si_meminfo(struct sysinfo * val);
1901 extern void si_meminfo_node(struct sysinfo *val, int nid);
1902 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1903 extern unsigned long arch_reserved_kernel_pages(void);
1904 #endif
1905
1906 extern __printf(2, 3)
1907 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
1908
1909 extern void setup_per_cpu_pageset(void);
1910
1911 extern void zone_pcp_update(struct zone *zone);
1912 extern void zone_pcp_reset(struct zone *zone);
1913
1914 /* page_alloc.c */
1915 extern int min_free_kbytes;
1916 extern int watermark_scale_factor;
1917
1918 /* nommu.c */
1919 extern atomic_long_t mmap_pages_allocated;
1920 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1921
1922 /* interval_tree.c */
1923 void vma_interval_tree_insert(struct vm_area_struct *node,
1924 struct rb_root *root);
1925 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1926 struct vm_area_struct *prev,
1927 struct rb_root *root);
1928 void vma_interval_tree_remove(struct vm_area_struct *node,
1929 struct rb_root *root);
1930 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1931 unsigned long start, unsigned long last);
1932 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1933 unsigned long start, unsigned long last);
1934
1935 #define vma_interval_tree_foreach(vma, root, start, last) \
1936 for (vma = vma_interval_tree_iter_first(root, start, last); \
1937 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1938
1939 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1940 struct rb_root *root);
1941 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1942 struct rb_root *root);
1943 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1944 struct rb_root *root, unsigned long start, unsigned long last);
1945 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1946 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1947 #ifdef CONFIG_DEBUG_VM_RB
1948 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1949 #endif
1950
1951 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1952 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1953 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1954
1955 /* mmap.c */
1956 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1957 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
1958 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
1959 struct vm_area_struct *expand);
1960 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1961 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
1962 {
1963 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
1964 }
1965 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1966 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1967 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1968 struct mempolicy *, struct vm_userfaultfd_ctx);
1969 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1970 extern int split_vma(struct mm_struct *,
1971 struct vm_area_struct *, unsigned long addr, int new_below);
1972 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1973 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1974 struct rb_node **, struct rb_node *);
1975 extern void unlink_file_vma(struct vm_area_struct *);
1976 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1977 unsigned long addr, unsigned long len, pgoff_t pgoff,
1978 bool *need_rmap_locks);
1979 extern void exit_mmap(struct mm_struct *);
1980
1981 static inline int check_data_rlimit(unsigned long rlim,
1982 unsigned long new,
1983 unsigned long start,
1984 unsigned long end_data,
1985 unsigned long start_data)
1986 {
1987 if (rlim < RLIM_INFINITY) {
1988 if (((new - start) + (end_data - start_data)) > rlim)
1989 return -ENOSPC;
1990 }
1991
1992 return 0;
1993 }
1994
1995 extern int mm_take_all_locks(struct mm_struct *mm);
1996 extern void mm_drop_all_locks(struct mm_struct *mm);
1997
1998 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1999 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2000 extern struct file *get_task_exe_file(struct task_struct *task);
2001
2002 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2003 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2004
2005 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2006 const struct vm_special_mapping *sm);
2007 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2008 unsigned long addr, unsigned long len,
2009 unsigned long flags,
2010 const struct vm_special_mapping *spec);
2011 /* This is an obsolete alternative to _install_special_mapping. */
2012 extern int install_special_mapping(struct mm_struct *mm,
2013 unsigned long addr, unsigned long len,
2014 unsigned long flags, struct page **pages);
2015
2016 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2017
2018 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2019 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2020 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2021 unsigned long len, unsigned long prot, unsigned long flags,
2022 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2023 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2024
2025 static inline unsigned long
2026 do_mmap_pgoff(struct file *file, unsigned long addr,
2027 unsigned long len, unsigned long prot, unsigned long flags,
2028 unsigned long pgoff, unsigned long *populate)
2029 {
2030 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2031 }
2032
2033 #ifdef CONFIG_MMU
2034 extern int __mm_populate(unsigned long addr, unsigned long len,
2035 int ignore_errors);
2036 static inline void mm_populate(unsigned long addr, unsigned long len)
2037 {
2038 /* Ignore errors */
2039 (void) __mm_populate(addr, len, 1);
2040 }
2041 #else
2042 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2043 #endif
2044
2045 /* These take the mm semaphore themselves */
2046 extern int __must_check vm_brk(unsigned long, unsigned long);
2047 extern int vm_munmap(unsigned long, size_t);
2048 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2049 unsigned long, unsigned long,
2050 unsigned long, unsigned long);
2051
2052 struct vm_unmapped_area_info {
2053 #define VM_UNMAPPED_AREA_TOPDOWN 1
2054 unsigned long flags;
2055 unsigned long length;
2056 unsigned long low_limit;
2057 unsigned long high_limit;
2058 unsigned long align_mask;
2059 unsigned long align_offset;
2060 };
2061
2062 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2063 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2064
2065 /*
2066 * Search for an unmapped address range.
2067 *
2068 * We are looking for a range that:
2069 * - does not intersect with any VMA;
2070 * - is contained within the [low_limit, high_limit) interval;
2071 * - is at least the desired size.
2072 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2073 */
2074 static inline unsigned long
2075 vm_unmapped_area(struct vm_unmapped_area_info *info)
2076 {
2077 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2078 return unmapped_area_topdown(info);
2079 else
2080 return unmapped_area(info);
2081 }
2082
2083 /* truncate.c */
2084 extern void truncate_inode_pages(struct address_space *, loff_t);
2085 extern void truncate_inode_pages_range(struct address_space *,
2086 loff_t lstart, loff_t lend);
2087 extern void truncate_inode_pages_final(struct address_space *);
2088
2089 /* generic vm_area_ops exported for stackable file systems */
2090 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2091 extern void filemap_map_pages(struct vm_fault *vmf,
2092 pgoff_t start_pgoff, pgoff_t end_pgoff);
2093 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2094
2095 /* mm/page-writeback.c */
2096 int write_one_page(struct page *page, int wait);
2097 void task_dirty_inc(struct task_struct *tsk);
2098
2099 /* readahead.c */
2100 #define VM_MAX_READAHEAD 128 /* kbytes */
2101 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2102
2103 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2104 pgoff_t offset, unsigned long nr_to_read);
2105
2106 void page_cache_sync_readahead(struct address_space *mapping,
2107 struct file_ra_state *ra,
2108 struct file *filp,
2109 pgoff_t offset,
2110 unsigned long size);
2111
2112 void page_cache_async_readahead(struct address_space *mapping,
2113 struct file_ra_state *ra,
2114 struct file *filp,
2115 struct page *pg,
2116 pgoff_t offset,
2117 unsigned long size);
2118
2119 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2120 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2121
2122 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2123 extern int expand_downwards(struct vm_area_struct *vma,
2124 unsigned long address);
2125 #if VM_GROWSUP
2126 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2127 #else
2128 #define expand_upwards(vma, address) (0)
2129 #endif
2130
2131 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2132 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2133 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2134 struct vm_area_struct **pprev);
2135
2136 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2137 NULL if none. Assume start_addr < end_addr. */
2138 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2139 {
2140 struct vm_area_struct * vma = find_vma(mm,start_addr);
2141
2142 if (vma && end_addr <= vma->vm_start)
2143 vma = NULL;
2144 return vma;
2145 }
2146
2147 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2148 {
2149 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2150 }
2151
2152 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2153 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2154 unsigned long vm_start, unsigned long vm_end)
2155 {
2156 struct vm_area_struct *vma = find_vma(mm, vm_start);
2157
2158 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2159 vma = NULL;
2160
2161 return vma;
2162 }
2163
2164 #ifdef CONFIG_MMU
2165 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2166 void vma_set_page_prot(struct vm_area_struct *vma);
2167 #else
2168 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2169 {
2170 return __pgprot(0);
2171 }
2172 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2173 {
2174 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2175 }
2176 #endif
2177
2178 #ifdef CONFIG_NUMA_BALANCING
2179 unsigned long change_prot_numa(struct vm_area_struct *vma,
2180 unsigned long start, unsigned long end);
2181 #endif
2182
2183 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2184 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2185 unsigned long pfn, unsigned long size, pgprot_t);
2186 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2187 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2188 unsigned long pfn);
2189 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2190 unsigned long pfn, pgprot_t pgprot);
2191 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2192 pfn_t pfn);
2193 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2194
2195
2196 struct page *follow_page_mask(struct vm_area_struct *vma,
2197 unsigned long address, unsigned int foll_flags,
2198 unsigned int *page_mask);
2199
2200 static inline struct page *follow_page(struct vm_area_struct *vma,
2201 unsigned long address, unsigned int foll_flags)
2202 {
2203 unsigned int unused_page_mask;
2204 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2205 }
2206
2207 #define FOLL_WRITE 0x01 /* check pte is writable */
2208 #define FOLL_TOUCH 0x02 /* mark page accessed */
2209 #define FOLL_GET 0x04 /* do get_page on page */
2210 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2211 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2212 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2213 * and return without waiting upon it */
2214 #define FOLL_POPULATE 0x40 /* fault in page */
2215 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2216 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2217 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2218 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2219 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2220 #define FOLL_MLOCK 0x1000 /* lock present pages */
2221 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2222 #define FOLL_COW 0x4000 /* internal GUP flag */
2223
2224 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2225 void *data);
2226 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2227 unsigned long size, pte_fn_t fn, void *data);
2228
2229
2230 #ifdef CONFIG_PAGE_POISONING
2231 extern bool page_poisoning_enabled(void);
2232 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2233 extern bool page_is_poisoned(struct page *page);
2234 #else
2235 static inline bool page_poisoning_enabled(void) { return false; }
2236 static inline void kernel_poison_pages(struct page *page, int numpages,
2237 int enable) { }
2238 static inline bool page_is_poisoned(struct page *page) { return false; }
2239 #endif
2240
2241 #ifdef CONFIG_DEBUG_PAGEALLOC
2242 extern bool _debug_pagealloc_enabled;
2243 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2244
2245 static inline bool debug_pagealloc_enabled(void)
2246 {
2247 return _debug_pagealloc_enabled;
2248 }
2249
2250 static inline void
2251 kernel_map_pages(struct page *page, int numpages, int enable)
2252 {
2253 if (!debug_pagealloc_enabled())
2254 return;
2255
2256 __kernel_map_pages(page, numpages, enable);
2257 }
2258 #ifdef CONFIG_HIBERNATION
2259 extern bool kernel_page_present(struct page *page);
2260 #endif /* CONFIG_HIBERNATION */
2261 #else /* CONFIG_DEBUG_PAGEALLOC */
2262 static inline void
2263 kernel_map_pages(struct page *page, int numpages, int enable) {}
2264 #ifdef CONFIG_HIBERNATION
2265 static inline bool kernel_page_present(struct page *page) { return true; }
2266 #endif /* CONFIG_HIBERNATION */
2267 static inline bool debug_pagealloc_enabled(void)
2268 {
2269 return false;
2270 }
2271 #endif /* CONFIG_DEBUG_PAGEALLOC */
2272
2273 #ifdef __HAVE_ARCH_GATE_AREA
2274 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2275 extern int in_gate_area_no_mm(unsigned long addr);
2276 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2277 #else
2278 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2279 {
2280 return NULL;
2281 }
2282 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2283 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2284 {
2285 return 0;
2286 }
2287 #endif /* __HAVE_ARCH_GATE_AREA */
2288
2289 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2290
2291 #ifdef CONFIG_SYSCTL
2292 extern int sysctl_drop_caches;
2293 int drop_caches_sysctl_handler(struct ctl_table *, int,
2294 void __user *, size_t *, loff_t *);
2295 #endif
2296
2297 void drop_slab(void);
2298 void drop_slab_node(int nid);
2299
2300 #ifndef CONFIG_MMU
2301 #define randomize_va_space 0
2302 #else
2303 extern int randomize_va_space;
2304 #endif
2305
2306 const char * arch_vma_name(struct vm_area_struct *vma);
2307 void print_vma_addr(char *prefix, unsigned long rip);
2308
2309 void sparse_mem_maps_populate_node(struct page **map_map,
2310 unsigned long pnum_begin,
2311 unsigned long pnum_end,
2312 unsigned long map_count,
2313 int nodeid);
2314
2315 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2316 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2317 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2318 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2319 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2320 void *vmemmap_alloc_block(unsigned long size, int node);
2321 struct vmem_altmap;
2322 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2323 struct vmem_altmap *altmap);
2324 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2325 {
2326 return __vmemmap_alloc_block_buf(size, node, NULL);
2327 }
2328
2329 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2330 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2331 int node);
2332 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2333 void vmemmap_populate_print_last(void);
2334 #ifdef CONFIG_MEMORY_HOTPLUG
2335 void vmemmap_free(unsigned long start, unsigned long end);
2336 #endif
2337 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2338 unsigned long size);
2339
2340 enum mf_flags {
2341 MF_COUNT_INCREASED = 1 << 0,
2342 MF_ACTION_REQUIRED = 1 << 1,
2343 MF_MUST_KILL = 1 << 2,
2344 MF_SOFT_OFFLINE = 1 << 3,
2345 };
2346 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2347 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2348 extern int unpoison_memory(unsigned long pfn);
2349 extern int get_hwpoison_page(struct page *page);
2350 #define put_hwpoison_page(page) put_page(page)
2351 extern int sysctl_memory_failure_early_kill;
2352 extern int sysctl_memory_failure_recovery;
2353 extern void shake_page(struct page *p, int access);
2354 extern atomic_long_t num_poisoned_pages;
2355 extern int soft_offline_page(struct page *page, int flags);
2356
2357
2358 /*
2359 * Error handlers for various types of pages.
2360 */
2361 enum mf_result {
2362 MF_IGNORED, /* Error: cannot be handled */
2363 MF_FAILED, /* Error: handling failed */
2364 MF_DELAYED, /* Will be handled later */
2365 MF_RECOVERED, /* Successfully recovered */
2366 };
2367
2368 enum mf_action_page_type {
2369 MF_MSG_KERNEL,
2370 MF_MSG_KERNEL_HIGH_ORDER,
2371 MF_MSG_SLAB,
2372 MF_MSG_DIFFERENT_COMPOUND,
2373 MF_MSG_POISONED_HUGE,
2374 MF_MSG_HUGE,
2375 MF_MSG_FREE_HUGE,
2376 MF_MSG_UNMAP_FAILED,
2377 MF_MSG_DIRTY_SWAPCACHE,
2378 MF_MSG_CLEAN_SWAPCACHE,
2379 MF_MSG_DIRTY_MLOCKED_LRU,
2380 MF_MSG_CLEAN_MLOCKED_LRU,
2381 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2382 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2383 MF_MSG_DIRTY_LRU,
2384 MF_MSG_CLEAN_LRU,
2385 MF_MSG_TRUNCATED_LRU,
2386 MF_MSG_BUDDY,
2387 MF_MSG_BUDDY_2ND,
2388 MF_MSG_UNKNOWN,
2389 };
2390
2391 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2392 extern void clear_huge_page(struct page *page,
2393 unsigned long addr,
2394 unsigned int pages_per_huge_page);
2395 extern void copy_user_huge_page(struct page *dst, struct page *src,
2396 unsigned long addr, struct vm_area_struct *vma,
2397 unsigned int pages_per_huge_page);
2398 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2399
2400 extern struct page_ext_operations debug_guardpage_ops;
2401 extern struct page_ext_operations page_poisoning_ops;
2402
2403 #ifdef CONFIG_DEBUG_PAGEALLOC
2404 extern unsigned int _debug_guardpage_minorder;
2405 extern bool _debug_guardpage_enabled;
2406
2407 static inline unsigned int debug_guardpage_minorder(void)
2408 {
2409 return _debug_guardpage_minorder;
2410 }
2411
2412 static inline bool debug_guardpage_enabled(void)
2413 {
2414 return _debug_guardpage_enabled;
2415 }
2416
2417 static inline bool page_is_guard(struct page *page)
2418 {
2419 struct page_ext *page_ext;
2420
2421 if (!debug_guardpage_enabled())
2422 return false;
2423
2424 page_ext = lookup_page_ext(page);
2425 if (unlikely(!page_ext))
2426 return false;
2427
2428 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2429 }
2430 #else
2431 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2432 static inline bool debug_guardpage_enabled(void) { return false; }
2433 static inline bool page_is_guard(struct page *page) { return false; }
2434 #endif /* CONFIG_DEBUG_PAGEALLOC */
2435
2436 #if MAX_NUMNODES > 1
2437 void __init setup_nr_node_ids(void);
2438 #else
2439 static inline void setup_nr_node_ids(void) {}
2440 #endif
2441
2442 #endif /* __KERNEL__ */
2443 #endif /* _LINUX_MM_H */