]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/linux/mm.h
mm: replace memmap_context by meminit_context
[mirror_ubuntu-focal-kernel.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38
39 void init_mm_internals(void);
40
41 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43
44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 max_mapnr = limit;
47 }
48 #else
49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51
52 extern atomic_long_t _totalram_pages;
53 static inline unsigned long totalram_pages(void)
54 {
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57
58 static inline void totalram_pages_inc(void)
59 {
60 atomic_long_inc(&_totalram_pages);
61 }
62
63 static inline void totalram_pages_dec(void)
64 {
65 atomic_long_dec(&_totalram_pages);
66 }
67
68 static inline void totalram_pages_add(long count)
69 {
70 atomic_long_add(count, &_totalram_pages);
71 }
72
73 static inline void totalram_pages_set(long val)
74 {
75 atomic_long_set(&_totalram_pages, val);
76 }
77
78 extern void * high_memory;
79 extern int page_cluster;
80
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101
102 /*
103 * Architectures that support memory tagging (assigning tags to memory regions,
104 * embedding these tags into addresses that point to these memory regions, and
105 * checking that the memory and the pointer tags match on memory accesses)
106 * redefine this macro to strip tags from pointers.
107 * It's defined as noop for arcitectures that don't support memory tagging.
108 */
109 #ifndef untagged_addr
110 #define untagged_addr(addr) (addr)
111 #endif
112
113 #ifndef __pa_symbol
114 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116
117 #ifndef page_to_virt
118 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120
121 #ifndef lm_alias
122 #define lm_alias(x) __va(__pa_symbol(x))
123 #endif
124
125 /*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X) (0)
134 #endif
135
136 /*
137 * On some architectures it is expensive to call memset() for small sizes.
138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
141 */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 80
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statments if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 80);
158
159 switch (sizeof(struct page)) {
160 case 80:
161 _pp[9] = 0; /* fallthrough */
162 case 72:
163 _pp[8] = 0; /* fallthrough */
164 case 64:
165 _pp[7] = 0; /* fallthrough */
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175 }
176 #else
177 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179
180 /*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196 #define MAPCOUNT_ELF_CORE_MARGIN (5)
197 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199 extern int sysctl_max_map_count;
200
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207
208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 size_t *, loff_t *);
210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 size_t *, loff_t *);
212
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
215 /* to align the pointer to the (next) page boundary */
216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220
221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
223 /*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
232 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234 void vm_area_free(struct vm_area_struct *);
235
236 #ifndef CONFIG_MMU
237 extern struct rb_root nommu_region_tree;
238 extern struct rw_semaphore nommu_region_sem;
239
240 extern unsigned int kobjsize(const void *objp);
241 #endif
242
243 /*
244 * vm_flags in vm_area_struct, see mm_types.h.
245 * When changing, update also include/trace/events/mmflags.h
246 */
247 #define VM_NONE 0x00000000
248
249 #define VM_READ 0x00000001 /* currently active flags */
250 #define VM_WRITE 0x00000002
251 #define VM_EXEC 0x00000004
252 #define VM_SHARED 0x00000008
253
254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256 #define VM_MAYWRITE 0x00000020
257 #define VM_MAYEXEC 0x00000040
258 #define VM_MAYSHARE 0x00000080
259
260 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
261 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
262 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
263 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
264 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
265
266 #define VM_LOCKED 0x00002000
267 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
275 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
276 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
277 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
278 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
279 #define VM_SYNC 0x00800000 /* Synchronous page faults */
280 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
281 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
282 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
283
284 #ifdef CONFIG_MEM_SOFT_DIRTY
285 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286 #else
287 # define VM_SOFTDIRTY 0
288 #endif
289
290 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
291 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
293 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
294
295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
305 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
308 #ifdef CONFIG_ARCH_HAS_PKEYS
309 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
311 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
312 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
314 #ifdef CONFIG_PPC
315 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316 #else
317 # define VM_PKEY_BIT4 0
318 #endif
319 #endif /* CONFIG_ARCH_HAS_PKEYS */
320
321 #if defined(CONFIG_X86)
322 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
323 #elif defined(CONFIG_PPC)
324 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
325 #elif defined(CONFIG_PARISC)
326 # define VM_GROWSUP VM_ARCH_1
327 #elif defined(CONFIG_IA64)
328 # define VM_GROWSUP VM_ARCH_1
329 #elif defined(CONFIG_SPARC64)
330 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
331 # define VM_ARCH_CLEAR VM_SPARC_ADI
332 #elif !defined(CONFIG_MMU)
333 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334 #endif
335
336 #if defined(CONFIG_X86_INTEL_MPX)
337 /* MPX specific bounds table or bounds directory */
338 # define VM_MPX VM_HIGH_ARCH_4
339 #else
340 # define VM_MPX VM_NONE
341 #endif
342
343 #ifndef VM_GROWSUP
344 # define VM_GROWSUP VM_NONE
345 #endif
346
347 /* Bits set in the VMA until the stack is in its final location */
348 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
349
350 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352 #endif
353
354 #ifdef CONFIG_STACK_GROWSUP
355 #define VM_STACK VM_GROWSUP
356 #else
357 #define VM_STACK VM_GROWSDOWN
358 #endif
359
360 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361
362 /*
363 * Special vmas that are non-mergable, non-mlock()able.
364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365 */
366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367
368 /* This mask defines which mm->def_flags a process can inherit its parent */
369 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
370
371 /* This mask is used to clear all the VMA flags used by mlock */
372 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
373
374 /* Arch-specific flags to clear when updating VM flags on protection change */
375 #ifndef VM_ARCH_CLEAR
376 # define VM_ARCH_CLEAR VM_NONE
377 #endif
378 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379
380 /*
381 * mapping from the currently active vm_flags protection bits (the
382 * low four bits) to a page protection mask..
383 */
384 extern pgprot_t protection_map[16];
385
386 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
387 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
388 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
389 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
390 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
391 #define FAULT_FLAG_TRIED 0x20 /* Second try */
392 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
393 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
394 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
395
396 #define FAULT_FLAG_TRACE \
397 { FAULT_FLAG_WRITE, "WRITE" }, \
398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
402 { FAULT_FLAG_TRIED, "TRIED" }, \
403 { FAULT_FLAG_USER, "USER" }, \
404 { FAULT_FLAG_REMOTE, "REMOTE" }, \
405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
406
407 /*
408 * vm_fault is filled by the the pagefault handler and passed to the vma's
409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
411 *
412 * MM layer fills up gfp_mask for page allocations but fault handler might
413 * alter it if its implementation requires a different allocation context.
414 *
415 * pgoff should be used in favour of virtual_address, if possible.
416 */
417 struct vm_fault {
418 struct vm_area_struct *vma; /* Target VMA */
419 unsigned int flags; /* FAULT_FLAG_xxx flags */
420 gfp_t gfp_mask; /* gfp mask to be used for allocations */
421 pgoff_t pgoff; /* Logical page offset based on vma */
422 unsigned long address; /* Faulting virtual address */
423 pmd_t *pmd; /* Pointer to pmd entry matching
424 * the 'address' */
425 pud_t *pud; /* Pointer to pud entry matching
426 * the 'address'
427 */
428 pte_t orig_pte; /* Value of PTE at the time of fault */
429
430 struct page *cow_page; /* Page handler may use for COW fault */
431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
432 struct page *page; /* ->fault handlers should return a
433 * page here, unless VM_FAULT_NOPAGE
434 * is set (which is also implied by
435 * VM_FAULT_ERROR).
436 */
437 /* These three entries are valid only while holding ptl lock */
438 pte_t *pte; /* Pointer to pte entry matching
439 * the 'address'. NULL if the page
440 * table hasn't been allocated.
441 */
442 spinlock_t *ptl; /* Page table lock.
443 * Protects pte page table if 'pte'
444 * is not NULL, otherwise pmd.
445 */
446 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
447 * vm_ops->map_pages() calls
448 * alloc_set_pte() from atomic context.
449 * do_fault_around() pre-allocates
450 * page table to avoid allocation from
451 * atomic context.
452 */
453 };
454
455 /* page entry size for vm->huge_fault() */
456 enum page_entry_size {
457 PE_SIZE_PTE = 0,
458 PE_SIZE_PMD,
459 PE_SIZE_PUD,
460 };
461
462 /*
463 * These are the virtual MM functions - opening of an area, closing and
464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
465 * to the functions called when a no-page or a wp-page exception occurs.
466 */
467 struct vm_operations_struct {
468 void (*open)(struct vm_area_struct * area);
469 void (*close)(struct vm_area_struct * area);
470 int (*split)(struct vm_area_struct * area, unsigned long addr);
471 int (*mremap)(struct vm_area_struct * area);
472 vm_fault_t (*fault)(struct vm_fault *vmf);
473 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 enum page_entry_size pe_size);
475 void (*map_pages)(struct vm_fault *vmf,
476 pgoff_t start_pgoff, pgoff_t end_pgoff);
477 unsigned long (*pagesize)(struct vm_area_struct * area);
478
479 /* notification that a previously read-only page is about to become
480 * writable, if an error is returned it will cause a SIGBUS */
481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482
483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485
486 /* called by access_process_vm when get_user_pages() fails, typically
487 * for use by special VMAs that can switch between memory and hardware
488 */
489 int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 void *buf, int len, int write);
491
492 /* Called by the /proc/PID/maps code to ask the vma whether it
493 * has a special name. Returning non-NULL will also cause this
494 * vma to be dumped unconditionally. */
495 const char *(*name)(struct vm_area_struct *vma);
496
497 #ifdef CONFIG_NUMA
498 /*
499 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 * to hold the policy upon return. Caller should pass NULL @new to
501 * remove a policy and fall back to surrounding context--i.e. do not
502 * install a MPOL_DEFAULT policy, nor the task or system default
503 * mempolicy.
504 */
505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506
507 /*
508 * get_policy() op must add reference [mpol_get()] to any policy at
509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
510 * in mm/mempolicy.c will do this automatically.
511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 * must return NULL--i.e., do not "fallback" to task or system default
515 * policy.
516 */
517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 unsigned long addr);
519 #endif
520 /*
521 * Called by vm_normal_page() for special PTEs to find the
522 * page for @addr. This is useful if the default behavior
523 * (using pte_page()) would not find the correct page.
524 */
525 struct page *(*find_special_page)(struct vm_area_struct *vma,
526 unsigned long addr);
527 };
528
529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530 {
531 static const struct vm_operations_struct dummy_vm_ops = {};
532
533 memset(vma, 0, sizeof(*vma));
534 vma->vm_mm = mm;
535 vma->vm_ops = &dummy_vm_ops;
536 INIT_LIST_HEAD(&vma->anon_vma_chain);
537 }
538
539 static inline void vma_set_anonymous(struct vm_area_struct *vma)
540 {
541 vma->vm_ops = NULL;
542 }
543
544 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545 {
546 return !vma->vm_ops;
547 }
548
549 #ifdef CONFIG_SHMEM
550 /*
551 * The vma_is_shmem is not inline because it is used only by slow
552 * paths in userfault.
553 */
554 bool vma_is_shmem(struct vm_area_struct *vma);
555 #else
556 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557 #endif
558
559 int vma_is_stack_for_current(struct vm_area_struct *vma);
560
561 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563
564 struct mmu_gather;
565 struct inode;
566
567 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
568 static inline int pmd_devmap(pmd_t pmd)
569 {
570 return 0;
571 }
572 static inline int pud_devmap(pud_t pud)
573 {
574 return 0;
575 }
576 static inline int pgd_devmap(pgd_t pgd)
577 {
578 return 0;
579 }
580 #endif
581
582 /*
583 * FIXME: take this include out, include page-flags.h in
584 * files which need it (119 of them)
585 */
586 #include <linux/page-flags.h>
587 #include <linux/huge_mm.h>
588
589 /*
590 * Methods to modify the page usage count.
591 *
592 * What counts for a page usage:
593 * - cache mapping (page->mapping)
594 * - private data (page->private)
595 * - page mapped in a task's page tables, each mapping
596 * is counted separately
597 *
598 * Also, many kernel routines increase the page count before a critical
599 * routine so they can be sure the page doesn't go away from under them.
600 */
601
602 /*
603 * Drop a ref, return true if the refcount fell to zero (the page has no users)
604 */
605 static inline int put_page_testzero(struct page *page)
606 {
607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
608 return page_ref_dec_and_test(page);
609 }
610
611 /*
612 * Try to grab a ref unless the page has a refcount of zero, return false if
613 * that is the case.
614 * This can be called when MMU is off so it must not access
615 * any of the virtual mappings.
616 */
617 static inline int get_page_unless_zero(struct page *page)
618 {
619 return page_ref_add_unless(page, 1, 0);
620 }
621
622 extern int page_is_ram(unsigned long pfn);
623
624 enum {
625 REGION_INTERSECTS,
626 REGION_DISJOINT,
627 REGION_MIXED,
628 };
629
630 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
631 unsigned long desc);
632
633 /* Support for virtually mapped pages */
634 struct page *vmalloc_to_page(const void *addr);
635 unsigned long vmalloc_to_pfn(const void *addr);
636
637 /*
638 * Determine if an address is within the vmalloc range
639 *
640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
641 * is no special casing required.
642 */
643 static inline bool is_vmalloc_addr(const void *x)
644 {
645 #ifdef CONFIG_MMU
646 unsigned long addr = (unsigned long)x;
647
648 return addr >= VMALLOC_START && addr < VMALLOC_END;
649 #else
650 return false;
651 #endif
652 }
653
654 #ifndef is_ioremap_addr
655 #define is_ioremap_addr(x) is_vmalloc_addr(x)
656 #endif
657
658 #ifdef CONFIG_MMU
659 extern int is_vmalloc_or_module_addr(const void *x);
660 #else
661 static inline int is_vmalloc_or_module_addr(const void *x)
662 {
663 return 0;
664 }
665 #endif
666
667 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
668 static inline void *kvmalloc(size_t size, gfp_t flags)
669 {
670 return kvmalloc_node(size, flags, NUMA_NO_NODE);
671 }
672 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
673 {
674 return kvmalloc_node(size, flags | __GFP_ZERO, node);
675 }
676 static inline void *kvzalloc(size_t size, gfp_t flags)
677 {
678 return kvmalloc(size, flags | __GFP_ZERO);
679 }
680
681 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
682 {
683 size_t bytes;
684
685 if (unlikely(check_mul_overflow(n, size, &bytes)))
686 return NULL;
687
688 return kvmalloc(bytes, flags);
689 }
690
691 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
692 {
693 return kvmalloc_array(n, size, flags | __GFP_ZERO);
694 }
695
696 extern void kvfree(const void *addr);
697 extern void kvfree_sensitive(const void *addr, size_t len);
698
699 /*
700 * Mapcount of compound page as a whole, does not include mapped sub-pages.
701 *
702 * Must be called only for compound pages or any their tail sub-pages.
703 */
704 static inline int compound_mapcount(struct page *page)
705 {
706 VM_BUG_ON_PAGE(!PageCompound(page), page);
707 page = compound_head(page);
708 return atomic_read(compound_mapcount_ptr(page)) + 1;
709 }
710
711 /*
712 * The atomic page->_mapcount, starts from -1: so that transitions
713 * both from it and to it can be tracked, using atomic_inc_and_test
714 * and atomic_add_negative(-1).
715 */
716 static inline void page_mapcount_reset(struct page *page)
717 {
718 atomic_set(&(page)->_mapcount, -1);
719 }
720
721 int __page_mapcount(struct page *page);
722
723 /*
724 * Mapcount of 0-order page; when compound sub-page, includes
725 * compound_mapcount().
726 *
727 * Result is undefined for pages which cannot be mapped into userspace.
728 * For example SLAB or special types of pages. See function page_has_type().
729 * They use this place in struct page differently.
730 */
731 static inline int page_mapcount(struct page *page)
732 {
733 if (unlikely(PageCompound(page)))
734 return __page_mapcount(page);
735 return atomic_read(&page->_mapcount) + 1;
736 }
737
738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
739 int total_mapcount(struct page *page);
740 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
741 #else
742 static inline int total_mapcount(struct page *page)
743 {
744 return page_mapcount(page);
745 }
746 static inline int page_trans_huge_mapcount(struct page *page,
747 int *total_mapcount)
748 {
749 int mapcount = page_mapcount(page);
750 if (total_mapcount)
751 *total_mapcount = mapcount;
752 return mapcount;
753 }
754 #endif
755
756 static inline struct page *virt_to_head_page(const void *x)
757 {
758 struct page *page = virt_to_page(x);
759
760 return compound_head(page);
761 }
762
763 void __put_page(struct page *page);
764
765 void put_pages_list(struct list_head *pages);
766
767 void split_page(struct page *page, unsigned int order);
768
769 /*
770 * Compound pages have a destructor function. Provide a
771 * prototype for that function and accessor functions.
772 * These are _only_ valid on the head of a compound page.
773 */
774 typedef void compound_page_dtor(struct page *);
775
776 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
777 enum compound_dtor_id {
778 NULL_COMPOUND_DTOR,
779 COMPOUND_PAGE_DTOR,
780 #ifdef CONFIG_HUGETLB_PAGE
781 HUGETLB_PAGE_DTOR,
782 #endif
783 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
784 TRANSHUGE_PAGE_DTOR,
785 #endif
786 NR_COMPOUND_DTORS,
787 };
788 extern compound_page_dtor * const compound_page_dtors[];
789
790 static inline void set_compound_page_dtor(struct page *page,
791 enum compound_dtor_id compound_dtor)
792 {
793 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
794 page[1].compound_dtor = compound_dtor;
795 }
796
797 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
798 {
799 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
800 return compound_page_dtors[page[1].compound_dtor];
801 }
802
803 static inline unsigned int compound_order(struct page *page)
804 {
805 if (!PageHead(page))
806 return 0;
807 return page[1].compound_order;
808 }
809
810 static inline void set_compound_order(struct page *page, unsigned int order)
811 {
812 page[1].compound_order = order;
813 }
814
815 /* Returns the number of pages in this potentially compound page. */
816 static inline unsigned long compound_nr(struct page *page)
817 {
818 return 1UL << compound_order(page);
819 }
820
821 /* Returns the number of bytes in this potentially compound page. */
822 static inline unsigned long page_size(struct page *page)
823 {
824 return PAGE_SIZE << compound_order(page);
825 }
826
827 /* Returns the number of bits needed for the number of bytes in a page */
828 static inline unsigned int page_shift(struct page *page)
829 {
830 return PAGE_SHIFT + compound_order(page);
831 }
832
833 void free_compound_page(struct page *page);
834
835 #ifdef CONFIG_MMU
836 /*
837 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
838 * servicing faults for write access. In the normal case, do always want
839 * pte_mkwrite. But get_user_pages can cause write faults for mappings
840 * that do not have writing enabled, when used by access_process_vm.
841 */
842 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
843 {
844 if (likely(vma->vm_flags & VM_WRITE))
845 pte = pte_mkwrite(pte);
846 return pte;
847 }
848
849 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
850 struct page *page);
851 vm_fault_t finish_fault(struct vm_fault *vmf);
852 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
853 #endif
854
855 /*
856 * Multiple processes may "see" the same page. E.g. for untouched
857 * mappings of /dev/null, all processes see the same page full of
858 * zeroes, and text pages of executables and shared libraries have
859 * only one copy in memory, at most, normally.
860 *
861 * For the non-reserved pages, page_count(page) denotes a reference count.
862 * page_count() == 0 means the page is free. page->lru is then used for
863 * freelist management in the buddy allocator.
864 * page_count() > 0 means the page has been allocated.
865 *
866 * Pages are allocated by the slab allocator in order to provide memory
867 * to kmalloc and kmem_cache_alloc. In this case, the management of the
868 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
869 * unless a particular usage is carefully commented. (the responsibility of
870 * freeing the kmalloc memory is the caller's, of course).
871 *
872 * A page may be used by anyone else who does a __get_free_page().
873 * In this case, page_count still tracks the references, and should only
874 * be used through the normal accessor functions. The top bits of page->flags
875 * and page->virtual store page management information, but all other fields
876 * are unused and could be used privately, carefully. The management of this
877 * page is the responsibility of the one who allocated it, and those who have
878 * subsequently been given references to it.
879 *
880 * The other pages (we may call them "pagecache pages") are completely
881 * managed by the Linux memory manager: I/O, buffers, swapping etc.
882 * The following discussion applies only to them.
883 *
884 * A pagecache page contains an opaque `private' member, which belongs to the
885 * page's address_space. Usually, this is the address of a circular list of
886 * the page's disk buffers. PG_private must be set to tell the VM to call
887 * into the filesystem to release these pages.
888 *
889 * A page may belong to an inode's memory mapping. In this case, page->mapping
890 * is the pointer to the inode, and page->index is the file offset of the page,
891 * in units of PAGE_SIZE.
892 *
893 * If pagecache pages are not associated with an inode, they are said to be
894 * anonymous pages. These may become associated with the swapcache, and in that
895 * case PG_swapcache is set, and page->private is an offset into the swapcache.
896 *
897 * In either case (swapcache or inode backed), the pagecache itself holds one
898 * reference to the page. Setting PG_private should also increment the
899 * refcount. The each user mapping also has a reference to the page.
900 *
901 * The pagecache pages are stored in a per-mapping radix tree, which is
902 * rooted at mapping->i_pages, and indexed by offset.
903 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
904 * lists, we instead now tag pages as dirty/writeback in the radix tree.
905 *
906 * All pagecache pages may be subject to I/O:
907 * - inode pages may need to be read from disk,
908 * - inode pages which have been modified and are MAP_SHARED may need
909 * to be written back to the inode on disk,
910 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
911 * modified may need to be swapped out to swap space and (later) to be read
912 * back into memory.
913 */
914
915 /*
916 * The zone field is never updated after free_area_init_core()
917 * sets it, so none of the operations on it need to be atomic.
918 */
919
920 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
921 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
922 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
923 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
924 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
925 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
926
927 /*
928 * Define the bit shifts to access each section. For non-existent
929 * sections we define the shift as 0; that plus a 0 mask ensures
930 * the compiler will optimise away reference to them.
931 */
932 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
933 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
934 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
935 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
936 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
937
938 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
939 #ifdef NODE_NOT_IN_PAGE_FLAGS
940 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
941 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
942 SECTIONS_PGOFF : ZONES_PGOFF)
943 #else
944 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
945 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
946 NODES_PGOFF : ZONES_PGOFF)
947 #endif
948
949 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
950
951 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
952 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
953 #endif
954
955 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
956 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
957 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
958 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
959 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
960 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
961
962 static inline enum zone_type page_zonenum(const struct page *page)
963 {
964 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
965 }
966
967 #ifdef CONFIG_ZONE_DEVICE
968 static inline bool is_zone_device_page(const struct page *page)
969 {
970 return page_zonenum(page) == ZONE_DEVICE;
971 }
972 extern void memmap_init_zone_device(struct zone *, unsigned long,
973 unsigned long, struct dev_pagemap *);
974 #else
975 static inline bool is_zone_device_page(const struct page *page)
976 {
977 return false;
978 }
979 #endif
980
981 #ifdef CONFIG_DEV_PAGEMAP_OPS
982 void __put_devmap_managed_page(struct page *page);
983 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
984 static inline bool put_devmap_managed_page(struct page *page)
985 {
986 if (!static_branch_unlikely(&devmap_managed_key))
987 return false;
988 if (!is_zone_device_page(page))
989 return false;
990 switch (page->pgmap->type) {
991 case MEMORY_DEVICE_PRIVATE:
992 case MEMORY_DEVICE_FS_DAX:
993 __put_devmap_managed_page(page);
994 return true;
995 default:
996 break;
997 }
998 return false;
999 }
1000
1001 #else /* CONFIG_DEV_PAGEMAP_OPS */
1002 static inline bool put_devmap_managed_page(struct page *page)
1003 {
1004 return false;
1005 }
1006 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1007
1008 static inline bool is_device_private_page(const struct page *page)
1009 {
1010 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1011 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1012 is_zone_device_page(page) &&
1013 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1014 }
1015
1016 static inline bool is_pci_p2pdma_page(const struct page *page)
1017 {
1018 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1019 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1020 is_zone_device_page(page) &&
1021 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1022 }
1023
1024 /* 127: arbitrary random number, small enough to assemble well */
1025 #define page_ref_zero_or_close_to_overflow(page) \
1026 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1027
1028 static inline void get_page(struct page *page)
1029 {
1030 page = compound_head(page);
1031 /*
1032 * Getting a normal page or the head of a compound page
1033 * requires to already have an elevated page->_refcount.
1034 */
1035 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1036 page_ref_inc(page);
1037 }
1038
1039 static inline __must_check bool try_get_page(struct page *page)
1040 {
1041 page = compound_head(page);
1042 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1043 return false;
1044 page_ref_inc(page);
1045 return true;
1046 }
1047
1048 static inline void put_page(struct page *page)
1049 {
1050 page = compound_head(page);
1051
1052 /*
1053 * For devmap managed pages we need to catch refcount transition from
1054 * 2 to 1, when refcount reach one it means the page is free and we
1055 * need to inform the device driver through callback. See
1056 * include/linux/memremap.h and HMM for details.
1057 */
1058 if (put_devmap_managed_page(page))
1059 return;
1060
1061 if (put_page_testzero(page))
1062 __put_page(page);
1063 }
1064
1065 /**
1066 * put_user_page() - release a gup-pinned page
1067 * @page: pointer to page to be released
1068 *
1069 * Pages that were pinned via get_user_pages*() must be released via
1070 * either put_user_page(), or one of the put_user_pages*() routines
1071 * below. This is so that eventually, pages that are pinned via
1072 * get_user_pages*() can be separately tracked and uniquely handled. In
1073 * particular, interactions with RDMA and filesystems need special
1074 * handling.
1075 *
1076 * put_user_page() and put_page() are not interchangeable, despite this early
1077 * implementation that makes them look the same. put_user_page() calls must
1078 * be perfectly matched up with get_user_page() calls.
1079 */
1080 static inline void put_user_page(struct page *page)
1081 {
1082 put_page(page);
1083 }
1084
1085 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1086 bool make_dirty);
1087
1088 void put_user_pages(struct page **pages, unsigned long npages);
1089
1090 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1091 #define SECTION_IN_PAGE_FLAGS
1092 #endif
1093
1094 /*
1095 * The identification function is mainly used by the buddy allocator for
1096 * determining if two pages could be buddies. We are not really identifying
1097 * the zone since we could be using the section number id if we do not have
1098 * node id available in page flags.
1099 * We only guarantee that it will return the same value for two combinable
1100 * pages in a zone.
1101 */
1102 static inline int page_zone_id(struct page *page)
1103 {
1104 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1105 }
1106
1107 #ifdef NODE_NOT_IN_PAGE_FLAGS
1108 extern int page_to_nid(const struct page *page);
1109 #else
1110 static inline int page_to_nid(const struct page *page)
1111 {
1112 struct page *p = (struct page *)page;
1113
1114 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1115 }
1116 #endif
1117
1118 #ifdef CONFIG_NUMA_BALANCING
1119 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1120 {
1121 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1122 }
1123
1124 static inline int cpupid_to_pid(int cpupid)
1125 {
1126 return cpupid & LAST__PID_MASK;
1127 }
1128
1129 static inline int cpupid_to_cpu(int cpupid)
1130 {
1131 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1132 }
1133
1134 static inline int cpupid_to_nid(int cpupid)
1135 {
1136 return cpu_to_node(cpupid_to_cpu(cpupid));
1137 }
1138
1139 static inline bool cpupid_pid_unset(int cpupid)
1140 {
1141 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1142 }
1143
1144 static inline bool cpupid_cpu_unset(int cpupid)
1145 {
1146 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1147 }
1148
1149 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1150 {
1151 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1152 }
1153
1154 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1155 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1156 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1157 {
1158 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1159 }
1160
1161 static inline int page_cpupid_last(struct page *page)
1162 {
1163 return page->_last_cpupid;
1164 }
1165 static inline void page_cpupid_reset_last(struct page *page)
1166 {
1167 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1168 }
1169 #else
1170 static inline int page_cpupid_last(struct page *page)
1171 {
1172 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1173 }
1174
1175 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1176
1177 static inline void page_cpupid_reset_last(struct page *page)
1178 {
1179 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1180 }
1181 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1182 #else /* !CONFIG_NUMA_BALANCING */
1183 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1184 {
1185 return page_to_nid(page); /* XXX */
1186 }
1187
1188 static inline int page_cpupid_last(struct page *page)
1189 {
1190 return page_to_nid(page); /* XXX */
1191 }
1192
1193 static inline int cpupid_to_nid(int cpupid)
1194 {
1195 return -1;
1196 }
1197
1198 static inline int cpupid_to_pid(int cpupid)
1199 {
1200 return -1;
1201 }
1202
1203 static inline int cpupid_to_cpu(int cpupid)
1204 {
1205 return -1;
1206 }
1207
1208 static inline int cpu_pid_to_cpupid(int nid, int pid)
1209 {
1210 return -1;
1211 }
1212
1213 static inline bool cpupid_pid_unset(int cpupid)
1214 {
1215 return 1;
1216 }
1217
1218 static inline void page_cpupid_reset_last(struct page *page)
1219 {
1220 }
1221
1222 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1223 {
1224 return false;
1225 }
1226 #endif /* CONFIG_NUMA_BALANCING */
1227
1228 #ifdef CONFIG_KASAN_SW_TAGS
1229 static inline u8 page_kasan_tag(const struct page *page)
1230 {
1231 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1232 }
1233
1234 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1235 {
1236 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1237 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1238 }
1239
1240 static inline void page_kasan_tag_reset(struct page *page)
1241 {
1242 page_kasan_tag_set(page, 0xff);
1243 }
1244 #else
1245 static inline u8 page_kasan_tag(const struct page *page)
1246 {
1247 return 0xff;
1248 }
1249
1250 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1251 static inline void page_kasan_tag_reset(struct page *page) { }
1252 #endif
1253
1254 static inline struct zone *page_zone(const struct page *page)
1255 {
1256 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1257 }
1258
1259 static inline pg_data_t *page_pgdat(const struct page *page)
1260 {
1261 return NODE_DATA(page_to_nid(page));
1262 }
1263
1264 #ifdef SECTION_IN_PAGE_FLAGS
1265 static inline void set_page_section(struct page *page, unsigned long section)
1266 {
1267 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1268 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1269 }
1270
1271 static inline unsigned long page_to_section(const struct page *page)
1272 {
1273 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1274 }
1275 #endif
1276
1277 static inline void set_page_zone(struct page *page, enum zone_type zone)
1278 {
1279 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1280 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1281 }
1282
1283 static inline void set_page_node(struct page *page, unsigned long node)
1284 {
1285 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1286 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1287 }
1288
1289 static inline void set_page_links(struct page *page, enum zone_type zone,
1290 unsigned long node, unsigned long pfn)
1291 {
1292 set_page_zone(page, zone);
1293 set_page_node(page, node);
1294 #ifdef SECTION_IN_PAGE_FLAGS
1295 set_page_section(page, pfn_to_section_nr(pfn));
1296 #endif
1297 }
1298
1299 #ifdef CONFIG_MEMCG
1300 static inline struct mem_cgroup *page_memcg(struct page *page)
1301 {
1302 return page->mem_cgroup;
1303 }
1304 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1305 {
1306 WARN_ON_ONCE(!rcu_read_lock_held());
1307 return READ_ONCE(page->mem_cgroup);
1308 }
1309 #else
1310 static inline struct mem_cgroup *page_memcg(struct page *page)
1311 {
1312 return NULL;
1313 }
1314 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1315 {
1316 WARN_ON_ONCE(!rcu_read_lock_held());
1317 return NULL;
1318 }
1319 #endif
1320
1321 /*
1322 * Some inline functions in vmstat.h depend on page_zone()
1323 */
1324 #include <linux/vmstat.h>
1325
1326 static __always_inline void *lowmem_page_address(const struct page *page)
1327 {
1328 return page_to_virt(page);
1329 }
1330
1331 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1332 #define HASHED_PAGE_VIRTUAL
1333 #endif
1334
1335 #if defined(WANT_PAGE_VIRTUAL)
1336 static inline void *page_address(const struct page *page)
1337 {
1338 return page->virtual;
1339 }
1340 static inline void set_page_address(struct page *page, void *address)
1341 {
1342 page->virtual = address;
1343 }
1344 #define page_address_init() do { } while(0)
1345 #endif
1346
1347 #if defined(HASHED_PAGE_VIRTUAL)
1348 void *page_address(const struct page *page);
1349 void set_page_address(struct page *page, void *virtual);
1350 void page_address_init(void);
1351 #endif
1352
1353 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1354 #define page_address(page) lowmem_page_address(page)
1355 #define set_page_address(page, address) do { } while(0)
1356 #define page_address_init() do { } while(0)
1357 #endif
1358
1359 extern void *page_rmapping(struct page *page);
1360 extern struct anon_vma *page_anon_vma(struct page *page);
1361 extern struct address_space *page_mapping(struct page *page);
1362
1363 extern struct address_space *__page_file_mapping(struct page *);
1364
1365 static inline
1366 struct address_space *page_file_mapping(struct page *page)
1367 {
1368 if (unlikely(PageSwapCache(page)))
1369 return __page_file_mapping(page);
1370
1371 return page->mapping;
1372 }
1373
1374 extern pgoff_t __page_file_index(struct page *page);
1375
1376 /*
1377 * Return the pagecache index of the passed page. Regular pagecache pages
1378 * use ->index whereas swapcache pages use swp_offset(->private)
1379 */
1380 static inline pgoff_t page_index(struct page *page)
1381 {
1382 if (unlikely(PageSwapCache(page)))
1383 return __page_file_index(page);
1384 return page->index;
1385 }
1386
1387 bool page_mapped(struct page *page);
1388 struct address_space *page_mapping(struct page *page);
1389 struct address_space *page_mapping_file(struct page *page);
1390
1391 /*
1392 * Return true only if the page has been allocated with
1393 * ALLOC_NO_WATERMARKS and the low watermark was not
1394 * met implying that the system is under some pressure.
1395 */
1396 static inline bool page_is_pfmemalloc(struct page *page)
1397 {
1398 /*
1399 * Page index cannot be this large so this must be
1400 * a pfmemalloc page.
1401 */
1402 return page->index == -1UL;
1403 }
1404
1405 /*
1406 * Only to be called by the page allocator on a freshly allocated
1407 * page.
1408 */
1409 static inline void set_page_pfmemalloc(struct page *page)
1410 {
1411 page->index = -1UL;
1412 }
1413
1414 static inline void clear_page_pfmemalloc(struct page *page)
1415 {
1416 page->index = 0;
1417 }
1418
1419 /*
1420 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1421 */
1422 extern void pagefault_out_of_memory(void);
1423
1424 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1425
1426 /*
1427 * Flags passed to show_mem() and show_free_areas() to suppress output in
1428 * various contexts.
1429 */
1430 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1431
1432 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1433
1434 #ifdef CONFIG_MMU
1435 extern bool can_do_mlock(void);
1436 #else
1437 static inline bool can_do_mlock(void) { return false; }
1438 #endif
1439 extern int user_shm_lock(size_t, struct user_struct *);
1440 extern void user_shm_unlock(size_t, struct user_struct *);
1441
1442 /*
1443 * Parameter block passed down to zap_pte_range in exceptional cases.
1444 */
1445 struct zap_details {
1446 struct address_space *check_mapping; /* Check page->mapping if set */
1447 pgoff_t first_index; /* Lowest page->index to unmap */
1448 pgoff_t last_index; /* Highest page->index to unmap */
1449 };
1450
1451 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1452 pte_t pte);
1453 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1454 pmd_t pmd);
1455
1456 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1457 unsigned long size);
1458 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1459 unsigned long size);
1460 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1461 unsigned long start, unsigned long end);
1462
1463 struct mmu_notifier_range;
1464
1465 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1466 unsigned long end, unsigned long floor, unsigned long ceiling);
1467 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1468 struct vm_area_struct *vma);
1469 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1470 struct mmu_notifier_range *range,
1471 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1472 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1473 unsigned long *pfn);
1474 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1475 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1476 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1477 void *buf, int len, int write);
1478
1479 extern void truncate_pagecache(struct inode *inode, loff_t new);
1480 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1481 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1482 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1483 int truncate_inode_page(struct address_space *mapping, struct page *page);
1484 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1485 int invalidate_inode_page(struct page *page);
1486
1487 #ifdef CONFIG_MMU
1488 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1489 unsigned long address, unsigned int flags);
1490 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1491 unsigned long address, unsigned int fault_flags,
1492 bool *unlocked);
1493 void unmap_mapping_pages(struct address_space *mapping,
1494 pgoff_t start, pgoff_t nr, bool even_cows);
1495 void unmap_mapping_range(struct address_space *mapping,
1496 loff_t const holebegin, loff_t const holelen, int even_cows);
1497 #else
1498 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1499 unsigned long address, unsigned int flags)
1500 {
1501 /* should never happen if there's no MMU */
1502 BUG();
1503 return VM_FAULT_SIGBUS;
1504 }
1505 static inline int fixup_user_fault(struct task_struct *tsk,
1506 struct mm_struct *mm, unsigned long address,
1507 unsigned int fault_flags, bool *unlocked)
1508 {
1509 /* should never happen if there's no MMU */
1510 BUG();
1511 return -EFAULT;
1512 }
1513 static inline void unmap_mapping_pages(struct address_space *mapping,
1514 pgoff_t start, pgoff_t nr, bool even_cows) { }
1515 static inline void unmap_mapping_range(struct address_space *mapping,
1516 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1517 #endif
1518
1519 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1520 loff_t const holebegin, loff_t const holelen)
1521 {
1522 unmap_mapping_range(mapping, holebegin, holelen, 0);
1523 }
1524
1525 extern void vma_do_file_update_time(struct vm_area_struct *, const char[], int);
1526 extern struct file *vma_do_pr_or_file(struct vm_area_struct *, const char[],
1527 int);
1528 extern void vma_do_get_file(struct vm_area_struct *, const char[], int);
1529 extern void vma_do_fput(struct vm_area_struct *, const char[], int);
1530
1531 #define vma_file_update_time(vma) vma_do_file_update_time(vma, __func__, \
1532 __LINE__)
1533 #define vma_pr_or_file(vma) vma_do_pr_or_file(vma, __func__, \
1534 __LINE__)
1535 #define vma_get_file(vma) vma_do_get_file(vma, __func__, __LINE__)
1536 #define vma_fput(vma) vma_do_fput(vma, __func__, __LINE__)
1537
1538 #ifndef CONFIG_MMU
1539 extern struct file *vmr_do_pr_or_file(struct vm_region *, const char[], int);
1540 extern void vmr_do_fput(struct vm_region *, const char[], int);
1541
1542 #define vmr_pr_or_file(region) vmr_do_pr_or_file(region, __func__, \
1543 __LINE__)
1544 #define vmr_fput(region) vmr_do_fput(region, __func__, __LINE__)
1545 #endif /* !CONFIG_MMU */
1546
1547 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1548 void *buf, int len, unsigned int gup_flags);
1549 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1550 void *buf, int len, unsigned int gup_flags);
1551 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1552 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1553
1554 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1555 unsigned long start, unsigned long nr_pages,
1556 unsigned int gup_flags, struct page **pages,
1557 struct vm_area_struct **vmas, int *locked);
1558 long get_user_pages(unsigned long start, unsigned long nr_pages,
1559 unsigned int gup_flags, struct page **pages,
1560 struct vm_area_struct **vmas);
1561 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1562 unsigned int gup_flags, struct page **pages, int *locked);
1563 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1564 struct page **pages, unsigned int gup_flags);
1565
1566 int get_user_pages_fast(unsigned long start, int nr_pages,
1567 unsigned int gup_flags, struct page **pages);
1568
1569 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1570 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1571 struct task_struct *task, bool bypass_rlim);
1572
1573 /* Container for pinned pfns / pages */
1574 struct frame_vector {
1575 unsigned int nr_allocated; /* Number of frames we have space for */
1576 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1577 bool got_ref; /* Did we pin pages by getting page ref? */
1578 bool is_pfns; /* Does array contain pages or pfns? */
1579 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1580 * pfns_vector_pages() or pfns_vector_pfns()
1581 * for access */
1582 };
1583
1584 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1585 void frame_vector_destroy(struct frame_vector *vec);
1586 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1587 unsigned int gup_flags, struct frame_vector *vec);
1588 void put_vaddr_frames(struct frame_vector *vec);
1589 int frame_vector_to_pages(struct frame_vector *vec);
1590 void frame_vector_to_pfns(struct frame_vector *vec);
1591
1592 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1593 {
1594 return vec->nr_frames;
1595 }
1596
1597 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1598 {
1599 if (vec->is_pfns) {
1600 int err = frame_vector_to_pages(vec);
1601
1602 if (err)
1603 return ERR_PTR(err);
1604 }
1605 return (struct page **)(vec->ptrs);
1606 }
1607
1608 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1609 {
1610 if (!vec->is_pfns)
1611 frame_vector_to_pfns(vec);
1612 return (unsigned long *)(vec->ptrs);
1613 }
1614
1615 struct kvec;
1616 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1617 struct page **pages);
1618 int get_kernel_page(unsigned long start, int write, struct page **pages);
1619 struct page *get_dump_page(unsigned long addr);
1620
1621 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1622 extern void do_invalidatepage(struct page *page, unsigned int offset,
1623 unsigned int length);
1624
1625 void __set_page_dirty(struct page *, struct address_space *, int warn);
1626 int __set_page_dirty_nobuffers(struct page *page);
1627 int __set_page_dirty_no_writeback(struct page *page);
1628 int redirty_page_for_writepage(struct writeback_control *wbc,
1629 struct page *page);
1630 void account_page_dirtied(struct page *page, struct address_space *mapping);
1631 void account_page_cleaned(struct page *page, struct address_space *mapping,
1632 struct bdi_writeback *wb);
1633 int set_page_dirty(struct page *page);
1634 int set_page_dirty_lock(struct page *page);
1635 void __cancel_dirty_page(struct page *page);
1636 static inline void cancel_dirty_page(struct page *page)
1637 {
1638 /* Avoid atomic ops, locking, etc. when not actually needed. */
1639 if (PageDirty(page))
1640 __cancel_dirty_page(page);
1641 }
1642 int clear_page_dirty_for_io(struct page *page);
1643
1644 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1645
1646 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1647 unsigned long old_addr, struct vm_area_struct *new_vma,
1648 unsigned long new_addr, unsigned long len,
1649 bool need_rmap_locks);
1650 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1651 unsigned long end, pgprot_t newprot,
1652 int dirty_accountable, int prot_numa);
1653 extern int mprotect_fixup(struct vm_area_struct *vma,
1654 struct vm_area_struct **pprev, unsigned long start,
1655 unsigned long end, unsigned long newflags);
1656
1657 /*
1658 * doesn't attempt to fault and will return short.
1659 */
1660 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1661 struct page **pages);
1662 /*
1663 * per-process(per-mm_struct) statistics.
1664 */
1665 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1666 {
1667 long val = atomic_long_read(&mm->rss_stat.count[member]);
1668
1669 #ifdef SPLIT_RSS_COUNTING
1670 /*
1671 * counter is updated in asynchronous manner and may go to minus.
1672 * But it's never be expected number for users.
1673 */
1674 if (val < 0)
1675 val = 0;
1676 #endif
1677 return (unsigned long)val;
1678 }
1679
1680 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1681 {
1682 atomic_long_add(value, &mm->rss_stat.count[member]);
1683 }
1684
1685 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1686 {
1687 atomic_long_inc(&mm->rss_stat.count[member]);
1688 }
1689
1690 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1691 {
1692 atomic_long_dec(&mm->rss_stat.count[member]);
1693 }
1694
1695 /* Optimized variant when page is already known not to be PageAnon */
1696 static inline int mm_counter_file(struct page *page)
1697 {
1698 if (PageSwapBacked(page))
1699 return MM_SHMEMPAGES;
1700 return MM_FILEPAGES;
1701 }
1702
1703 static inline int mm_counter(struct page *page)
1704 {
1705 if (PageAnon(page))
1706 return MM_ANONPAGES;
1707 return mm_counter_file(page);
1708 }
1709
1710 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1711 {
1712 return get_mm_counter(mm, MM_FILEPAGES) +
1713 get_mm_counter(mm, MM_ANONPAGES) +
1714 get_mm_counter(mm, MM_SHMEMPAGES);
1715 }
1716
1717 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1718 {
1719 return max(mm->hiwater_rss, get_mm_rss(mm));
1720 }
1721
1722 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1723 {
1724 return max(mm->hiwater_vm, mm->total_vm);
1725 }
1726
1727 static inline void update_hiwater_rss(struct mm_struct *mm)
1728 {
1729 unsigned long _rss = get_mm_rss(mm);
1730
1731 if ((mm)->hiwater_rss < _rss)
1732 (mm)->hiwater_rss = _rss;
1733 }
1734
1735 static inline void update_hiwater_vm(struct mm_struct *mm)
1736 {
1737 if (mm->hiwater_vm < mm->total_vm)
1738 mm->hiwater_vm = mm->total_vm;
1739 }
1740
1741 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1742 {
1743 mm->hiwater_rss = get_mm_rss(mm);
1744 }
1745
1746 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1747 struct mm_struct *mm)
1748 {
1749 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1750
1751 if (*maxrss < hiwater_rss)
1752 *maxrss = hiwater_rss;
1753 }
1754
1755 #if defined(SPLIT_RSS_COUNTING)
1756 void sync_mm_rss(struct mm_struct *mm);
1757 #else
1758 static inline void sync_mm_rss(struct mm_struct *mm)
1759 {
1760 }
1761 #endif
1762
1763 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1764 static inline int pte_devmap(pte_t pte)
1765 {
1766 return 0;
1767 }
1768 #endif
1769
1770 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1771
1772 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1773 spinlock_t **ptl);
1774 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1775 spinlock_t **ptl)
1776 {
1777 pte_t *ptep;
1778 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1779 return ptep;
1780 }
1781
1782 #ifdef __PAGETABLE_P4D_FOLDED
1783 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1784 unsigned long address)
1785 {
1786 return 0;
1787 }
1788 #else
1789 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1790 #endif
1791
1792 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1793 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1794 unsigned long address)
1795 {
1796 return 0;
1797 }
1798 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1799 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1800
1801 #else
1802 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1803
1804 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1805 {
1806 if (mm_pud_folded(mm))
1807 return;
1808 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1809 }
1810
1811 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1812 {
1813 if (mm_pud_folded(mm))
1814 return;
1815 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1816 }
1817 #endif
1818
1819 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1820 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1821 unsigned long address)
1822 {
1823 return 0;
1824 }
1825
1826 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1827 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1828
1829 #else
1830 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1831
1832 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1833 {
1834 if (mm_pmd_folded(mm))
1835 return;
1836 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1837 }
1838
1839 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1840 {
1841 if (mm_pmd_folded(mm))
1842 return;
1843 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1844 }
1845 #endif
1846
1847 #ifdef CONFIG_MMU
1848 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1849 {
1850 atomic_long_set(&mm->pgtables_bytes, 0);
1851 }
1852
1853 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1854 {
1855 return atomic_long_read(&mm->pgtables_bytes);
1856 }
1857
1858 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1859 {
1860 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1861 }
1862
1863 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1864 {
1865 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1866 }
1867 #else
1868
1869 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1870 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1871 {
1872 return 0;
1873 }
1874
1875 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1876 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1877 #endif
1878
1879 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1880 int __pte_alloc_kernel(pmd_t *pmd);
1881
1882 /*
1883 * The following ifdef needed to get the 4level-fixup.h header to work.
1884 * Remove it when 4level-fixup.h has been removed.
1885 */
1886 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1887
1888 #ifndef __ARCH_HAS_5LEVEL_HACK
1889 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1890 unsigned long address)
1891 {
1892 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1893 NULL : p4d_offset(pgd, address);
1894 }
1895
1896 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1897 unsigned long address)
1898 {
1899 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1900 NULL : pud_offset(p4d, address);
1901 }
1902 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1903
1904 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1905 {
1906 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1907 NULL: pmd_offset(pud, address);
1908 }
1909 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1910
1911 #if USE_SPLIT_PTE_PTLOCKS
1912 #if ALLOC_SPLIT_PTLOCKS
1913 void __init ptlock_cache_init(void);
1914 extern bool ptlock_alloc(struct page *page);
1915 extern void ptlock_free(struct page *page);
1916
1917 static inline spinlock_t *ptlock_ptr(struct page *page)
1918 {
1919 return page->ptl;
1920 }
1921 #else /* ALLOC_SPLIT_PTLOCKS */
1922 static inline void ptlock_cache_init(void)
1923 {
1924 }
1925
1926 static inline bool ptlock_alloc(struct page *page)
1927 {
1928 return true;
1929 }
1930
1931 static inline void ptlock_free(struct page *page)
1932 {
1933 }
1934
1935 static inline spinlock_t *ptlock_ptr(struct page *page)
1936 {
1937 return &page->ptl;
1938 }
1939 #endif /* ALLOC_SPLIT_PTLOCKS */
1940
1941 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1942 {
1943 return ptlock_ptr(pmd_page(*pmd));
1944 }
1945
1946 static inline bool ptlock_init(struct page *page)
1947 {
1948 /*
1949 * prep_new_page() initialize page->private (and therefore page->ptl)
1950 * with 0. Make sure nobody took it in use in between.
1951 *
1952 * It can happen if arch try to use slab for page table allocation:
1953 * slab code uses page->slab_cache, which share storage with page->ptl.
1954 */
1955 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1956 if (!ptlock_alloc(page))
1957 return false;
1958 spin_lock_init(ptlock_ptr(page));
1959 return true;
1960 }
1961
1962 #else /* !USE_SPLIT_PTE_PTLOCKS */
1963 /*
1964 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1965 */
1966 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1967 {
1968 return &mm->page_table_lock;
1969 }
1970 static inline void ptlock_cache_init(void) {}
1971 static inline bool ptlock_init(struct page *page) { return true; }
1972 static inline void ptlock_free(struct page *page) {}
1973 #endif /* USE_SPLIT_PTE_PTLOCKS */
1974
1975 static inline void pgtable_init(void)
1976 {
1977 ptlock_cache_init();
1978 pgtable_cache_init();
1979 }
1980
1981 static inline bool pgtable_pte_page_ctor(struct page *page)
1982 {
1983 if (!ptlock_init(page))
1984 return false;
1985 __SetPageTable(page);
1986 inc_zone_page_state(page, NR_PAGETABLE);
1987 return true;
1988 }
1989
1990 static inline void pgtable_pte_page_dtor(struct page *page)
1991 {
1992 ptlock_free(page);
1993 __ClearPageTable(page);
1994 dec_zone_page_state(page, NR_PAGETABLE);
1995 }
1996
1997 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1998 ({ \
1999 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2000 pte_t *__pte = pte_offset_map(pmd, address); \
2001 *(ptlp) = __ptl; \
2002 spin_lock(__ptl); \
2003 __pte; \
2004 })
2005
2006 #define pte_unmap_unlock(pte, ptl) do { \
2007 spin_unlock(ptl); \
2008 pte_unmap(pte); \
2009 } while (0)
2010
2011 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2012
2013 #define pte_alloc_map(mm, pmd, address) \
2014 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2015
2016 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2017 (pte_alloc(mm, pmd) ? \
2018 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2019
2020 #define pte_alloc_kernel(pmd, address) \
2021 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2022 NULL: pte_offset_kernel(pmd, address))
2023
2024 #if USE_SPLIT_PMD_PTLOCKS
2025
2026 static struct page *pmd_to_page(pmd_t *pmd)
2027 {
2028 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2029 return virt_to_page((void *)((unsigned long) pmd & mask));
2030 }
2031
2032 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2033 {
2034 return ptlock_ptr(pmd_to_page(pmd));
2035 }
2036
2037 static inline bool pgtable_pmd_page_ctor(struct page *page)
2038 {
2039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2040 page->pmd_huge_pte = NULL;
2041 #endif
2042 return ptlock_init(page);
2043 }
2044
2045 static inline void pgtable_pmd_page_dtor(struct page *page)
2046 {
2047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2048 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2049 #endif
2050 ptlock_free(page);
2051 }
2052
2053 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2054
2055 #else
2056
2057 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2058 {
2059 return &mm->page_table_lock;
2060 }
2061
2062 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2063 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2064
2065 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2066
2067 #endif
2068
2069 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2070 {
2071 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2072 spin_lock(ptl);
2073 return ptl;
2074 }
2075
2076 /*
2077 * No scalability reason to split PUD locks yet, but follow the same pattern
2078 * as the PMD locks to make it easier if we decide to. The VM should not be
2079 * considered ready to switch to split PUD locks yet; there may be places
2080 * which need to be converted from page_table_lock.
2081 */
2082 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2083 {
2084 return &mm->page_table_lock;
2085 }
2086
2087 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2088 {
2089 spinlock_t *ptl = pud_lockptr(mm, pud);
2090
2091 spin_lock(ptl);
2092 return ptl;
2093 }
2094
2095 extern void __init pagecache_init(void);
2096 extern void free_area_init(unsigned long * zones_size);
2097 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2098 unsigned long zone_start_pfn, unsigned long *zholes_size);
2099 extern void free_initmem(void);
2100
2101 /*
2102 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2103 * into the buddy system. The freed pages will be poisoned with pattern
2104 * "poison" if it's within range [0, UCHAR_MAX].
2105 * Return pages freed into the buddy system.
2106 */
2107 extern unsigned long free_reserved_area(void *start, void *end,
2108 int poison, const char *s);
2109
2110 #ifdef CONFIG_HIGHMEM
2111 /*
2112 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2113 * and totalram_pages.
2114 */
2115 extern void free_highmem_page(struct page *page);
2116 #endif
2117
2118 extern void adjust_managed_page_count(struct page *page, long count);
2119 extern void mem_init_print_info(const char *str);
2120
2121 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2122
2123 /* Free the reserved page into the buddy system, so it gets managed. */
2124 static inline void __free_reserved_page(struct page *page)
2125 {
2126 ClearPageReserved(page);
2127 init_page_count(page);
2128 __free_page(page);
2129 }
2130
2131 static inline void free_reserved_page(struct page *page)
2132 {
2133 __free_reserved_page(page);
2134 adjust_managed_page_count(page, 1);
2135 }
2136
2137 static inline void mark_page_reserved(struct page *page)
2138 {
2139 SetPageReserved(page);
2140 adjust_managed_page_count(page, -1);
2141 }
2142
2143 /*
2144 * Default method to free all the __init memory into the buddy system.
2145 * The freed pages will be poisoned with pattern "poison" if it's within
2146 * range [0, UCHAR_MAX].
2147 * Return pages freed into the buddy system.
2148 */
2149 static inline unsigned long free_initmem_default(int poison)
2150 {
2151 extern char __init_begin[], __init_end[];
2152
2153 return free_reserved_area(&__init_begin, &__init_end,
2154 poison, "unused kernel");
2155 }
2156
2157 static inline unsigned long get_num_physpages(void)
2158 {
2159 int nid;
2160 unsigned long phys_pages = 0;
2161
2162 for_each_online_node(nid)
2163 phys_pages += node_present_pages(nid);
2164
2165 return phys_pages;
2166 }
2167
2168 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2169 /*
2170 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2171 * zones, allocate the backing mem_map and account for memory holes in a more
2172 * architecture independent manner. This is a substitute for creating the
2173 * zone_sizes[] and zholes_size[] arrays and passing them to
2174 * free_area_init_node()
2175 *
2176 * An architecture is expected to register range of page frames backed by
2177 * physical memory with memblock_add[_node]() before calling
2178 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2179 * usage, an architecture is expected to do something like
2180 *
2181 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2182 * max_highmem_pfn};
2183 * for_each_valid_physical_page_range()
2184 * memblock_add_node(base, size, nid)
2185 * free_area_init_nodes(max_zone_pfns);
2186 *
2187 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2188 * registered physical page range. Similarly
2189 * sparse_memory_present_with_active_regions() calls memory_present() for
2190 * each range when SPARSEMEM is enabled.
2191 *
2192 * See mm/page_alloc.c for more information on each function exposed by
2193 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2194 */
2195 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2196 unsigned long node_map_pfn_alignment(void);
2197 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2198 unsigned long end_pfn);
2199 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2200 unsigned long end_pfn);
2201 extern void get_pfn_range_for_nid(unsigned int nid,
2202 unsigned long *start_pfn, unsigned long *end_pfn);
2203 extern unsigned long find_min_pfn_with_active_regions(void);
2204 extern void free_bootmem_with_active_regions(int nid,
2205 unsigned long max_low_pfn);
2206 extern void sparse_memory_present_with_active_regions(int nid);
2207
2208 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2209
2210 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2211 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2212 static inline int __early_pfn_to_nid(unsigned long pfn,
2213 struct mminit_pfnnid_cache *state)
2214 {
2215 return 0;
2216 }
2217 #else
2218 /* please see mm/page_alloc.c */
2219 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2220 /* there is a per-arch backend function. */
2221 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2222 struct mminit_pfnnid_cache *state);
2223 #endif
2224
2225 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2226 void zero_resv_unavail(void);
2227 #else
2228 static inline void zero_resv_unavail(void) {}
2229 #endif
2230
2231 extern void set_dma_reserve(unsigned long new_dma_reserve);
2232 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2233 enum meminit_context, struct vmem_altmap *);
2234 extern void setup_per_zone_wmarks(void);
2235 extern int __meminit init_per_zone_wmark_min(void);
2236 extern void mem_init(void);
2237 extern void __init mmap_init(void);
2238 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2239 extern long si_mem_available(void);
2240 extern void si_meminfo(struct sysinfo * val);
2241 extern void si_meminfo_node(struct sysinfo *val, int nid);
2242 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2243 extern unsigned long arch_reserved_kernel_pages(void);
2244 #endif
2245
2246 extern __printf(3, 4)
2247 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2248
2249 extern void setup_per_cpu_pageset(void);
2250
2251 extern void zone_pcp_update(struct zone *zone);
2252 extern void zone_pcp_reset(struct zone *zone);
2253
2254 /* page_alloc.c */
2255 extern int min_free_kbytes;
2256 extern int watermark_boost_factor;
2257 extern int watermark_scale_factor;
2258
2259 /* nommu.c */
2260 extern atomic_long_t mmap_pages_allocated;
2261 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2262
2263 /* interval_tree.c */
2264 void vma_interval_tree_insert(struct vm_area_struct *node,
2265 struct rb_root_cached *root);
2266 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2267 struct vm_area_struct *prev,
2268 struct rb_root_cached *root);
2269 void vma_interval_tree_remove(struct vm_area_struct *node,
2270 struct rb_root_cached *root);
2271 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2272 unsigned long start, unsigned long last);
2273 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2274 unsigned long start, unsigned long last);
2275
2276 #define vma_interval_tree_foreach(vma, root, start, last) \
2277 for (vma = vma_interval_tree_iter_first(root, start, last); \
2278 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2279
2280 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2281 struct rb_root_cached *root);
2282 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2283 struct rb_root_cached *root);
2284 struct anon_vma_chain *
2285 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2286 unsigned long start, unsigned long last);
2287 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2288 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2289 #ifdef CONFIG_DEBUG_VM_RB
2290 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2291 #endif
2292
2293 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2294 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2295 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2296
2297 /* mmap.c */
2298 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2299 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2300 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2301 struct vm_area_struct *expand);
2302 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2303 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2304 {
2305 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2306 }
2307 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2308 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2309 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2310 struct mempolicy *, struct vm_userfaultfd_ctx);
2311 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2312 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2313 unsigned long addr, int new_below);
2314 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2315 unsigned long addr, int new_below);
2316 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2317 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2318 struct rb_node **, struct rb_node *);
2319 extern void unlink_file_vma(struct vm_area_struct *);
2320 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2321 unsigned long addr, unsigned long len, pgoff_t pgoff,
2322 bool *need_rmap_locks);
2323 extern void exit_mmap(struct mm_struct *);
2324
2325 static inline int check_data_rlimit(unsigned long rlim,
2326 unsigned long new,
2327 unsigned long start,
2328 unsigned long end_data,
2329 unsigned long start_data)
2330 {
2331 if (rlim < RLIM_INFINITY) {
2332 if (((new - start) + (end_data - start_data)) > rlim)
2333 return -ENOSPC;
2334 }
2335
2336 return 0;
2337 }
2338
2339 extern int mm_take_all_locks(struct mm_struct *mm);
2340 extern void mm_drop_all_locks(struct mm_struct *mm);
2341
2342 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2343 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2344 extern struct file *get_task_exe_file(struct task_struct *task);
2345
2346 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2347 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2348
2349 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2350 const struct vm_special_mapping *sm);
2351 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2352 unsigned long addr, unsigned long len,
2353 unsigned long flags,
2354 const struct vm_special_mapping *spec);
2355 /* This is an obsolete alternative to _install_special_mapping. */
2356 extern int install_special_mapping(struct mm_struct *mm,
2357 unsigned long addr, unsigned long len,
2358 unsigned long flags, struct page **pages);
2359
2360 unsigned long randomize_stack_top(unsigned long stack_top);
2361
2362 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2363
2364 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2365 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2366 struct list_head *uf);
2367 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2368 unsigned long len, unsigned long prot, unsigned long flags,
2369 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2370 struct list_head *uf);
2371 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2372 struct list_head *uf, bool downgrade);
2373 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2374 struct list_head *uf);
2375
2376 static inline unsigned long
2377 do_mmap_pgoff(struct file *file, unsigned long addr,
2378 unsigned long len, unsigned long prot, unsigned long flags,
2379 unsigned long pgoff, unsigned long *populate,
2380 struct list_head *uf)
2381 {
2382 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2383 }
2384
2385 #ifdef CONFIG_MMU
2386 extern int __mm_populate(unsigned long addr, unsigned long len,
2387 int ignore_errors);
2388 static inline void mm_populate(unsigned long addr, unsigned long len)
2389 {
2390 /* Ignore errors */
2391 (void) __mm_populate(addr, len, 1);
2392 }
2393 #else
2394 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2395 #endif
2396
2397 /* These take the mm semaphore themselves */
2398 extern int __must_check vm_brk(unsigned long, unsigned long);
2399 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2400 extern int vm_munmap(unsigned long, size_t);
2401 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2402 unsigned long, unsigned long,
2403 unsigned long, unsigned long);
2404
2405 struct vm_unmapped_area_info {
2406 #define VM_UNMAPPED_AREA_TOPDOWN 1
2407 unsigned long flags;
2408 unsigned long length;
2409 unsigned long low_limit;
2410 unsigned long high_limit;
2411 unsigned long align_mask;
2412 unsigned long align_offset;
2413 };
2414
2415 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2416 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2417
2418 /*
2419 * Search for an unmapped address range.
2420 *
2421 * We are looking for a range that:
2422 * - does not intersect with any VMA;
2423 * - is contained within the [low_limit, high_limit) interval;
2424 * - is at least the desired size.
2425 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2426 */
2427 static inline unsigned long
2428 vm_unmapped_area(struct vm_unmapped_area_info *info)
2429 {
2430 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2431 return unmapped_area_topdown(info);
2432 else
2433 return unmapped_area(info);
2434 }
2435
2436 /* truncate.c */
2437 extern void truncate_inode_pages(struct address_space *, loff_t);
2438 extern void truncate_inode_pages_range(struct address_space *,
2439 loff_t lstart, loff_t lend);
2440 extern void truncate_inode_pages_final(struct address_space *);
2441
2442 /* generic vm_area_ops exported for stackable file systems */
2443 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2444 extern void filemap_map_pages(struct vm_fault *vmf,
2445 pgoff_t start_pgoff, pgoff_t end_pgoff);
2446 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2447
2448 /* mm/page-writeback.c */
2449 int __must_check write_one_page(struct page *page);
2450 void task_dirty_inc(struct task_struct *tsk);
2451
2452 /* readahead.c */
2453 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
2454
2455 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2456 pgoff_t offset, unsigned long nr_to_read);
2457
2458 void page_cache_sync_readahead(struct address_space *mapping,
2459 struct file_ra_state *ra,
2460 struct file *filp,
2461 pgoff_t offset,
2462 unsigned long size);
2463
2464 void page_cache_async_readahead(struct address_space *mapping,
2465 struct file_ra_state *ra,
2466 struct file *filp,
2467 struct page *pg,
2468 pgoff_t offset,
2469 unsigned long size);
2470
2471 extern unsigned long stack_guard_gap;
2472 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2473 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2474
2475 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2476 extern int expand_downwards(struct vm_area_struct *vma,
2477 unsigned long address);
2478 #if VM_GROWSUP
2479 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2480 #else
2481 #define expand_upwards(vma, address) (0)
2482 #endif
2483
2484 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2485 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2486 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2487 struct vm_area_struct **pprev);
2488
2489 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2490 NULL if none. Assume start_addr < end_addr. */
2491 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2492 {
2493 struct vm_area_struct * vma = find_vma(mm,start_addr);
2494
2495 if (vma && end_addr <= vma->vm_start)
2496 vma = NULL;
2497 return vma;
2498 }
2499
2500 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2501 {
2502 unsigned long vm_start = vma->vm_start;
2503
2504 if (vma->vm_flags & VM_GROWSDOWN) {
2505 vm_start -= stack_guard_gap;
2506 if (vm_start > vma->vm_start)
2507 vm_start = 0;
2508 }
2509 return vm_start;
2510 }
2511
2512 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2513 {
2514 unsigned long vm_end = vma->vm_end;
2515
2516 if (vma->vm_flags & VM_GROWSUP) {
2517 vm_end += stack_guard_gap;
2518 if (vm_end < vma->vm_end)
2519 vm_end = -PAGE_SIZE;
2520 }
2521 return vm_end;
2522 }
2523
2524 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2525 {
2526 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2527 }
2528
2529 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2530 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2531 unsigned long vm_start, unsigned long vm_end)
2532 {
2533 struct vm_area_struct *vma = find_vma(mm, vm_start);
2534
2535 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2536 vma = NULL;
2537
2538 return vma;
2539 }
2540
2541 static inline bool range_in_vma(struct vm_area_struct *vma,
2542 unsigned long start, unsigned long end)
2543 {
2544 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2545 }
2546
2547 #ifdef CONFIG_MMU
2548 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2549 void vma_set_page_prot(struct vm_area_struct *vma);
2550 #else
2551 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2552 {
2553 return __pgprot(0);
2554 }
2555 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2556 {
2557 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2558 }
2559 #endif
2560
2561 #ifdef CONFIG_NUMA_BALANCING
2562 unsigned long change_prot_numa(struct vm_area_struct *vma,
2563 unsigned long start, unsigned long end);
2564 #endif
2565
2566 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2567 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2568 unsigned long pfn, unsigned long size, pgprot_t);
2569 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2570 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2571 unsigned long num);
2572 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2573 unsigned long num);
2574 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2575 unsigned long pfn);
2576 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2577 unsigned long pfn, pgprot_t pgprot);
2578 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2579 pfn_t pfn);
2580 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2581 unsigned long addr, pfn_t pfn);
2582 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2583
2584 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2585 unsigned long addr, struct page *page)
2586 {
2587 int err = vm_insert_page(vma, addr, page);
2588
2589 if (err == -ENOMEM)
2590 return VM_FAULT_OOM;
2591 if (err < 0 && err != -EBUSY)
2592 return VM_FAULT_SIGBUS;
2593
2594 return VM_FAULT_NOPAGE;
2595 }
2596
2597 static inline vm_fault_t vmf_error(int err)
2598 {
2599 if (err == -ENOMEM)
2600 return VM_FAULT_OOM;
2601 return VM_FAULT_SIGBUS;
2602 }
2603
2604 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2605 unsigned int foll_flags);
2606
2607 #define FOLL_WRITE 0x01 /* check pte is writable */
2608 #define FOLL_TOUCH 0x02 /* mark page accessed */
2609 #define FOLL_GET 0x04 /* do get_page on page */
2610 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2611 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2612 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2613 * and return without waiting upon it */
2614 #define FOLL_POPULATE 0x40 /* fault in page */
2615 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2616 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2617 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2618 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2619 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2620 #define FOLL_MLOCK 0x1000 /* lock present pages */
2621 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2622 #define FOLL_COW 0x4000 /* internal GUP flag */
2623 #define FOLL_ANON 0x8000 /* don't do file mappings */
2624 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2625 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2626
2627 /*
2628 * NOTE on FOLL_LONGTERM:
2629 *
2630 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2631 * period _often_ under userspace control. This is contrasted with
2632 * iov_iter_get_pages() where usages which are transient.
2633 *
2634 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2635 * lifetime enforced by the filesystem and we need guarantees that longterm
2636 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2637 * the filesystem. Ideas for this coordination include revoking the longterm
2638 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2639 * added after the problem with filesystems was found FS DAX VMAs are
2640 * specifically failed. Filesystem pages are still subject to bugs and use of
2641 * FOLL_LONGTERM should be avoided on those pages.
2642 *
2643 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2644 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2645 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2646 * is due to an incompatibility with the FS DAX check and
2647 * FAULT_FLAG_ALLOW_RETRY
2648 *
2649 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2650 * that region. And so CMA attempts to migrate the page before pinning when
2651 * FOLL_LONGTERM is specified.
2652 */
2653
2654 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2655 {
2656 if (vm_fault & VM_FAULT_OOM)
2657 return -ENOMEM;
2658 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2659 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2660 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2661 return -EFAULT;
2662 return 0;
2663 }
2664
2665 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2666 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2667 unsigned long size, pte_fn_t fn, void *data);
2668
2669
2670 #ifdef CONFIG_PAGE_POISONING
2671 extern bool page_poisoning_enabled(void);
2672 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2673 #else
2674 static inline bool page_poisoning_enabled(void) { return false; }
2675 static inline void kernel_poison_pages(struct page *page, int numpages,
2676 int enable) { }
2677 #endif
2678
2679 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2680 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2681 #else
2682 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2683 #endif
2684 static inline bool want_init_on_alloc(gfp_t flags)
2685 {
2686 if (static_branch_unlikely(&init_on_alloc) &&
2687 !page_poisoning_enabled())
2688 return true;
2689 return flags & __GFP_ZERO;
2690 }
2691
2692 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2693 DECLARE_STATIC_KEY_TRUE(init_on_free);
2694 #else
2695 DECLARE_STATIC_KEY_FALSE(init_on_free);
2696 #endif
2697 static inline bool want_init_on_free(void)
2698 {
2699 return static_branch_unlikely(&init_on_free) &&
2700 !page_poisoning_enabled();
2701 }
2702
2703 #ifdef CONFIG_DEBUG_PAGEALLOC
2704 extern void init_debug_pagealloc(void);
2705 #else
2706 static inline void init_debug_pagealloc(void) {}
2707 #endif
2708 extern bool _debug_pagealloc_enabled_early;
2709 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2710
2711 static inline bool debug_pagealloc_enabled(void)
2712 {
2713 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2714 _debug_pagealloc_enabled_early;
2715 }
2716
2717 /*
2718 * For use in fast paths after init_debug_pagealloc() has run, or when a
2719 * false negative result is not harmful when called too early.
2720 */
2721 static inline bool debug_pagealloc_enabled_static(void)
2722 {
2723 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2724 return false;
2725
2726 return static_branch_unlikely(&_debug_pagealloc_enabled);
2727 }
2728
2729 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2730 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2731
2732 /*
2733 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2734 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2735 */
2736 static inline void
2737 kernel_map_pages(struct page *page, int numpages, int enable)
2738 {
2739 __kernel_map_pages(page, numpages, enable);
2740 }
2741 #ifdef CONFIG_HIBERNATION
2742 extern bool kernel_page_present(struct page *page);
2743 #endif /* CONFIG_HIBERNATION */
2744 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2745 static inline void
2746 kernel_map_pages(struct page *page, int numpages, int enable) {}
2747 #ifdef CONFIG_HIBERNATION
2748 static inline bool kernel_page_present(struct page *page) { return true; }
2749 #endif /* CONFIG_HIBERNATION */
2750 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2751
2752 #ifdef __HAVE_ARCH_GATE_AREA
2753 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2754 extern int in_gate_area_no_mm(unsigned long addr);
2755 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2756 #else
2757 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2758 {
2759 return NULL;
2760 }
2761 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2762 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2763 {
2764 return 0;
2765 }
2766 #endif /* __HAVE_ARCH_GATE_AREA */
2767
2768 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2769
2770 #ifdef CONFIG_SYSCTL
2771 extern int sysctl_drop_caches;
2772 int drop_caches_sysctl_handler(struct ctl_table *, int,
2773 void __user *, size_t *, loff_t *);
2774 #endif
2775
2776 void drop_slab(void);
2777 void drop_slab_node(int nid);
2778
2779 #ifndef CONFIG_MMU
2780 #define randomize_va_space 0
2781 #else
2782 extern int randomize_va_space;
2783 #endif
2784
2785 const char * arch_vma_name(struct vm_area_struct *vma);
2786 #ifdef CONFIG_MMU
2787 void print_vma_addr(char *prefix, unsigned long rip);
2788 #else
2789 static inline void print_vma_addr(char *prefix, unsigned long rip)
2790 {
2791 }
2792 #endif
2793
2794 void *sparse_buffer_alloc(unsigned long size);
2795 struct page * __populate_section_memmap(unsigned long pfn,
2796 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2797 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2798 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2799 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2800 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2801 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2802 void *vmemmap_alloc_block(unsigned long size, int node);
2803 struct vmem_altmap;
2804 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2805 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2806 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2807 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2808 int node);
2809 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2810 struct vmem_altmap *altmap);
2811 void vmemmap_populate_print_last(void);
2812 #ifdef CONFIG_MEMORY_HOTPLUG
2813 void vmemmap_free(unsigned long start, unsigned long end,
2814 struct vmem_altmap *altmap);
2815 #endif
2816 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2817 unsigned long nr_pages);
2818
2819 enum mf_flags {
2820 MF_COUNT_INCREASED = 1 << 0,
2821 MF_ACTION_REQUIRED = 1 << 1,
2822 MF_MUST_KILL = 1 << 2,
2823 MF_SOFT_OFFLINE = 1 << 3,
2824 };
2825 extern int memory_failure(unsigned long pfn, int flags);
2826 extern void memory_failure_queue(unsigned long pfn, int flags);
2827 extern int unpoison_memory(unsigned long pfn);
2828 extern int get_hwpoison_page(struct page *page);
2829 #define put_hwpoison_page(page) put_page(page)
2830 extern int sysctl_memory_failure_early_kill;
2831 extern int sysctl_memory_failure_recovery;
2832 extern void shake_page(struct page *p, int access);
2833 extern atomic_long_t num_poisoned_pages __read_mostly;
2834 extern int soft_offline_page(struct page *page, int flags);
2835
2836
2837 /*
2838 * Error handlers for various types of pages.
2839 */
2840 enum mf_result {
2841 MF_IGNORED, /* Error: cannot be handled */
2842 MF_FAILED, /* Error: handling failed */
2843 MF_DELAYED, /* Will be handled later */
2844 MF_RECOVERED, /* Successfully recovered */
2845 };
2846
2847 enum mf_action_page_type {
2848 MF_MSG_KERNEL,
2849 MF_MSG_KERNEL_HIGH_ORDER,
2850 MF_MSG_SLAB,
2851 MF_MSG_DIFFERENT_COMPOUND,
2852 MF_MSG_POISONED_HUGE,
2853 MF_MSG_HUGE,
2854 MF_MSG_FREE_HUGE,
2855 MF_MSG_NON_PMD_HUGE,
2856 MF_MSG_UNMAP_FAILED,
2857 MF_MSG_DIRTY_SWAPCACHE,
2858 MF_MSG_CLEAN_SWAPCACHE,
2859 MF_MSG_DIRTY_MLOCKED_LRU,
2860 MF_MSG_CLEAN_MLOCKED_LRU,
2861 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2862 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2863 MF_MSG_DIRTY_LRU,
2864 MF_MSG_CLEAN_LRU,
2865 MF_MSG_TRUNCATED_LRU,
2866 MF_MSG_BUDDY,
2867 MF_MSG_BUDDY_2ND,
2868 MF_MSG_DAX,
2869 MF_MSG_UNKNOWN,
2870 };
2871
2872 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2873 extern void clear_huge_page(struct page *page,
2874 unsigned long addr_hint,
2875 unsigned int pages_per_huge_page);
2876 extern void copy_user_huge_page(struct page *dst, struct page *src,
2877 unsigned long addr_hint,
2878 struct vm_area_struct *vma,
2879 unsigned int pages_per_huge_page);
2880 extern long copy_huge_page_from_user(struct page *dst_page,
2881 const void __user *usr_src,
2882 unsigned int pages_per_huge_page,
2883 bool allow_pagefault);
2884 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2885
2886 #ifdef CONFIG_DEBUG_PAGEALLOC
2887 extern unsigned int _debug_guardpage_minorder;
2888 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2889
2890 static inline unsigned int debug_guardpage_minorder(void)
2891 {
2892 return _debug_guardpage_minorder;
2893 }
2894
2895 static inline bool debug_guardpage_enabled(void)
2896 {
2897 return static_branch_unlikely(&_debug_guardpage_enabled);
2898 }
2899
2900 static inline bool page_is_guard(struct page *page)
2901 {
2902 if (!debug_guardpage_enabled())
2903 return false;
2904
2905 return PageGuard(page);
2906 }
2907 #else
2908 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2909 static inline bool debug_guardpage_enabled(void) { return false; }
2910 static inline bool page_is_guard(struct page *page) { return false; }
2911 #endif /* CONFIG_DEBUG_PAGEALLOC */
2912
2913 #if MAX_NUMNODES > 1
2914 void __init setup_nr_node_ids(void);
2915 #else
2916 static inline void setup_nr_node_ids(void) {}
2917 #endif
2918
2919 extern int memcmp_pages(struct page *page1, struct page *page2);
2920
2921 static inline int pages_identical(struct page *page1, struct page *page2)
2922 {
2923 return !memcmp_pages(page1, page2);
2924 }
2925
2926 #endif /* __KERNEL__ */
2927 #endif /* _LINUX_MM_H */