]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/mm.h
kernel/fork.c: make mm_init_owner static
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21
22 struct mempolicy;
23 struct anon_vma;
24 struct anon_vma_chain;
25 struct file_ra_state;
26 struct user_struct;
27 struct writeback_control;
28
29 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30 extern unsigned long max_mapnr;
31
32 static inline void set_max_mapnr(unsigned long limit)
33 {
34 max_mapnr = limit;
35 }
36 #else
37 static inline void set_max_mapnr(unsigned long limit) { }
38 #endif
39
40 extern unsigned long totalram_pages;
41 extern void * high_memory;
42 extern int page_cluster;
43
44 #ifdef CONFIG_SYSCTL
45 extern int sysctl_legacy_va_layout;
46 #else
47 #define sysctl_legacy_va_layout 0
48 #endif
49
50 #include <asm/page.h>
51 #include <asm/pgtable.h>
52 #include <asm/processor.h>
53
54 #ifndef __pa_symbol
55 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56 #endif
57
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60
61 extern int sysctl_overcommit_memory;
62 extern int sysctl_overcommit_ratio;
63 extern unsigned long sysctl_overcommit_kbytes;
64
65 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
70 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
72 /* to align the pointer to the (next) page boundary */
73 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
75 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
78 /*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
87 extern struct kmem_cache *vm_area_cachep;
88
89 #ifndef CONFIG_MMU
90 extern struct rb_root nommu_region_tree;
91 extern struct rw_semaphore nommu_region_sem;
92
93 extern unsigned int kobjsize(const void *objp);
94 #endif
95
96 /*
97 * vm_flags in vm_area_struct, see mm_types.h.
98 */
99 #define VM_NONE 0x00000000
100
101 #define VM_READ 0x00000001 /* currently active flags */
102 #define VM_WRITE 0x00000002
103 #define VM_EXEC 0x00000004
104 #define VM_SHARED 0x00000008
105
106 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108 #define VM_MAYWRITE 0x00000020
109 #define VM_MAYEXEC 0x00000040
110 #define VM_MAYSHARE 0x00000080
111
112 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
116 #define VM_LOCKED 0x00002000
117 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131
132 #ifdef CONFIG_MEM_SOFT_DIRTY
133 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134 #else
135 # define VM_SOFTDIRTY 0
136 #endif
137
138 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142
143 #if defined(CONFIG_X86)
144 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145 #elif defined(CONFIG_PPC)
146 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147 #elif defined(CONFIG_PARISC)
148 # define VM_GROWSUP VM_ARCH_1
149 #elif defined(CONFIG_METAG)
150 # define VM_GROWSUP VM_ARCH_1
151 #elif defined(CONFIG_IA64)
152 # define VM_GROWSUP VM_ARCH_1
153 #elif !defined(CONFIG_MMU)
154 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155 #endif
156
157 #ifndef VM_GROWSUP
158 # define VM_GROWSUP VM_NONE
159 #endif
160
161 /* Bits set in the VMA until the stack is in its final location */
162 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
164 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 #endif
167
168 #ifdef CONFIG_STACK_GROWSUP
169 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 #else
171 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 #endif
173
174 /*
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 */
178 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179
180 /* This mask defines which mm->def_flags a process can inherit its parent */
181 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182
183 /*
184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask..
186 */
187 extern pgprot_t protection_map[16];
188
189 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
191 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
192 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
193 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
194 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
195 #define FAULT_FLAG_TRIED 0x40 /* second try */
196 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
197
198 /*
199 * vm_fault is filled by the the pagefault handler and passed to the vma's
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
202 *
203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
205 */
206 struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */
210
211 struct page *page; /* ->fault handlers should return a
212 * page here, unless VM_FAULT_NOPAGE
213 * is set (which is also implied by
214 * VM_FAULT_ERROR).
215 */
216 /* for ->map_pages() only */
217 pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 * max_pgoff inclusive */
219 pte_t *pte; /* pte entry associated with ->pgoff */
220 };
221
222 /*
223 * These are the virtual MM functions - opening of an area, closing and
224 * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 * to the functions called when a no-page or a wp-page exception occurs.
226 */
227 struct vm_operations_struct {
228 void (*open)(struct vm_area_struct * area);
229 void (*close)(struct vm_area_struct * area);
230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
232
233 /* notification that a previously read-only page is about to become
234 * writable, if an error is returned it will cause a SIGBUS */
235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
236
237 /* called by access_process_vm when get_user_pages() fails, typically
238 * for use by special VMAs that can switch between memory and hardware
239 */
240 int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 void *buf, int len, int write);
242
243 /* Called by the /proc/PID/maps code to ask the vma whether it
244 * has a special name. Returning non-NULL will also cause this
245 * vma to be dumped unconditionally. */
246 const char *(*name)(struct vm_area_struct *vma);
247
248 #ifdef CONFIG_NUMA
249 /*
250 * set_policy() op must add a reference to any non-NULL @new mempolicy
251 * to hold the policy upon return. Caller should pass NULL @new to
252 * remove a policy and fall back to surrounding context--i.e. do not
253 * install a MPOL_DEFAULT policy, nor the task or system default
254 * mempolicy.
255 */
256 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
257
258 /*
259 * get_policy() op must add reference [mpol_get()] to any policy at
260 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
261 * in mm/mempolicy.c will do this automatically.
262 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
263 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
264 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
265 * must return NULL--i.e., do not "fallback" to task or system default
266 * policy.
267 */
268 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
269 unsigned long addr);
270 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
271 const nodemask_t *to, unsigned long flags);
272 #endif
273 /* called by sys_remap_file_pages() to populate non-linear mapping */
274 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
275 unsigned long size, pgoff_t pgoff);
276 };
277
278 struct mmu_gather;
279 struct inode;
280
281 #define page_private(page) ((page)->private)
282 #define set_page_private(page, v) ((page)->private = (v))
283
284 /* It's valid only if the page is free path or free_list */
285 static inline void set_freepage_migratetype(struct page *page, int migratetype)
286 {
287 page->index = migratetype;
288 }
289
290 /* It's valid only if the page is free path or free_list */
291 static inline int get_freepage_migratetype(struct page *page)
292 {
293 return page->index;
294 }
295
296 /*
297 * FIXME: take this include out, include page-flags.h in
298 * files which need it (119 of them)
299 */
300 #include <linux/page-flags.h>
301 #include <linux/huge_mm.h>
302
303 /*
304 * Methods to modify the page usage count.
305 *
306 * What counts for a page usage:
307 * - cache mapping (page->mapping)
308 * - private data (page->private)
309 * - page mapped in a task's page tables, each mapping
310 * is counted separately
311 *
312 * Also, many kernel routines increase the page count before a critical
313 * routine so they can be sure the page doesn't go away from under them.
314 */
315
316 /*
317 * Drop a ref, return true if the refcount fell to zero (the page has no users)
318 */
319 static inline int put_page_testzero(struct page *page)
320 {
321 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
322 return atomic_dec_and_test(&page->_count);
323 }
324
325 /*
326 * Try to grab a ref unless the page has a refcount of zero, return false if
327 * that is the case.
328 * This can be called when MMU is off so it must not access
329 * any of the virtual mappings.
330 */
331 static inline int get_page_unless_zero(struct page *page)
332 {
333 return atomic_inc_not_zero(&page->_count);
334 }
335
336 /*
337 * Try to drop a ref unless the page has a refcount of one, return false if
338 * that is the case.
339 * This is to make sure that the refcount won't become zero after this drop.
340 * This can be called when MMU is off so it must not access
341 * any of the virtual mappings.
342 */
343 static inline int put_page_unless_one(struct page *page)
344 {
345 return atomic_add_unless(&page->_count, -1, 1);
346 }
347
348 extern int page_is_ram(unsigned long pfn);
349
350 /* Support for virtually mapped pages */
351 struct page *vmalloc_to_page(const void *addr);
352 unsigned long vmalloc_to_pfn(const void *addr);
353
354 /*
355 * Determine if an address is within the vmalloc range
356 *
357 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
358 * is no special casing required.
359 */
360 static inline int is_vmalloc_addr(const void *x)
361 {
362 #ifdef CONFIG_MMU
363 unsigned long addr = (unsigned long)x;
364
365 return addr >= VMALLOC_START && addr < VMALLOC_END;
366 #else
367 return 0;
368 #endif
369 }
370 #ifdef CONFIG_MMU
371 extern int is_vmalloc_or_module_addr(const void *x);
372 #else
373 static inline int is_vmalloc_or_module_addr(const void *x)
374 {
375 return 0;
376 }
377 #endif
378
379 extern void kvfree(const void *addr);
380
381 static inline void compound_lock(struct page *page)
382 {
383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
384 VM_BUG_ON_PAGE(PageSlab(page), page);
385 bit_spin_lock(PG_compound_lock, &page->flags);
386 #endif
387 }
388
389 static inline void compound_unlock(struct page *page)
390 {
391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
392 VM_BUG_ON_PAGE(PageSlab(page), page);
393 bit_spin_unlock(PG_compound_lock, &page->flags);
394 #endif
395 }
396
397 static inline unsigned long compound_lock_irqsave(struct page *page)
398 {
399 unsigned long uninitialized_var(flags);
400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
401 local_irq_save(flags);
402 compound_lock(page);
403 #endif
404 return flags;
405 }
406
407 static inline void compound_unlock_irqrestore(struct page *page,
408 unsigned long flags)
409 {
410 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
411 compound_unlock(page);
412 local_irq_restore(flags);
413 #endif
414 }
415
416 static inline struct page *compound_head_by_tail(struct page *tail)
417 {
418 struct page *head = tail->first_page;
419
420 /*
421 * page->first_page may be a dangling pointer to an old
422 * compound page, so recheck that it is still a tail
423 * page before returning.
424 */
425 smp_rmb();
426 if (likely(PageTail(tail)))
427 return head;
428 return tail;
429 }
430
431 static inline struct page *compound_head(struct page *page)
432 {
433 if (unlikely(PageTail(page)))
434 return compound_head_by_tail(page);
435 return page;
436 }
437
438 /*
439 * The atomic page->_mapcount, starts from -1: so that transitions
440 * both from it and to it can be tracked, using atomic_inc_and_test
441 * and atomic_add_negative(-1).
442 */
443 static inline void page_mapcount_reset(struct page *page)
444 {
445 atomic_set(&(page)->_mapcount, -1);
446 }
447
448 static inline int page_mapcount(struct page *page)
449 {
450 return atomic_read(&(page)->_mapcount) + 1;
451 }
452
453 static inline int page_count(struct page *page)
454 {
455 return atomic_read(&compound_head(page)->_count);
456 }
457
458 #ifdef CONFIG_HUGETLB_PAGE
459 extern int PageHeadHuge(struct page *page_head);
460 #else /* CONFIG_HUGETLB_PAGE */
461 static inline int PageHeadHuge(struct page *page_head)
462 {
463 return 0;
464 }
465 #endif /* CONFIG_HUGETLB_PAGE */
466
467 static inline bool __compound_tail_refcounted(struct page *page)
468 {
469 return !PageSlab(page) && !PageHeadHuge(page);
470 }
471
472 /*
473 * This takes a head page as parameter and tells if the
474 * tail page reference counting can be skipped.
475 *
476 * For this to be safe, PageSlab and PageHeadHuge must remain true on
477 * any given page where they return true here, until all tail pins
478 * have been released.
479 */
480 static inline bool compound_tail_refcounted(struct page *page)
481 {
482 VM_BUG_ON_PAGE(!PageHead(page), page);
483 return __compound_tail_refcounted(page);
484 }
485
486 static inline void get_huge_page_tail(struct page *page)
487 {
488 /*
489 * __split_huge_page_refcount() cannot run from under us.
490 */
491 VM_BUG_ON_PAGE(!PageTail(page), page);
492 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
493 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
494 if (compound_tail_refcounted(page->first_page))
495 atomic_inc(&page->_mapcount);
496 }
497
498 extern bool __get_page_tail(struct page *page);
499
500 static inline void get_page(struct page *page)
501 {
502 if (unlikely(PageTail(page)))
503 if (likely(__get_page_tail(page)))
504 return;
505 /*
506 * Getting a normal page or the head of a compound page
507 * requires to already have an elevated page->_count.
508 */
509 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
510 atomic_inc(&page->_count);
511 }
512
513 static inline struct page *virt_to_head_page(const void *x)
514 {
515 struct page *page = virt_to_page(x);
516 return compound_head(page);
517 }
518
519 /*
520 * Setup the page count before being freed into the page allocator for
521 * the first time (boot or memory hotplug)
522 */
523 static inline void init_page_count(struct page *page)
524 {
525 atomic_set(&page->_count, 1);
526 }
527
528 /*
529 * PageBuddy() indicate that the page is free and in the buddy system
530 * (see mm/page_alloc.c).
531 *
532 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
533 * -2 so that an underflow of the page_mapcount() won't be mistaken
534 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
535 * efficiently by most CPU architectures.
536 */
537 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
538
539 static inline int PageBuddy(struct page *page)
540 {
541 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
542 }
543
544 static inline void __SetPageBuddy(struct page *page)
545 {
546 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
547 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
548 }
549
550 static inline void __ClearPageBuddy(struct page *page)
551 {
552 VM_BUG_ON_PAGE(!PageBuddy(page), page);
553 atomic_set(&page->_mapcount, -1);
554 }
555
556 void put_page(struct page *page);
557 void put_pages_list(struct list_head *pages);
558
559 void split_page(struct page *page, unsigned int order);
560 int split_free_page(struct page *page);
561
562 /*
563 * Compound pages have a destructor function. Provide a
564 * prototype for that function and accessor functions.
565 * These are _only_ valid on the head of a PG_compound page.
566 */
567 typedef void compound_page_dtor(struct page *);
568
569 static inline void set_compound_page_dtor(struct page *page,
570 compound_page_dtor *dtor)
571 {
572 page[1].lru.next = (void *)dtor;
573 }
574
575 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
576 {
577 return (compound_page_dtor *)page[1].lru.next;
578 }
579
580 static inline int compound_order(struct page *page)
581 {
582 if (!PageHead(page))
583 return 0;
584 return (unsigned long)page[1].lru.prev;
585 }
586
587 static inline void set_compound_order(struct page *page, unsigned long order)
588 {
589 page[1].lru.prev = (void *)order;
590 }
591
592 #ifdef CONFIG_MMU
593 /*
594 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
595 * servicing faults for write access. In the normal case, do always want
596 * pte_mkwrite. But get_user_pages can cause write faults for mappings
597 * that do not have writing enabled, when used by access_process_vm.
598 */
599 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
600 {
601 if (likely(vma->vm_flags & VM_WRITE))
602 pte = pte_mkwrite(pte);
603 return pte;
604 }
605
606 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
607 struct page *page, pte_t *pte, bool write, bool anon);
608 #endif
609
610 /*
611 * Multiple processes may "see" the same page. E.g. for untouched
612 * mappings of /dev/null, all processes see the same page full of
613 * zeroes, and text pages of executables and shared libraries have
614 * only one copy in memory, at most, normally.
615 *
616 * For the non-reserved pages, page_count(page) denotes a reference count.
617 * page_count() == 0 means the page is free. page->lru is then used for
618 * freelist management in the buddy allocator.
619 * page_count() > 0 means the page has been allocated.
620 *
621 * Pages are allocated by the slab allocator in order to provide memory
622 * to kmalloc and kmem_cache_alloc. In this case, the management of the
623 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
624 * unless a particular usage is carefully commented. (the responsibility of
625 * freeing the kmalloc memory is the caller's, of course).
626 *
627 * A page may be used by anyone else who does a __get_free_page().
628 * In this case, page_count still tracks the references, and should only
629 * be used through the normal accessor functions. The top bits of page->flags
630 * and page->virtual store page management information, but all other fields
631 * are unused and could be used privately, carefully. The management of this
632 * page is the responsibility of the one who allocated it, and those who have
633 * subsequently been given references to it.
634 *
635 * The other pages (we may call them "pagecache pages") are completely
636 * managed by the Linux memory manager: I/O, buffers, swapping etc.
637 * The following discussion applies only to them.
638 *
639 * A pagecache page contains an opaque `private' member, which belongs to the
640 * page's address_space. Usually, this is the address of a circular list of
641 * the page's disk buffers. PG_private must be set to tell the VM to call
642 * into the filesystem to release these pages.
643 *
644 * A page may belong to an inode's memory mapping. In this case, page->mapping
645 * is the pointer to the inode, and page->index is the file offset of the page,
646 * in units of PAGE_CACHE_SIZE.
647 *
648 * If pagecache pages are not associated with an inode, they are said to be
649 * anonymous pages. These may become associated with the swapcache, and in that
650 * case PG_swapcache is set, and page->private is an offset into the swapcache.
651 *
652 * In either case (swapcache or inode backed), the pagecache itself holds one
653 * reference to the page. Setting PG_private should also increment the
654 * refcount. The each user mapping also has a reference to the page.
655 *
656 * The pagecache pages are stored in a per-mapping radix tree, which is
657 * rooted at mapping->page_tree, and indexed by offset.
658 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
659 * lists, we instead now tag pages as dirty/writeback in the radix tree.
660 *
661 * All pagecache pages may be subject to I/O:
662 * - inode pages may need to be read from disk,
663 * - inode pages which have been modified and are MAP_SHARED may need
664 * to be written back to the inode on disk,
665 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
666 * modified may need to be swapped out to swap space and (later) to be read
667 * back into memory.
668 */
669
670 /*
671 * The zone field is never updated after free_area_init_core()
672 * sets it, so none of the operations on it need to be atomic.
673 */
674
675 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
676 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
677 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
678 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
679 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
680
681 /*
682 * Define the bit shifts to access each section. For non-existent
683 * sections we define the shift as 0; that plus a 0 mask ensures
684 * the compiler will optimise away reference to them.
685 */
686 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
687 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
688 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
689 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
690
691 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
692 #ifdef NODE_NOT_IN_PAGE_FLAGS
693 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
694 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
695 SECTIONS_PGOFF : ZONES_PGOFF)
696 #else
697 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
698 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
699 NODES_PGOFF : ZONES_PGOFF)
700 #endif
701
702 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
703
704 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
705 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
706 #endif
707
708 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
709 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
710 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
711 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
712 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
713
714 static inline enum zone_type page_zonenum(const struct page *page)
715 {
716 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
717 }
718
719 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
720 #define SECTION_IN_PAGE_FLAGS
721 #endif
722
723 /*
724 * The identification function is mainly used by the buddy allocator for
725 * determining if two pages could be buddies. We are not really identifying
726 * the zone since we could be using the section number id if we do not have
727 * node id available in page flags.
728 * We only guarantee that it will return the same value for two combinable
729 * pages in a zone.
730 */
731 static inline int page_zone_id(struct page *page)
732 {
733 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
734 }
735
736 static inline int zone_to_nid(struct zone *zone)
737 {
738 #ifdef CONFIG_NUMA
739 return zone->node;
740 #else
741 return 0;
742 #endif
743 }
744
745 #ifdef NODE_NOT_IN_PAGE_FLAGS
746 extern int page_to_nid(const struct page *page);
747 #else
748 static inline int page_to_nid(const struct page *page)
749 {
750 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
751 }
752 #endif
753
754 #ifdef CONFIG_NUMA_BALANCING
755 static inline int cpu_pid_to_cpupid(int cpu, int pid)
756 {
757 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
758 }
759
760 static inline int cpupid_to_pid(int cpupid)
761 {
762 return cpupid & LAST__PID_MASK;
763 }
764
765 static inline int cpupid_to_cpu(int cpupid)
766 {
767 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
768 }
769
770 static inline int cpupid_to_nid(int cpupid)
771 {
772 return cpu_to_node(cpupid_to_cpu(cpupid));
773 }
774
775 static inline bool cpupid_pid_unset(int cpupid)
776 {
777 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
778 }
779
780 static inline bool cpupid_cpu_unset(int cpupid)
781 {
782 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
783 }
784
785 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
786 {
787 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
788 }
789
790 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
791 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
792 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
793 {
794 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
795 }
796
797 static inline int page_cpupid_last(struct page *page)
798 {
799 return page->_last_cpupid;
800 }
801 static inline void page_cpupid_reset_last(struct page *page)
802 {
803 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
804 }
805 #else
806 static inline int page_cpupid_last(struct page *page)
807 {
808 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
809 }
810
811 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
812
813 static inline void page_cpupid_reset_last(struct page *page)
814 {
815 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
816
817 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
818 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
819 }
820 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
821 #else /* !CONFIG_NUMA_BALANCING */
822 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
823 {
824 return page_to_nid(page); /* XXX */
825 }
826
827 static inline int page_cpupid_last(struct page *page)
828 {
829 return page_to_nid(page); /* XXX */
830 }
831
832 static inline int cpupid_to_nid(int cpupid)
833 {
834 return -1;
835 }
836
837 static inline int cpupid_to_pid(int cpupid)
838 {
839 return -1;
840 }
841
842 static inline int cpupid_to_cpu(int cpupid)
843 {
844 return -1;
845 }
846
847 static inline int cpu_pid_to_cpupid(int nid, int pid)
848 {
849 return -1;
850 }
851
852 static inline bool cpupid_pid_unset(int cpupid)
853 {
854 return 1;
855 }
856
857 static inline void page_cpupid_reset_last(struct page *page)
858 {
859 }
860
861 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
862 {
863 return false;
864 }
865 #endif /* CONFIG_NUMA_BALANCING */
866
867 static inline struct zone *page_zone(const struct page *page)
868 {
869 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
870 }
871
872 #ifdef SECTION_IN_PAGE_FLAGS
873 static inline void set_page_section(struct page *page, unsigned long section)
874 {
875 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
876 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
877 }
878
879 static inline unsigned long page_to_section(const struct page *page)
880 {
881 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
882 }
883 #endif
884
885 static inline void set_page_zone(struct page *page, enum zone_type zone)
886 {
887 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
888 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
889 }
890
891 static inline void set_page_node(struct page *page, unsigned long node)
892 {
893 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
894 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
895 }
896
897 static inline void set_page_links(struct page *page, enum zone_type zone,
898 unsigned long node, unsigned long pfn)
899 {
900 set_page_zone(page, zone);
901 set_page_node(page, node);
902 #ifdef SECTION_IN_PAGE_FLAGS
903 set_page_section(page, pfn_to_section_nr(pfn));
904 #endif
905 }
906
907 /*
908 * Some inline functions in vmstat.h depend on page_zone()
909 */
910 #include <linux/vmstat.h>
911
912 static __always_inline void *lowmem_page_address(const struct page *page)
913 {
914 return __va(PFN_PHYS(page_to_pfn(page)));
915 }
916
917 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
918 #define HASHED_PAGE_VIRTUAL
919 #endif
920
921 #if defined(WANT_PAGE_VIRTUAL)
922 static inline void *page_address(const struct page *page)
923 {
924 return page->virtual;
925 }
926 static inline void set_page_address(struct page *page, void *address)
927 {
928 page->virtual = address;
929 }
930 #define page_address_init() do { } while(0)
931 #endif
932
933 #if defined(HASHED_PAGE_VIRTUAL)
934 void *page_address(const struct page *page);
935 void set_page_address(struct page *page, void *virtual);
936 void page_address_init(void);
937 #endif
938
939 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
940 #define page_address(page) lowmem_page_address(page)
941 #define set_page_address(page, address) do { } while(0)
942 #define page_address_init() do { } while(0)
943 #endif
944
945 /*
946 * On an anonymous page mapped into a user virtual memory area,
947 * page->mapping points to its anon_vma, not to a struct address_space;
948 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
949 *
950 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
951 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
952 * and then page->mapping points, not to an anon_vma, but to a private
953 * structure which KSM associates with that merged page. See ksm.h.
954 *
955 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
956 *
957 * Please note that, confusingly, "page_mapping" refers to the inode
958 * address_space which maps the page from disk; whereas "page_mapped"
959 * refers to user virtual address space into which the page is mapped.
960 */
961 #define PAGE_MAPPING_ANON 1
962 #define PAGE_MAPPING_KSM 2
963 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
964
965 extern struct address_space *page_mapping(struct page *page);
966
967 /* Neutral page->mapping pointer to address_space or anon_vma or other */
968 static inline void *page_rmapping(struct page *page)
969 {
970 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
971 }
972
973 extern struct address_space *__page_file_mapping(struct page *);
974
975 static inline
976 struct address_space *page_file_mapping(struct page *page)
977 {
978 if (unlikely(PageSwapCache(page)))
979 return __page_file_mapping(page);
980
981 return page->mapping;
982 }
983
984 static inline int PageAnon(struct page *page)
985 {
986 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
987 }
988
989 /*
990 * Return the pagecache index of the passed page. Regular pagecache pages
991 * use ->index whereas swapcache pages use ->private
992 */
993 static inline pgoff_t page_index(struct page *page)
994 {
995 if (unlikely(PageSwapCache(page)))
996 return page_private(page);
997 return page->index;
998 }
999
1000 extern pgoff_t __page_file_index(struct page *page);
1001
1002 /*
1003 * Return the file index of the page. Regular pagecache pages use ->index
1004 * whereas swapcache pages use swp_offset(->private)
1005 */
1006 static inline pgoff_t page_file_index(struct page *page)
1007 {
1008 if (unlikely(PageSwapCache(page)))
1009 return __page_file_index(page);
1010
1011 return page->index;
1012 }
1013
1014 /*
1015 * Return true if this page is mapped into pagetables.
1016 */
1017 static inline int page_mapped(struct page *page)
1018 {
1019 return atomic_read(&(page)->_mapcount) >= 0;
1020 }
1021
1022 /*
1023 * Different kinds of faults, as returned by handle_mm_fault().
1024 * Used to decide whether a process gets delivered SIGBUS or
1025 * just gets major/minor fault counters bumped up.
1026 */
1027
1028 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1029
1030 #define VM_FAULT_OOM 0x0001
1031 #define VM_FAULT_SIGBUS 0x0002
1032 #define VM_FAULT_MAJOR 0x0004
1033 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1034 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1035 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1036
1037 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1038 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1039 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1040 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1041
1042 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1043
1044 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1045 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1046
1047 /* Encode hstate index for a hwpoisoned large page */
1048 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1049 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1050
1051 /*
1052 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1053 */
1054 extern void pagefault_out_of_memory(void);
1055
1056 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1057
1058 /*
1059 * Flags passed to show_mem() and show_free_areas() to suppress output in
1060 * various contexts.
1061 */
1062 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1063
1064 extern void show_free_areas(unsigned int flags);
1065 extern bool skip_free_areas_node(unsigned int flags, int nid);
1066
1067 int shmem_zero_setup(struct vm_area_struct *);
1068 #ifdef CONFIG_SHMEM
1069 bool shmem_mapping(struct address_space *mapping);
1070 #else
1071 static inline bool shmem_mapping(struct address_space *mapping)
1072 {
1073 return false;
1074 }
1075 #endif
1076
1077 extern int can_do_mlock(void);
1078 extern int user_shm_lock(size_t, struct user_struct *);
1079 extern void user_shm_unlock(size_t, struct user_struct *);
1080
1081 /*
1082 * Parameter block passed down to zap_pte_range in exceptional cases.
1083 */
1084 struct zap_details {
1085 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1086 struct address_space *check_mapping; /* Check page->mapping if set */
1087 pgoff_t first_index; /* Lowest page->index to unmap */
1088 pgoff_t last_index; /* Highest page->index to unmap */
1089 };
1090
1091 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1092 pte_t pte);
1093
1094 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1095 unsigned long size);
1096 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1097 unsigned long size, struct zap_details *);
1098 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1099 unsigned long start, unsigned long end);
1100
1101 /**
1102 * mm_walk - callbacks for walk_page_range
1103 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1104 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1105 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1106 * this handler is required to be able to handle
1107 * pmd_trans_huge() pmds. They may simply choose to
1108 * split_huge_page() instead of handling it explicitly.
1109 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1110 * @pte_hole: if set, called for each hole at all levels
1111 * @hugetlb_entry: if set, called for each hugetlb entry
1112 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1113 * is used.
1114 *
1115 * (see walk_page_range for more details)
1116 */
1117 struct mm_walk {
1118 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1119 unsigned long next, struct mm_walk *walk);
1120 int (*pud_entry)(pud_t *pud, unsigned long addr,
1121 unsigned long next, struct mm_walk *walk);
1122 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1123 unsigned long next, struct mm_walk *walk);
1124 int (*pte_entry)(pte_t *pte, unsigned long addr,
1125 unsigned long next, struct mm_walk *walk);
1126 int (*pte_hole)(unsigned long addr, unsigned long next,
1127 struct mm_walk *walk);
1128 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1129 unsigned long addr, unsigned long next,
1130 struct mm_walk *walk);
1131 struct mm_struct *mm;
1132 void *private;
1133 };
1134
1135 int walk_page_range(unsigned long addr, unsigned long end,
1136 struct mm_walk *walk);
1137 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1138 unsigned long end, unsigned long floor, unsigned long ceiling);
1139 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1140 struct vm_area_struct *vma);
1141 void unmap_mapping_range(struct address_space *mapping,
1142 loff_t const holebegin, loff_t const holelen, int even_cows);
1143 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1144 unsigned long *pfn);
1145 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1146 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1147 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1148 void *buf, int len, int write);
1149
1150 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1151 loff_t const holebegin, loff_t const holelen)
1152 {
1153 unmap_mapping_range(mapping, holebegin, holelen, 0);
1154 }
1155
1156 extern void truncate_pagecache(struct inode *inode, loff_t new);
1157 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1158 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1159 int truncate_inode_page(struct address_space *mapping, struct page *page);
1160 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1161 int invalidate_inode_page(struct page *page);
1162
1163 #ifdef CONFIG_MMU
1164 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1165 unsigned long address, unsigned int flags);
1166 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1167 unsigned long address, unsigned int fault_flags);
1168 #else
1169 static inline int handle_mm_fault(struct mm_struct *mm,
1170 struct vm_area_struct *vma, unsigned long address,
1171 unsigned int flags)
1172 {
1173 /* should never happen if there's no MMU */
1174 BUG();
1175 return VM_FAULT_SIGBUS;
1176 }
1177 static inline int fixup_user_fault(struct task_struct *tsk,
1178 struct mm_struct *mm, unsigned long address,
1179 unsigned int fault_flags)
1180 {
1181 /* should never happen if there's no MMU */
1182 BUG();
1183 return -EFAULT;
1184 }
1185 #endif
1186
1187 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1188 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1189 void *buf, int len, int write);
1190
1191 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1192 unsigned long start, unsigned long nr_pages,
1193 unsigned int foll_flags, struct page **pages,
1194 struct vm_area_struct **vmas, int *nonblocking);
1195 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1196 unsigned long start, unsigned long nr_pages,
1197 int write, int force, struct page **pages,
1198 struct vm_area_struct **vmas);
1199 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1200 struct page **pages);
1201 struct kvec;
1202 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1203 struct page **pages);
1204 int get_kernel_page(unsigned long start, int write, struct page **pages);
1205 struct page *get_dump_page(unsigned long addr);
1206
1207 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1208 extern void do_invalidatepage(struct page *page, unsigned int offset,
1209 unsigned int length);
1210
1211 int __set_page_dirty_nobuffers(struct page *page);
1212 int __set_page_dirty_no_writeback(struct page *page);
1213 int redirty_page_for_writepage(struct writeback_control *wbc,
1214 struct page *page);
1215 void account_page_dirtied(struct page *page, struct address_space *mapping);
1216 void account_page_writeback(struct page *page);
1217 int set_page_dirty(struct page *page);
1218 int set_page_dirty_lock(struct page *page);
1219 int clear_page_dirty_for_io(struct page *page);
1220 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1221
1222 /* Is the vma a continuation of the stack vma above it? */
1223 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1224 {
1225 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1226 }
1227
1228 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1229 unsigned long addr)
1230 {
1231 return (vma->vm_flags & VM_GROWSDOWN) &&
1232 (vma->vm_start == addr) &&
1233 !vma_growsdown(vma->vm_prev, addr);
1234 }
1235
1236 /* Is the vma a continuation of the stack vma below it? */
1237 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1238 {
1239 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1240 }
1241
1242 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1243 unsigned long addr)
1244 {
1245 return (vma->vm_flags & VM_GROWSUP) &&
1246 (vma->vm_end == addr) &&
1247 !vma_growsup(vma->vm_next, addr);
1248 }
1249
1250 extern pid_t
1251 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1252
1253 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1254 unsigned long old_addr, struct vm_area_struct *new_vma,
1255 unsigned long new_addr, unsigned long len,
1256 bool need_rmap_locks);
1257 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1258 unsigned long end, pgprot_t newprot,
1259 int dirty_accountable, int prot_numa);
1260 extern int mprotect_fixup(struct vm_area_struct *vma,
1261 struct vm_area_struct **pprev, unsigned long start,
1262 unsigned long end, unsigned long newflags);
1263
1264 /*
1265 * doesn't attempt to fault and will return short.
1266 */
1267 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1268 struct page **pages);
1269 /*
1270 * per-process(per-mm_struct) statistics.
1271 */
1272 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1273 {
1274 long val = atomic_long_read(&mm->rss_stat.count[member]);
1275
1276 #ifdef SPLIT_RSS_COUNTING
1277 /*
1278 * counter is updated in asynchronous manner and may go to minus.
1279 * But it's never be expected number for users.
1280 */
1281 if (val < 0)
1282 val = 0;
1283 #endif
1284 return (unsigned long)val;
1285 }
1286
1287 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1288 {
1289 atomic_long_add(value, &mm->rss_stat.count[member]);
1290 }
1291
1292 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1293 {
1294 atomic_long_inc(&mm->rss_stat.count[member]);
1295 }
1296
1297 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1298 {
1299 atomic_long_dec(&mm->rss_stat.count[member]);
1300 }
1301
1302 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1303 {
1304 return get_mm_counter(mm, MM_FILEPAGES) +
1305 get_mm_counter(mm, MM_ANONPAGES);
1306 }
1307
1308 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1309 {
1310 return max(mm->hiwater_rss, get_mm_rss(mm));
1311 }
1312
1313 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1314 {
1315 return max(mm->hiwater_vm, mm->total_vm);
1316 }
1317
1318 static inline void update_hiwater_rss(struct mm_struct *mm)
1319 {
1320 unsigned long _rss = get_mm_rss(mm);
1321
1322 if ((mm)->hiwater_rss < _rss)
1323 (mm)->hiwater_rss = _rss;
1324 }
1325
1326 static inline void update_hiwater_vm(struct mm_struct *mm)
1327 {
1328 if (mm->hiwater_vm < mm->total_vm)
1329 mm->hiwater_vm = mm->total_vm;
1330 }
1331
1332 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1333 struct mm_struct *mm)
1334 {
1335 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1336
1337 if (*maxrss < hiwater_rss)
1338 *maxrss = hiwater_rss;
1339 }
1340
1341 #if defined(SPLIT_RSS_COUNTING)
1342 void sync_mm_rss(struct mm_struct *mm);
1343 #else
1344 static inline void sync_mm_rss(struct mm_struct *mm)
1345 {
1346 }
1347 #endif
1348
1349 int vma_wants_writenotify(struct vm_area_struct *vma);
1350
1351 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1352 spinlock_t **ptl);
1353 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1354 spinlock_t **ptl)
1355 {
1356 pte_t *ptep;
1357 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1358 return ptep;
1359 }
1360
1361 #ifdef __PAGETABLE_PUD_FOLDED
1362 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1363 unsigned long address)
1364 {
1365 return 0;
1366 }
1367 #else
1368 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1369 #endif
1370
1371 #ifdef __PAGETABLE_PMD_FOLDED
1372 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1373 unsigned long address)
1374 {
1375 return 0;
1376 }
1377 #else
1378 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1379 #endif
1380
1381 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1382 pmd_t *pmd, unsigned long address);
1383 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1384
1385 /*
1386 * The following ifdef needed to get the 4level-fixup.h header to work.
1387 * Remove it when 4level-fixup.h has been removed.
1388 */
1389 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1390 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1391 {
1392 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1393 NULL: pud_offset(pgd, address);
1394 }
1395
1396 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1397 {
1398 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1399 NULL: pmd_offset(pud, address);
1400 }
1401 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1402
1403 #if USE_SPLIT_PTE_PTLOCKS
1404 #if ALLOC_SPLIT_PTLOCKS
1405 void __init ptlock_cache_init(void);
1406 extern bool ptlock_alloc(struct page *page);
1407 extern void ptlock_free(struct page *page);
1408
1409 static inline spinlock_t *ptlock_ptr(struct page *page)
1410 {
1411 return page->ptl;
1412 }
1413 #else /* ALLOC_SPLIT_PTLOCKS */
1414 static inline void ptlock_cache_init(void)
1415 {
1416 }
1417
1418 static inline bool ptlock_alloc(struct page *page)
1419 {
1420 return true;
1421 }
1422
1423 static inline void ptlock_free(struct page *page)
1424 {
1425 }
1426
1427 static inline spinlock_t *ptlock_ptr(struct page *page)
1428 {
1429 return &page->ptl;
1430 }
1431 #endif /* ALLOC_SPLIT_PTLOCKS */
1432
1433 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1434 {
1435 return ptlock_ptr(pmd_page(*pmd));
1436 }
1437
1438 static inline bool ptlock_init(struct page *page)
1439 {
1440 /*
1441 * prep_new_page() initialize page->private (and therefore page->ptl)
1442 * with 0. Make sure nobody took it in use in between.
1443 *
1444 * It can happen if arch try to use slab for page table allocation:
1445 * slab code uses page->slab_cache and page->first_page (for tail
1446 * pages), which share storage with page->ptl.
1447 */
1448 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1449 if (!ptlock_alloc(page))
1450 return false;
1451 spin_lock_init(ptlock_ptr(page));
1452 return true;
1453 }
1454
1455 /* Reset page->mapping so free_pages_check won't complain. */
1456 static inline void pte_lock_deinit(struct page *page)
1457 {
1458 page->mapping = NULL;
1459 ptlock_free(page);
1460 }
1461
1462 #else /* !USE_SPLIT_PTE_PTLOCKS */
1463 /*
1464 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1465 */
1466 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1467 {
1468 return &mm->page_table_lock;
1469 }
1470 static inline void ptlock_cache_init(void) {}
1471 static inline bool ptlock_init(struct page *page) { return true; }
1472 static inline void pte_lock_deinit(struct page *page) {}
1473 #endif /* USE_SPLIT_PTE_PTLOCKS */
1474
1475 static inline void pgtable_init(void)
1476 {
1477 ptlock_cache_init();
1478 pgtable_cache_init();
1479 }
1480
1481 static inline bool pgtable_page_ctor(struct page *page)
1482 {
1483 inc_zone_page_state(page, NR_PAGETABLE);
1484 return ptlock_init(page);
1485 }
1486
1487 static inline void pgtable_page_dtor(struct page *page)
1488 {
1489 pte_lock_deinit(page);
1490 dec_zone_page_state(page, NR_PAGETABLE);
1491 }
1492
1493 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1494 ({ \
1495 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1496 pte_t *__pte = pte_offset_map(pmd, address); \
1497 *(ptlp) = __ptl; \
1498 spin_lock(__ptl); \
1499 __pte; \
1500 })
1501
1502 #define pte_unmap_unlock(pte, ptl) do { \
1503 spin_unlock(ptl); \
1504 pte_unmap(pte); \
1505 } while (0)
1506
1507 #define pte_alloc_map(mm, vma, pmd, address) \
1508 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1509 pmd, address))? \
1510 NULL: pte_offset_map(pmd, address))
1511
1512 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1513 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1514 pmd, address))? \
1515 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1516
1517 #define pte_alloc_kernel(pmd, address) \
1518 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1519 NULL: pte_offset_kernel(pmd, address))
1520
1521 #if USE_SPLIT_PMD_PTLOCKS
1522
1523 static struct page *pmd_to_page(pmd_t *pmd)
1524 {
1525 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1526 return virt_to_page((void *)((unsigned long) pmd & mask));
1527 }
1528
1529 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1530 {
1531 return ptlock_ptr(pmd_to_page(pmd));
1532 }
1533
1534 static inline bool pgtable_pmd_page_ctor(struct page *page)
1535 {
1536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1537 page->pmd_huge_pte = NULL;
1538 #endif
1539 return ptlock_init(page);
1540 }
1541
1542 static inline void pgtable_pmd_page_dtor(struct page *page)
1543 {
1544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1545 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1546 #endif
1547 ptlock_free(page);
1548 }
1549
1550 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1551
1552 #else
1553
1554 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1555 {
1556 return &mm->page_table_lock;
1557 }
1558
1559 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1560 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1561
1562 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1563
1564 #endif
1565
1566 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1567 {
1568 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1569 spin_lock(ptl);
1570 return ptl;
1571 }
1572
1573 extern void free_area_init(unsigned long * zones_size);
1574 extern void free_area_init_node(int nid, unsigned long * zones_size,
1575 unsigned long zone_start_pfn, unsigned long *zholes_size);
1576 extern void free_initmem(void);
1577
1578 /*
1579 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1580 * into the buddy system. The freed pages will be poisoned with pattern
1581 * "poison" if it's within range [0, UCHAR_MAX].
1582 * Return pages freed into the buddy system.
1583 */
1584 extern unsigned long free_reserved_area(void *start, void *end,
1585 int poison, char *s);
1586
1587 #ifdef CONFIG_HIGHMEM
1588 /*
1589 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1590 * and totalram_pages.
1591 */
1592 extern void free_highmem_page(struct page *page);
1593 #endif
1594
1595 extern void adjust_managed_page_count(struct page *page, long count);
1596 extern void mem_init_print_info(const char *str);
1597
1598 /* Free the reserved page into the buddy system, so it gets managed. */
1599 static inline void __free_reserved_page(struct page *page)
1600 {
1601 ClearPageReserved(page);
1602 init_page_count(page);
1603 __free_page(page);
1604 }
1605
1606 static inline void free_reserved_page(struct page *page)
1607 {
1608 __free_reserved_page(page);
1609 adjust_managed_page_count(page, 1);
1610 }
1611
1612 static inline void mark_page_reserved(struct page *page)
1613 {
1614 SetPageReserved(page);
1615 adjust_managed_page_count(page, -1);
1616 }
1617
1618 /*
1619 * Default method to free all the __init memory into the buddy system.
1620 * The freed pages will be poisoned with pattern "poison" if it's within
1621 * range [0, UCHAR_MAX].
1622 * Return pages freed into the buddy system.
1623 */
1624 static inline unsigned long free_initmem_default(int poison)
1625 {
1626 extern char __init_begin[], __init_end[];
1627
1628 return free_reserved_area(&__init_begin, &__init_end,
1629 poison, "unused kernel");
1630 }
1631
1632 static inline unsigned long get_num_physpages(void)
1633 {
1634 int nid;
1635 unsigned long phys_pages = 0;
1636
1637 for_each_online_node(nid)
1638 phys_pages += node_present_pages(nid);
1639
1640 return phys_pages;
1641 }
1642
1643 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1644 /*
1645 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1646 * zones, allocate the backing mem_map and account for memory holes in a more
1647 * architecture independent manner. This is a substitute for creating the
1648 * zone_sizes[] and zholes_size[] arrays and passing them to
1649 * free_area_init_node()
1650 *
1651 * An architecture is expected to register range of page frames backed by
1652 * physical memory with memblock_add[_node]() before calling
1653 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1654 * usage, an architecture is expected to do something like
1655 *
1656 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1657 * max_highmem_pfn};
1658 * for_each_valid_physical_page_range()
1659 * memblock_add_node(base, size, nid)
1660 * free_area_init_nodes(max_zone_pfns);
1661 *
1662 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1663 * registered physical page range. Similarly
1664 * sparse_memory_present_with_active_regions() calls memory_present() for
1665 * each range when SPARSEMEM is enabled.
1666 *
1667 * See mm/page_alloc.c for more information on each function exposed by
1668 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1669 */
1670 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1671 unsigned long node_map_pfn_alignment(void);
1672 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1673 unsigned long end_pfn);
1674 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1675 unsigned long end_pfn);
1676 extern void get_pfn_range_for_nid(unsigned int nid,
1677 unsigned long *start_pfn, unsigned long *end_pfn);
1678 extern unsigned long find_min_pfn_with_active_regions(void);
1679 extern void free_bootmem_with_active_regions(int nid,
1680 unsigned long max_low_pfn);
1681 extern void sparse_memory_present_with_active_regions(int nid);
1682
1683 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1684
1685 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1686 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1687 static inline int __early_pfn_to_nid(unsigned long pfn)
1688 {
1689 return 0;
1690 }
1691 #else
1692 /* please see mm/page_alloc.c */
1693 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1694 /* there is a per-arch backend function. */
1695 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1696 #endif
1697
1698 extern void set_dma_reserve(unsigned long new_dma_reserve);
1699 extern void memmap_init_zone(unsigned long, int, unsigned long,
1700 unsigned long, enum memmap_context);
1701 extern void setup_per_zone_wmarks(void);
1702 extern int __meminit init_per_zone_wmark_min(void);
1703 extern void mem_init(void);
1704 extern void __init mmap_init(void);
1705 extern void show_mem(unsigned int flags);
1706 extern void si_meminfo(struct sysinfo * val);
1707 extern void si_meminfo_node(struct sysinfo *val, int nid);
1708
1709 extern __printf(3, 4)
1710 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1711
1712 extern void setup_per_cpu_pageset(void);
1713
1714 extern void zone_pcp_update(struct zone *zone);
1715 extern void zone_pcp_reset(struct zone *zone);
1716
1717 /* page_alloc.c */
1718 extern int min_free_kbytes;
1719
1720 /* nommu.c */
1721 extern atomic_long_t mmap_pages_allocated;
1722 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1723
1724 /* interval_tree.c */
1725 void vma_interval_tree_insert(struct vm_area_struct *node,
1726 struct rb_root *root);
1727 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1728 struct vm_area_struct *prev,
1729 struct rb_root *root);
1730 void vma_interval_tree_remove(struct vm_area_struct *node,
1731 struct rb_root *root);
1732 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1733 unsigned long start, unsigned long last);
1734 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1735 unsigned long start, unsigned long last);
1736
1737 #define vma_interval_tree_foreach(vma, root, start, last) \
1738 for (vma = vma_interval_tree_iter_first(root, start, last); \
1739 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1740
1741 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1742 struct list_head *list)
1743 {
1744 list_add_tail(&vma->shared.nonlinear, list);
1745 }
1746
1747 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1748 struct rb_root *root);
1749 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1750 struct rb_root *root);
1751 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1752 struct rb_root *root, unsigned long start, unsigned long last);
1753 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1754 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1755 #ifdef CONFIG_DEBUG_VM_RB
1756 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1757 #endif
1758
1759 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1760 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1761 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1762
1763 /* mmap.c */
1764 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1765 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1766 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1767 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1768 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1769 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1770 struct mempolicy *);
1771 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1772 extern int split_vma(struct mm_struct *,
1773 struct vm_area_struct *, unsigned long addr, int new_below);
1774 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1775 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1776 struct rb_node **, struct rb_node *);
1777 extern void unlink_file_vma(struct vm_area_struct *);
1778 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1779 unsigned long addr, unsigned long len, pgoff_t pgoff,
1780 bool *need_rmap_locks);
1781 extern void exit_mmap(struct mm_struct *);
1782
1783 extern int mm_take_all_locks(struct mm_struct *mm);
1784 extern void mm_drop_all_locks(struct mm_struct *mm);
1785
1786 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1787 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1788
1789 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1790 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1791 unsigned long addr, unsigned long len,
1792 unsigned long flags,
1793 const struct vm_special_mapping *spec);
1794 /* This is an obsolete alternative to _install_special_mapping. */
1795 extern int install_special_mapping(struct mm_struct *mm,
1796 unsigned long addr, unsigned long len,
1797 unsigned long flags, struct page **pages);
1798
1799 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1800
1801 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1802 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1803 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1804 unsigned long len, unsigned long prot, unsigned long flags,
1805 unsigned long pgoff, unsigned long *populate);
1806 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1807
1808 #ifdef CONFIG_MMU
1809 extern int __mm_populate(unsigned long addr, unsigned long len,
1810 int ignore_errors);
1811 static inline void mm_populate(unsigned long addr, unsigned long len)
1812 {
1813 /* Ignore errors */
1814 (void) __mm_populate(addr, len, 1);
1815 }
1816 #else
1817 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1818 #endif
1819
1820 /* These take the mm semaphore themselves */
1821 extern unsigned long vm_brk(unsigned long, unsigned long);
1822 extern int vm_munmap(unsigned long, size_t);
1823 extern unsigned long vm_mmap(struct file *, unsigned long,
1824 unsigned long, unsigned long,
1825 unsigned long, unsigned long);
1826
1827 struct vm_unmapped_area_info {
1828 #define VM_UNMAPPED_AREA_TOPDOWN 1
1829 unsigned long flags;
1830 unsigned long length;
1831 unsigned long low_limit;
1832 unsigned long high_limit;
1833 unsigned long align_mask;
1834 unsigned long align_offset;
1835 };
1836
1837 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1838 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1839
1840 /*
1841 * Search for an unmapped address range.
1842 *
1843 * We are looking for a range that:
1844 * - does not intersect with any VMA;
1845 * - is contained within the [low_limit, high_limit) interval;
1846 * - is at least the desired size.
1847 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1848 */
1849 static inline unsigned long
1850 vm_unmapped_area(struct vm_unmapped_area_info *info)
1851 {
1852 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1853 return unmapped_area(info);
1854 else
1855 return unmapped_area_topdown(info);
1856 }
1857
1858 /* truncate.c */
1859 extern void truncate_inode_pages(struct address_space *, loff_t);
1860 extern void truncate_inode_pages_range(struct address_space *,
1861 loff_t lstart, loff_t lend);
1862 extern void truncate_inode_pages_final(struct address_space *);
1863
1864 /* generic vm_area_ops exported for stackable file systems */
1865 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1866 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1867 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1868
1869 /* mm/page-writeback.c */
1870 int write_one_page(struct page *page, int wait);
1871 void task_dirty_inc(struct task_struct *tsk);
1872
1873 /* readahead.c */
1874 #define VM_MAX_READAHEAD 128 /* kbytes */
1875 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1876
1877 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1878 pgoff_t offset, unsigned long nr_to_read);
1879
1880 void page_cache_sync_readahead(struct address_space *mapping,
1881 struct file_ra_state *ra,
1882 struct file *filp,
1883 pgoff_t offset,
1884 unsigned long size);
1885
1886 void page_cache_async_readahead(struct address_space *mapping,
1887 struct file_ra_state *ra,
1888 struct file *filp,
1889 struct page *pg,
1890 pgoff_t offset,
1891 unsigned long size);
1892
1893 unsigned long max_sane_readahead(unsigned long nr);
1894
1895 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1896 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1897
1898 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1899 extern int expand_downwards(struct vm_area_struct *vma,
1900 unsigned long address);
1901 #if VM_GROWSUP
1902 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1903 #else
1904 #define expand_upwards(vma, address) do { } while (0)
1905 #endif
1906
1907 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1908 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1909 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1910 struct vm_area_struct **pprev);
1911
1912 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1913 NULL if none. Assume start_addr < end_addr. */
1914 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1915 {
1916 struct vm_area_struct * vma = find_vma(mm,start_addr);
1917
1918 if (vma && end_addr <= vma->vm_start)
1919 vma = NULL;
1920 return vma;
1921 }
1922
1923 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1924 {
1925 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1926 }
1927
1928 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1929 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1930 unsigned long vm_start, unsigned long vm_end)
1931 {
1932 struct vm_area_struct *vma = find_vma(mm, vm_start);
1933
1934 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1935 vma = NULL;
1936
1937 return vma;
1938 }
1939
1940 #ifdef CONFIG_MMU
1941 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1942 #else
1943 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1944 {
1945 return __pgprot(0);
1946 }
1947 #endif
1948
1949 #ifdef CONFIG_NUMA_BALANCING
1950 unsigned long change_prot_numa(struct vm_area_struct *vma,
1951 unsigned long start, unsigned long end);
1952 #endif
1953
1954 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1955 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1956 unsigned long pfn, unsigned long size, pgprot_t);
1957 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1958 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1959 unsigned long pfn);
1960 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1961 unsigned long pfn);
1962 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1963
1964
1965 struct page *follow_page_mask(struct vm_area_struct *vma,
1966 unsigned long address, unsigned int foll_flags,
1967 unsigned int *page_mask);
1968
1969 static inline struct page *follow_page(struct vm_area_struct *vma,
1970 unsigned long address, unsigned int foll_flags)
1971 {
1972 unsigned int unused_page_mask;
1973 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1974 }
1975
1976 #define FOLL_WRITE 0x01 /* check pte is writable */
1977 #define FOLL_TOUCH 0x02 /* mark page accessed */
1978 #define FOLL_GET 0x04 /* do get_page on page */
1979 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1980 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1981 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1982 * and return without waiting upon it */
1983 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1984 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1985 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1986 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1987 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1988
1989 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1990 void *data);
1991 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1992 unsigned long size, pte_fn_t fn, void *data);
1993
1994 #ifdef CONFIG_PROC_FS
1995 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1996 #else
1997 static inline void vm_stat_account(struct mm_struct *mm,
1998 unsigned long flags, struct file *file, long pages)
1999 {
2000 mm->total_vm += pages;
2001 }
2002 #endif /* CONFIG_PROC_FS */
2003
2004 #ifdef CONFIG_DEBUG_PAGEALLOC
2005 extern void kernel_map_pages(struct page *page, int numpages, int enable);
2006 #ifdef CONFIG_HIBERNATION
2007 extern bool kernel_page_present(struct page *page);
2008 #endif /* CONFIG_HIBERNATION */
2009 #else
2010 static inline void
2011 kernel_map_pages(struct page *page, int numpages, int enable) {}
2012 #ifdef CONFIG_HIBERNATION
2013 static inline bool kernel_page_present(struct page *page) { return true; }
2014 #endif /* CONFIG_HIBERNATION */
2015 #endif
2016
2017 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2018 #ifdef __HAVE_ARCH_GATE_AREA
2019 int in_gate_area_no_mm(unsigned long addr);
2020 int in_gate_area(struct mm_struct *mm, unsigned long addr);
2021 #else
2022 int in_gate_area_no_mm(unsigned long addr);
2023 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
2024 #endif /* __HAVE_ARCH_GATE_AREA */
2025
2026 #ifdef CONFIG_SYSCTL
2027 extern int sysctl_drop_caches;
2028 int drop_caches_sysctl_handler(struct ctl_table *, int,
2029 void __user *, size_t *, loff_t *);
2030 #endif
2031
2032 unsigned long shrink_slab(struct shrink_control *shrink,
2033 unsigned long nr_pages_scanned,
2034 unsigned long lru_pages);
2035
2036 #ifndef CONFIG_MMU
2037 #define randomize_va_space 0
2038 #else
2039 extern int randomize_va_space;
2040 #endif
2041
2042 const char * arch_vma_name(struct vm_area_struct *vma);
2043 void print_vma_addr(char *prefix, unsigned long rip);
2044
2045 void sparse_mem_maps_populate_node(struct page **map_map,
2046 unsigned long pnum_begin,
2047 unsigned long pnum_end,
2048 unsigned long map_count,
2049 int nodeid);
2050
2051 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2052 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2053 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2054 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2055 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2056 void *vmemmap_alloc_block(unsigned long size, int node);
2057 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2058 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2059 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2060 int node);
2061 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2062 void vmemmap_populate_print_last(void);
2063 #ifdef CONFIG_MEMORY_HOTPLUG
2064 void vmemmap_free(unsigned long start, unsigned long end);
2065 #endif
2066 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2067 unsigned long size);
2068
2069 enum mf_flags {
2070 MF_COUNT_INCREASED = 1 << 0,
2071 MF_ACTION_REQUIRED = 1 << 1,
2072 MF_MUST_KILL = 1 << 2,
2073 MF_SOFT_OFFLINE = 1 << 3,
2074 };
2075 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2076 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2077 extern int unpoison_memory(unsigned long pfn);
2078 extern int sysctl_memory_failure_early_kill;
2079 extern int sysctl_memory_failure_recovery;
2080 extern void shake_page(struct page *p, int access);
2081 extern atomic_long_t num_poisoned_pages;
2082 extern int soft_offline_page(struct page *page, int flags);
2083
2084 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2085 extern void clear_huge_page(struct page *page,
2086 unsigned long addr,
2087 unsigned int pages_per_huge_page);
2088 extern void copy_user_huge_page(struct page *dst, struct page *src,
2089 unsigned long addr, struct vm_area_struct *vma,
2090 unsigned int pages_per_huge_page);
2091 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2092
2093 #ifdef CONFIG_DEBUG_PAGEALLOC
2094 extern unsigned int _debug_guardpage_minorder;
2095
2096 static inline unsigned int debug_guardpage_minorder(void)
2097 {
2098 return _debug_guardpage_minorder;
2099 }
2100
2101 static inline bool page_is_guard(struct page *page)
2102 {
2103 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2104 }
2105 #else
2106 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2107 static inline bool page_is_guard(struct page *page) { return false; }
2108 #endif /* CONFIG_DEBUG_PAGEALLOC */
2109
2110 #if MAX_NUMNODES > 1
2111 void __init setup_nr_node_ids(void);
2112 #else
2113 static inline void setup_nr_node_ids(void) {}
2114 #endif
2115
2116 #endif /* __KERNEL__ */
2117 #endif /* _LINUX_MM_H */