]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm.h
mm/gup: Implement the dev_pagemap() logic in the generic get_user_pages_fast() function
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70
71 #ifndef __pa_symbol
72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74
75 #ifndef page_to_virt
76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77 #endif
78
79 #ifndef lm_alias
80 #define lm_alias(x) __va(__pa_symbol(x))
81 #endif
82
83 /*
84 * To prevent common memory management code establishing
85 * a zero page mapping on a read fault.
86 * This macro should be defined within <asm/pgtable.h>.
87 * s390 does this to prevent multiplexing of hardware bits
88 * related to the physical page in case of virtualization.
89 */
90 #ifndef mm_forbids_zeropage
91 #define mm_forbids_zeropage(X) (0)
92 #endif
93
94 /*
95 * Default maximum number of active map areas, this limits the number of vmas
96 * per mm struct. Users can overwrite this number by sysctl but there is a
97 * problem.
98 *
99 * When a program's coredump is generated as ELF format, a section is created
100 * per a vma. In ELF, the number of sections is represented in unsigned short.
101 * This means the number of sections should be smaller than 65535 at coredump.
102 * Because the kernel adds some informative sections to a image of program at
103 * generating coredump, we need some margin. The number of extra sections is
104 * 1-3 now and depends on arch. We use "5" as safe margin, here.
105 *
106 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
107 * not a hard limit any more. Although some userspace tools can be surprised by
108 * that.
109 */
110 #define MAPCOUNT_ELF_CORE_MARGIN (5)
111 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
112
113 extern int sysctl_max_map_count;
114
115 extern unsigned long sysctl_user_reserve_kbytes;
116 extern unsigned long sysctl_admin_reserve_kbytes;
117
118 extern int sysctl_overcommit_memory;
119 extern int sysctl_overcommit_ratio;
120 extern unsigned long sysctl_overcommit_kbytes;
121
122 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
123 size_t *, loff_t *);
124 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126
127 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
128
129 /* to align the pointer to the (next) page boundary */
130 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
131
132 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
133 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
134
135 /*
136 * Linux kernel virtual memory manager primitives.
137 * The idea being to have a "virtual" mm in the same way
138 * we have a virtual fs - giving a cleaner interface to the
139 * mm details, and allowing different kinds of memory mappings
140 * (from shared memory to executable loading to arbitrary
141 * mmap() functions).
142 */
143
144 extern struct kmem_cache *vm_area_cachep;
145
146 #ifndef CONFIG_MMU
147 extern struct rb_root nommu_region_tree;
148 extern struct rw_semaphore nommu_region_sem;
149
150 extern unsigned int kobjsize(const void *objp);
151 #endif
152
153 /*
154 * vm_flags in vm_area_struct, see mm_types.h.
155 * When changing, update also include/trace/events/mmflags.h
156 */
157 #define VM_NONE 0x00000000
158
159 #define VM_READ 0x00000001 /* currently active flags */
160 #define VM_WRITE 0x00000002
161 #define VM_EXEC 0x00000004
162 #define VM_SHARED 0x00000008
163
164 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
165 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
166 #define VM_MAYWRITE 0x00000020
167 #define VM_MAYEXEC 0x00000040
168 #define VM_MAYSHARE 0x00000080
169
170 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
171 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
172 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
173 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
174 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
175
176 #define VM_LOCKED 0x00002000
177 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
178
179 /* Used by sys_madvise() */
180 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
181 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
182
183 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
184 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
185 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
186 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
187 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
188 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
189 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
190 #define VM_ARCH_2 0x02000000
191 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
192
193 #ifdef CONFIG_MEM_SOFT_DIRTY
194 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
195 #else
196 # define VM_SOFTDIRTY 0
197 #endif
198
199 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
200 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
201 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
202 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
203
204 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
205 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
206 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
207 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
210 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
211 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
212 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
213 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
214
215 #if defined(CONFIG_X86)
216 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
217 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
218 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
219 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
220 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
221 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
222 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
223 #endif
224 #elif defined(CONFIG_PPC)
225 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
226 #elif defined(CONFIG_PARISC)
227 # define VM_GROWSUP VM_ARCH_1
228 #elif defined(CONFIG_METAG)
229 # define VM_GROWSUP VM_ARCH_1
230 #elif defined(CONFIG_IA64)
231 # define VM_GROWSUP VM_ARCH_1
232 #elif !defined(CONFIG_MMU)
233 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
234 #endif
235
236 #if defined(CONFIG_X86)
237 /* MPX specific bounds table or bounds directory */
238 # define VM_MPX VM_ARCH_2
239 #endif
240
241 #ifndef VM_GROWSUP
242 # define VM_GROWSUP VM_NONE
243 #endif
244
245 /* Bits set in the VMA until the stack is in its final location */
246 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
247
248 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
249 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
250 #endif
251
252 #ifdef CONFIG_STACK_GROWSUP
253 #define VM_STACK VM_GROWSUP
254 #else
255 #define VM_STACK VM_GROWSDOWN
256 #endif
257
258 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
259
260 /*
261 * Special vmas that are non-mergable, non-mlock()able.
262 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
263 */
264 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
265
266 /* This mask defines which mm->def_flags a process can inherit its parent */
267 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
268
269 /* This mask is used to clear all the VMA flags used by mlock */
270 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
271
272 /*
273 * mapping from the currently active vm_flags protection bits (the
274 * low four bits) to a page protection mask..
275 */
276 extern pgprot_t protection_map[16];
277
278 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
279 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
280 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
281 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
282 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
283 #define FAULT_FLAG_TRIED 0x20 /* Second try */
284 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
285 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
286 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
287
288 #define FAULT_FLAG_TRACE \
289 { FAULT_FLAG_WRITE, "WRITE" }, \
290 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
291 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
292 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
293 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
294 { FAULT_FLAG_TRIED, "TRIED" }, \
295 { FAULT_FLAG_USER, "USER" }, \
296 { FAULT_FLAG_REMOTE, "REMOTE" }, \
297 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
298
299 /*
300 * vm_fault is filled by the the pagefault handler and passed to the vma's
301 * ->fault function. The vma's ->fault is responsible for returning a bitmask
302 * of VM_FAULT_xxx flags that give details about how the fault was handled.
303 *
304 * MM layer fills up gfp_mask for page allocations but fault handler might
305 * alter it if its implementation requires a different allocation context.
306 *
307 * pgoff should be used in favour of virtual_address, if possible.
308 */
309 struct vm_fault {
310 struct vm_area_struct *vma; /* Target VMA */
311 unsigned int flags; /* FAULT_FLAG_xxx flags */
312 gfp_t gfp_mask; /* gfp mask to be used for allocations */
313 pgoff_t pgoff; /* Logical page offset based on vma */
314 unsigned long address; /* Faulting virtual address */
315 pmd_t *pmd; /* Pointer to pmd entry matching
316 * the 'address' */
317 pud_t *pud; /* Pointer to pud entry matching
318 * the 'address'
319 */
320 pte_t orig_pte; /* Value of PTE at the time of fault */
321
322 struct page *cow_page; /* Page handler may use for COW fault */
323 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
324 struct page *page; /* ->fault handlers should return a
325 * page here, unless VM_FAULT_NOPAGE
326 * is set (which is also implied by
327 * VM_FAULT_ERROR).
328 */
329 /* These three entries are valid only while holding ptl lock */
330 pte_t *pte; /* Pointer to pte entry matching
331 * the 'address'. NULL if the page
332 * table hasn't been allocated.
333 */
334 spinlock_t *ptl; /* Page table lock.
335 * Protects pte page table if 'pte'
336 * is not NULL, otherwise pmd.
337 */
338 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
339 * vm_ops->map_pages() calls
340 * alloc_set_pte() from atomic context.
341 * do_fault_around() pre-allocates
342 * page table to avoid allocation from
343 * atomic context.
344 */
345 };
346
347 /* page entry size for vm->huge_fault() */
348 enum page_entry_size {
349 PE_SIZE_PTE = 0,
350 PE_SIZE_PMD,
351 PE_SIZE_PUD,
352 };
353
354 /*
355 * These are the virtual MM functions - opening of an area, closing and
356 * unmapping it (needed to keep files on disk up-to-date etc), pointer
357 * to the functions called when a no-page or a wp-page exception occurs.
358 */
359 struct vm_operations_struct {
360 void (*open)(struct vm_area_struct * area);
361 void (*close)(struct vm_area_struct * area);
362 int (*mremap)(struct vm_area_struct * area);
363 int (*fault)(struct vm_fault *vmf);
364 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
365 void (*map_pages)(struct vm_fault *vmf,
366 pgoff_t start_pgoff, pgoff_t end_pgoff);
367
368 /* notification that a previously read-only page is about to become
369 * writable, if an error is returned it will cause a SIGBUS */
370 int (*page_mkwrite)(struct vm_fault *vmf);
371
372 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
373 int (*pfn_mkwrite)(struct vm_fault *vmf);
374
375 /* called by access_process_vm when get_user_pages() fails, typically
376 * for use by special VMAs that can switch between memory and hardware
377 */
378 int (*access)(struct vm_area_struct *vma, unsigned long addr,
379 void *buf, int len, int write);
380
381 /* Called by the /proc/PID/maps code to ask the vma whether it
382 * has a special name. Returning non-NULL will also cause this
383 * vma to be dumped unconditionally. */
384 const char *(*name)(struct vm_area_struct *vma);
385
386 #ifdef CONFIG_NUMA
387 /*
388 * set_policy() op must add a reference to any non-NULL @new mempolicy
389 * to hold the policy upon return. Caller should pass NULL @new to
390 * remove a policy and fall back to surrounding context--i.e. do not
391 * install a MPOL_DEFAULT policy, nor the task or system default
392 * mempolicy.
393 */
394 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
395
396 /*
397 * get_policy() op must add reference [mpol_get()] to any policy at
398 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
399 * in mm/mempolicy.c will do this automatically.
400 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
401 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
402 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
403 * must return NULL--i.e., do not "fallback" to task or system default
404 * policy.
405 */
406 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
407 unsigned long addr);
408 #endif
409 /*
410 * Called by vm_normal_page() for special PTEs to find the
411 * page for @addr. This is useful if the default behavior
412 * (using pte_page()) would not find the correct page.
413 */
414 struct page *(*find_special_page)(struct vm_area_struct *vma,
415 unsigned long addr);
416 };
417
418 struct mmu_gather;
419 struct inode;
420
421 #define page_private(page) ((page)->private)
422 #define set_page_private(page, v) ((page)->private = (v))
423
424 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
425 static inline int pmd_devmap(pmd_t pmd)
426 {
427 return 0;
428 }
429 static inline int pud_devmap(pud_t pud)
430 {
431 return 0;
432 }
433 static inline int pgd_devmap(pgd_t pgd)
434 {
435 return 0;
436 }
437 #endif
438
439 /*
440 * FIXME: take this include out, include page-flags.h in
441 * files which need it (119 of them)
442 */
443 #include <linux/page-flags.h>
444 #include <linux/huge_mm.h>
445
446 /*
447 * Methods to modify the page usage count.
448 *
449 * What counts for a page usage:
450 * - cache mapping (page->mapping)
451 * - private data (page->private)
452 * - page mapped in a task's page tables, each mapping
453 * is counted separately
454 *
455 * Also, many kernel routines increase the page count before a critical
456 * routine so they can be sure the page doesn't go away from under them.
457 */
458
459 /*
460 * Drop a ref, return true if the refcount fell to zero (the page has no users)
461 */
462 static inline int put_page_testzero(struct page *page)
463 {
464 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
465 return page_ref_dec_and_test(page);
466 }
467
468 /*
469 * Try to grab a ref unless the page has a refcount of zero, return false if
470 * that is the case.
471 * This can be called when MMU is off so it must not access
472 * any of the virtual mappings.
473 */
474 static inline int get_page_unless_zero(struct page *page)
475 {
476 return page_ref_add_unless(page, 1, 0);
477 }
478
479 extern int page_is_ram(unsigned long pfn);
480
481 enum {
482 REGION_INTERSECTS,
483 REGION_DISJOINT,
484 REGION_MIXED,
485 };
486
487 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
488 unsigned long desc);
489
490 /* Support for virtually mapped pages */
491 struct page *vmalloc_to_page(const void *addr);
492 unsigned long vmalloc_to_pfn(const void *addr);
493
494 /*
495 * Determine if an address is within the vmalloc range
496 *
497 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
498 * is no special casing required.
499 */
500 static inline bool is_vmalloc_addr(const void *x)
501 {
502 #ifdef CONFIG_MMU
503 unsigned long addr = (unsigned long)x;
504
505 return addr >= VMALLOC_START && addr < VMALLOC_END;
506 #else
507 return false;
508 #endif
509 }
510 #ifdef CONFIG_MMU
511 extern int is_vmalloc_or_module_addr(const void *x);
512 #else
513 static inline int is_vmalloc_or_module_addr(const void *x)
514 {
515 return 0;
516 }
517 #endif
518
519 extern void kvfree(const void *addr);
520
521 static inline atomic_t *compound_mapcount_ptr(struct page *page)
522 {
523 return &page[1].compound_mapcount;
524 }
525
526 static inline int compound_mapcount(struct page *page)
527 {
528 VM_BUG_ON_PAGE(!PageCompound(page), page);
529 page = compound_head(page);
530 return atomic_read(compound_mapcount_ptr(page)) + 1;
531 }
532
533 /*
534 * The atomic page->_mapcount, starts from -1: so that transitions
535 * both from it and to it can be tracked, using atomic_inc_and_test
536 * and atomic_add_negative(-1).
537 */
538 static inline void page_mapcount_reset(struct page *page)
539 {
540 atomic_set(&(page)->_mapcount, -1);
541 }
542
543 int __page_mapcount(struct page *page);
544
545 static inline int page_mapcount(struct page *page)
546 {
547 VM_BUG_ON_PAGE(PageSlab(page), page);
548
549 if (unlikely(PageCompound(page)))
550 return __page_mapcount(page);
551 return atomic_read(&page->_mapcount) + 1;
552 }
553
554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 int total_mapcount(struct page *page);
556 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
557 #else
558 static inline int total_mapcount(struct page *page)
559 {
560 return page_mapcount(page);
561 }
562 static inline int page_trans_huge_mapcount(struct page *page,
563 int *total_mapcount)
564 {
565 int mapcount = page_mapcount(page);
566 if (total_mapcount)
567 *total_mapcount = mapcount;
568 return mapcount;
569 }
570 #endif
571
572 static inline struct page *virt_to_head_page(const void *x)
573 {
574 struct page *page = virt_to_page(x);
575
576 return compound_head(page);
577 }
578
579 void __put_page(struct page *page);
580
581 void put_pages_list(struct list_head *pages);
582
583 void split_page(struct page *page, unsigned int order);
584
585 /*
586 * Compound pages have a destructor function. Provide a
587 * prototype for that function and accessor functions.
588 * These are _only_ valid on the head of a compound page.
589 */
590 typedef void compound_page_dtor(struct page *);
591
592 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
593 enum compound_dtor_id {
594 NULL_COMPOUND_DTOR,
595 COMPOUND_PAGE_DTOR,
596 #ifdef CONFIG_HUGETLB_PAGE
597 HUGETLB_PAGE_DTOR,
598 #endif
599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
600 TRANSHUGE_PAGE_DTOR,
601 #endif
602 NR_COMPOUND_DTORS,
603 };
604 extern compound_page_dtor * const compound_page_dtors[];
605
606 static inline void set_compound_page_dtor(struct page *page,
607 enum compound_dtor_id compound_dtor)
608 {
609 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
610 page[1].compound_dtor = compound_dtor;
611 }
612
613 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
614 {
615 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
616 return compound_page_dtors[page[1].compound_dtor];
617 }
618
619 static inline unsigned int compound_order(struct page *page)
620 {
621 if (!PageHead(page))
622 return 0;
623 return page[1].compound_order;
624 }
625
626 static inline void set_compound_order(struct page *page, unsigned int order)
627 {
628 page[1].compound_order = order;
629 }
630
631 void free_compound_page(struct page *page);
632
633 #ifdef CONFIG_MMU
634 /*
635 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
636 * servicing faults for write access. In the normal case, do always want
637 * pte_mkwrite. But get_user_pages can cause write faults for mappings
638 * that do not have writing enabled, when used by access_process_vm.
639 */
640 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
641 {
642 if (likely(vma->vm_flags & VM_WRITE))
643 pte = pte_mkwrite(pte);
644 return pte;
645 }
646
647 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
648 struct page *page);
649 int finish_fault(struct vm_fault *vmf);
650 int finish_mkwrite_fault(struct vm_fault *vmf);
651 #endif
652
653 /*
654 * Multiple processes may "see" the same page. E.g. for untouched
655 * mappings of /dev/null, all processes see the same page full of
656 * zeroes, and text pages of executables and shared libraries have
657 * only one copy in memory, at most, normally.
658 *
659 * For the non-reserved pages, page_count(page) denotes a reference count.
660 * page_count() == 0 means the page is free. page->lru is then used for
661 * freelist management in the buddy allocator.
662 * page_count() > 0 means the page has been allocated.
663 *
664 * Pages are allocated by the slab allocator in order to provide memory
665 * to kmalloc and kmem_cache_alloc. In this case, the management of the
666 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
667 * unless a particular usage is carefully commented. (the responsibility of
668 * freeing the kmalloc memory is the caller's, of course).
669 *
670 * A page may be used by anyone else who does a __get_free_page().
671 * In this case, page_count still tracks the references, and should only
672 * be used through the normal accessor functions. The top bits of page->flags
673 * and page->virtual store page management information, but all other fields
674 * are unused and could be used privately, carefully. The management of this
675 * page is the responsibility of the one who allocated it, and those who have
676 * subsequently been given references to it.
677 *
678 * The other pages (we may call them "pagecache pages") are completely
679 * managed by the Linux memory manager: I/O, buffers, swapping etc.
680 * The following discussion applies only to them.
681 *
682 * A pagecache page contains an opaque `private' member, which belongs to the
683 * page's address_space. Usually, this is the address of a circular list of
684 * the page's disk buffers. PG_private must be set to tell the VM to call
685 * into the filesystem to release these pages.
686 *
687 * A page may belong to an inode's memory mapping. In this case, page->mapping
688 * is the pointer to the inode, and page->index is the file offset of the page,
689 * in units of PAGE_SIZE.
690 *
691 * If pagecache pages are not associated with an inode, they are said to be
692 * anonymous pages. These may become associated with the swapcache, and in that
693 * case PG_swapcache is set, and page->private is an offset into the swapcache.
694 *
695 * In either case (swapcache or inode backed), the pagecache itself holds one
696 * reference to the page. Setting PG_private should also increment the
697 * refcount. The each user mapping also has a reference to the page.
698 *
699 * The pagecache pages are stored in a per-mapping radix tree, which is
700 * rooted at mapping->page_tree, and indexed by offset.
701 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
702 * lists, we instead now tag pages as dirty/writeback in the radix tree.
703 *
704 * All pagecache pages may be subject to I/O:
705 * - inode pages may need to be read from disk,
706 * - inode pages which have been modified and are MAP_SHARED may need
707 * to be written back to the inode on disk,
708 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
709 * modified may need to be swapped out to swap space and (later) to be read
710 * back into memory.
711 */
712
713 /*
714 * The zone field is never updated after free_area_init_core()
715 * sets it, so none of the operations on it need to be atomic.
716 */
717
718 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
719 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
720 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
721 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
722 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
723
724 /*
725 * Define the bit shifts to access each section. For non-existent
726 * sections we define the shift as 0; that plus a 0 mask ensures
727 * the compiler will optimise away reference to them.
728 */
729 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
730 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
731 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
732 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
733
734 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
735 #ifdef NODE_NOT_IN_PAGE_FLAGS
736 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
737 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
738 SECTIONS_PGOFF : ZONES_PGOFF)
739 #else
740 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
741 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
742 NODES_PGOFF : ZONES_PGOFF)
743 #endif
744
745 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
746
747 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
748 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
749 #endif
750
751 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
752 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
753 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
754 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
755 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
756
757 static inline enum zone_type page_zonenum(const struct page *page)
758 {
759 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
760 }
761
762 #ifdef CONFIG_ZONE_DEVICE
763 void get_zone_device_page(struct page *page);
764 void put_zone_device_page(struct page *page);
765 static inline bool is_zone_device_page(const struct page *page)
766 {
767 return page_zonenum(page) == ZONE_DEVICE;
768 }
769 #else
770 static inline void get_zone_device_page(struct page *page)
771 {
772 }
773 static inline void put_zone_device_page(struct page *page)
774 {
775 }
776 static inline bool is_zone_device_page(const struct page *page)
777 {
778 return false;
779 }
780 #endif
781
782 static inline void get_page(struct page *page)
783 {
784 page = compound_head(page);
785 /*
786 * Getting a normal page or the head of a compound page
787 * requires to already have an elevated page->_refcount.
788 */
789 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
790 page_ref_inc(page);
791
792 if (unlikely(is_zone_device_page(page)))
793 get_zone_device_page(page);
794 }
795
796 static inline void put_page(struct page *page)
797 {
798 page = compound_head(page);
799
800 if (put_page_testzero(page))
801 __put_page(page);
802
803 if (unlikely(is_zone_device_page(page)))
804 put_zone_device_page(page);
805 }
806
807 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
808 #define SECTION_IN_PAGE_FLAGS
809 #endif
810
811 /*
812 * The identification function is mainly used by the buddy allocator for
813 * determining if two pages could be buddies. We are not really identifying
814 * the zone since we could be using the section number id if we do not have
815 * node id available in page flags.
816 * We only guarantee that it will return the same value for two combinable
817 * pages in a zone.
818 */
819 static inline int page_zone_id(struct page *page)
820 {
821 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
822 }
823
824 static inline int zone_to_nid(struct zone *zone)
825 {
826 #ifdef CONFIG_NUMA
827 return zone->node;
828 #else
829 return 0;
830 #endif
831 }
832
833 #ifdef NODE_NOT_IN_PAGE_FLAGS
834 extern int page_to_nid(const struct page *page);
835 #else
836 static inline int page_to_nid(const struct page *page)
837 {
838 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
839 }
840 #endif
841
842 #ifdef CONFIG_NUMA_BALANCING
843 static inline int cpu_pid_to_cpupid(int cpu, int pid)
844 {
845 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
846 }
847
848 static inline int cpupid_to_pid(int cpupid)
849 {
850 return cpupid & LAST__PID_MASK;
851 }
852
853 static inline int cpupid_to_cpu(int cpupid)
854 {
855 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
856 }
857
858 static inline int cpupid_to_nid(int cpupid)
859 {
860 return cpu_to_node(cpupid_to_cpu(cpupid));
861 }
862
863 static inline bool cpupid_pid_unset(int cpupid)
864 {
865 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
866 }
867
868 static inline bool cpupid_cpu_unset(int cpupid)
869 {
870 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
871 }
872
873 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
874 {
875 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
876 }
877
878 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
879 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
880 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
881 {
882 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
883 }
884
885 static inline int page_cpupid_last(struct page *page)
886 {
887 return page->_last_cpupid;
888 }
889 static inline void page_cpupid_reset_last(struct page *page)
890 {
891 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
892 }
893 #else
894 static inline int page_cpupid_last(struct page *page)
895 {
896 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
897 }
898
899 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
900
901 static inline void page_cpupid_reset_last(struct page *page)
902 {
903 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
904 }
905 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
906 #else /* !CONFIG_NUMA_BALANCING */
907 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
908 {
909 return page_to_nid(page); /* XXX */
910 }
911
912 static inline int page_cpupid_last(struct page *page)
913 {
914 return page_to_nid(page); /* XXX */
915 }
916
917 static inline int cpupid_to_nid(int cpupid)
918 {
919 return -1;
920 }
921
922 static inline int cpupid_to_pid(int cpupid)
923 {
924 return -1;
925 }
926
927 static inline int cpupid_to_cpu(int cpupid)
928 {
929 return -1;
930 }
931
932 static inline int cpu_pid_to_cpupid(int nid, int pid)
933 {
934 return -1;
935 }
936
937 static inline bool cpupid_pid_unset(int cpupid)
938 {
939 return 1;
940 }
941
942 static inline void page_cpupid_reset_last(struct page *page)
943 {
944 }
945
946 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
947 {
948 return false;
949 }
950 #endif /* CONFIG_NUMA_BALANCING */
951
952 static inline struct zone *page_zone(const struct page *page)
953 {
954 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
955 }
956
957 static inline pg_data_t *page_pgdat(const struct page *page)
958 {
959 return NODE_DATA(page_to_nid(page));
960 }
961
962 #ifdef SECTION_IN_PAGE_FLAGS
963 static inline void set_page_section(struct page *page, unsigned long section)
964 {
965 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
966 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
967 }
968
969 static inline unsigned long page_to_section(const struct page *page)
970 {
971 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
972 }
973 #endif
974
975 static inline void set_page_zone(struct page *page, enum zone_type zone)
976 {
977 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
978 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
979 }
980
981 static inline void set_page_node(struct page *page, unsigned long node)
982 {
983 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
984 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
985 }
986
987 static inline void set_page_links(struct page *page, enum zone_type zone,
988 unsigned long node, unsigned long pfn)
989 {
990 set_page_zone(page, zone);
991 set_page_node(page, node);
992 #ifdef SECTION_IN_PAGE_FLAGS
993 set_page_section(page, pfn_to_section_nr(pfn));
994 #endif
995 }
996
997 #ifdef CONFIG_MEMCG
998 static inline struct mem_cgroup *page_memcg(struct page *page)
999 {
1000 return page->mem_cgroup;
1001 }
1002 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1003 {
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1005 return READ_ONCE(page->mem_cgroup);
1006 }
1007 #else
1008 static inline struct mem_cgroup *page_memcg(struct page *page)
1009 {
1010 return NULL;
1011 }
1012 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1013 {
1014 WARN_ON_ONCE(!rcu_read_lock_held());
1015 return NULL;
1016 }
1017 #endif
1018
1019 /*
1020 * Some inline functions in vmstat.h depend on page_zone()
1021 */
1022 #include <linux/vmstat.h>
1023
1024 static __always_inline void *lowmem_page_address(const struct page *page)
1025 {
1026 return page_to_virt(page);
1027 }
1028
1029 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1030 #define HASHED_PAGE_VIRTUAL
1031 #endif
1032
1033 #if defined(WANT_PAGE_VIRTUAL)
1034 static inline void *page_address(const struct page *page)
1035 {
1036 return page->virtual;
1037 }
1038 static inline void set_page_address(struct page *page, void *address)
1039 {
1040 page->virtual = address;
1041 }
1042 #define page_address_init() do { } while(0)
1043 #endif
1044
1045 #if defined(HASHED_PAGE_VIRTUAL)
1046 void *page_address(const struct page *page);
1047 void set_page_address(struct page *page, void *virtual);
1048 void page_address_init(void);
1049 #endif
1050
1051 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1052 #define page_address(page) lowmem_page_address(page)
1053 #define set_page_address(page, address) do { } while(0)
1054 #define page_address_init() do { } while(0)
1055 #endif
1056
1057 extern void *page_rmapping(struct page *page);
1058 extern struct anon_vma *page_anon_vma(struct page *page);
1059 extern struct address_space *page_mapping(struct page *page);
1060
1061 extern struct address_space *__page_file_mapping(struct page *);
1062
1063 static inline
1064 struct address_space *page_file_mapping(struct page *page)
1065 {
1066 if (unlikely(PageSwapCache(page)))
1067 return __page_file_mapping(page);
1068
1069 return page->mapping;
1070 }
1071
1072 extern pgoff_t __page_file_index(struct page *page);
1073
1074 /*
1075 * Return the pagecache index of the passed page. Regular pagecache pages
1076 * use ->index whereas swapcache pages use swp_offset(->private)
1077 */
1078 static inline pgoff_t page_index(struct page *page)
1079 {
1080 if (unlikely(PageSwapCache(page)))
1081 return __page_file_index(page);
1082 return page->index;
1083 }
1084
1085 bool page_mapped(struct page *page);
1086 struct address_space *page_mapping(struct page *page);
1087
1088 /*
1089 * Return true only if the page has been allocated with
1090 * ALLOC_NO_WATERMARKS and the low watermark was not
1091 * met implying that the system is under some pressure.
1092 */
1093 static inline bool page_is_pfmemalloc(struct page *page)
1094 {
1095 /*
1096 * Page index cannot be this large so this must be
1097 * a pfmemalloc page.
1098 */
1099 return page->index == -1UL;
1100 }
1101
1102 /*
1103 * Only to be called by the page allocator on a freshly allocated
1104 * page.
1105 */
1106 static inline void set_page_pfmemalloc(struct page *page)
1107 {
1108 page->index = -1UL;
1109 }
1110
1111 static inline void clear_page_pfmemalloc(struct page *page)
1112 {
1113 page->index = 0;
1114 }
1115
1116 /*
1117 * Different kinds of faults, as returned by handle_mm_fault().
1118 * Used to decide whether a process gets delivered SIGBUS or
1119 * just gets major/minor fault counters bumped up.
1120 */
1121
1122 #define VM_FAULT_OOM 0x0001
1123 #define VM_FAULT_SIGBUS 0x0002
1124 #define VM_FAULT_MAJOR 0x0004
1125 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1126 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1127 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1128 #define VM_FAULT_SIGSEGV 0x0040
1129
1130 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1131 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1132 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1133 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1134 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1135
1136 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1137
1138 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1139 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1140 VM_FAULT_FALLBACK)
1141
1142 #define VM_FAULT_RESULT_TRACE \
1143 { VM_FAULT_OOM, "OOM" }, \
1144 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1145 { VM_FAULT_MAJOR, "MAJOR" }, \
1146 { VM_FAULT_WRITE, "WRITE" }, \
1147 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1148 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1149 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1150 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1151 { VM_FAULT_LOCKED, "LOCKED" }, \
1152 { VM_FAULT_RETRY, "RETRY" }, \
1153 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1154 { VM_FAULT_DONE_COW, "DONE_COW" }
1155
1156 /* Encode hstate index for a hwpoisoned large page */
1157 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1158 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1159
1160 /*
1161 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1162 */
1163 extern void pagefault_out_of_memory(void);
1164
1165 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1166
1167 /*
1168 * Flags passed to show_mem() and show_free_areas() to suppress output in
1169 * various contexts.
1170 */
1171 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1172
1173 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1174
1175 extern bool can_do_mlock(void);
1176 extern int user_shm_lock(size_t, struct user_struct *);
1177 extern void user_shm_unlock(size_t, struct user_struct *);
1178
1179 /*
1180 * Parameter block passed down to zap_pte_range in exceptional cases.
1181 */
1182 struct zap_details {
1183 struct address_space *check_mapping; /* Check page->mapping if set */
1184 pgoff_t first_index; /* Lowest page->index to unmap */
1185 pgoff_t last_index; /* Highest page->index to unmap */
1186 };
1187
1188 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1189 pte_t pte);
1190 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1191 pmd_t pmd);
1192
1193 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1194 unsigned long size);
1195 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1196 unsigned long size);
1197 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1198 unsigned long start, unsigned long end);
1199
1200 /**
1201 * mm_walk - callbacks for walk_page_range
1202 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1203 * this handler should only handle pud_trans_huge() puds.
1204 * the pmd_entry or pte_entry callbacks will be used for
1205 * regular PUDs.
1206 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1207 * this handler is required to be able to handle
1208 * pmd_trans_huge() pmds. They may simply choose to
1209 * split_huge_page() instead of handling it explicitly.
1210 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1211 * @pte_hole: if set, called for each hole at all levels
1212 * @hugetlb_entry: if set, called for each hugetlb entry
1213 * @test_walk: caller specific callback function to determine whether
1214 * we walk over the current vma or not. Returning 0
1215 * value means "do page table walk over the current vma,"
1216 * and a negative one means "abort current page table walk
1217 * right now." 1 means "skip the current vma."
1218 * @mm: mm_struct representing the target process of page table walk
1219 * @vma: vma currently walked (NULL if walking outside vmas)
1220 * @private: private data for callbacks' usage
1221 *
1222 * (see the comment on walk_page_range() for more details)
1223 */
1224 struct mm_walk {
1225 int (*pud_entry)(pud_t *pud, unsigned long addr,
1226 unsigned long next, struct mm_walk *walk);
1227 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1228 unsigned long next, struct mm_walk *walk);
1229 int (*pte_entry)(pte_t *pte, unsigned long addr,
1230 unsigned long next, struct mm_walk *walk);
1231 int (*pte_hole)(unsigned long addr, unsigned long next,
1232 struct mm_walk *walk);
1233 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1234 unsigned long addr, unsigned long next,
1235 struct mm_walk *walk);
1236 int (*test_walk)(unsigned long addr, unsigned long next,
1237 struct mm_walk *walk);
1238 struct mm_struct *mm;
1239 struct vm_area_struct *vma;
1240 void *private;
1241 };
1242
1243 int walk_page_range(unsigned long addr, unsigned long end,
1244 struct mm_walk *walk);
1245 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1246 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1247 unsigned long end, unsigned long floor, unsigned long ceiling);
1248 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1249 struct vm_area_struct *vma);
1250 void unmap_mapping_range(struct address_space *mapping,
1251 loff_t const holebegin, loff_t const holelen, int even_cows);
1252 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1253 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1254 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1255 unsigned long *pfn);
1256 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1257 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1258 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1259 void *buf, int len, int write);
1260
1261 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1262 loff_t const holebegin, loff_t const holelen)
1263 {
1264 unmap_mapping_range(mapping, holebegin, holelen, 0);
1265 }
1266
1267 extern void truncate_pagecache(struct inode *inode, loff_t new);
1268 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1269 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1270 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1271 int truncate_inode_page(struct address_space *mapping, struct page *page);
1272 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1273 int invalidate_inode_page(struct page *page);
1274
1275 #ifdef CONFIG_MMU
1276 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1277 unsigned int flags);
1278 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1279 unsigned long address, unsigned int fault_flags,
1280 bool *unlocked);
1281 #else
1282 static inline int handle_mm_fault(struct vm_area_struct *vma,
1283 unsigned long address, unsigned int flags)
1284 {
1285 /* should never happen if there's no MMU */
1286 BUG();
1287 return VM_FAULT_SIGBUS;
1288 }
1289 static inline int fixup_user_fault(struct task_struct *tsk,
1290 struct mm_struct *mm, unsigned long address,
1291 unsigned int fault_flags, bool *unlocked)
1292 {
1293 /* should never happen if there's no MMU */
1294 BUG();
1295 return -EFAULT;
1296 }
1297 #endif
1298
1299 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1300 unsigned int gup_flags);
1301 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1302 void *buf, int len, unsigned int gup_flags);
1303 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1304 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1305
1306 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1307 unsigned long start, unsigned long nr_pages,
1308 unsigned int gup_flags, struct page **pages,
1309 struct vm_area_struct **vmas, int *locked);
1310 long get_user_pages(unsigned long start, unsigned long nr_pages,
1311 unsigned int gup_flags, struct page **pages,
1312 struct vm_area_struct **vmas);
1313 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1314 unsigned int gup_flags, struct page **pages, int *locked);
1315 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1316 struct page **pages, unsigned int gup_flags);
1317 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1318 struct page **pages);
1319
1320 /* Container for pinned pfns / pages */
1321 struct frame_vector {
1322 unsigned int nr_allocated; /* Number of frames we have space for */
1323 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1324 bool got_ref; /* Did we pin pages by getting page ref? */
1325 bool is_pfns; /* Does array contain pages or pfns? */
1326 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1327 * pfns_vector_pages() or pfns_vector_pfns()
1328 * for access */
1329 };
1330
1331 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1332 void frame_vector_destroy(struct frame_vector *vec);
1333 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1334 unsigned int gup_flags, struct frame_vector *vec);
1335 void put_vaddr_frames(struct frame_vector *vec);
1336 int frame_vector_to_pages(struct frame_vector *vec);
1337 void frame_vector_to_pfns(struct frame_vector *vec);
1338
1339 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1340 {
1341 return vec->nr_frames;
1342 }
1343
1344 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1345 {
1346 if (vec->is_pfns) {
1347 int err = frame_vector_to_pages(vec);
1348
1349 if (err)
1350 return ERR_PTR(err);
1351 }
1352 return (struct page **)(vec->ptrs);
1353 }
1354
1355 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1356 {
1357 if (!vec->is_pfns)
1358 frame_vector_to_pfns(vec);
1359 return (unsigned long *)(vec->ptrs);
1360 }
1361
1362 struct kvec;
1363 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1364 struct page **pages);
1365 int get_kernel_page(unsigned long start, int write, struct page **pages);
1366 struct page *get_dump_page(unsigned long addr);
1367
1368 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1369 extern void do_invalidatepage(struct page *page, unsigned int offset,
1370 unsigned int length);
1371
1372 int __set_page_dirty_nobuffers(struct page *page);
1373 int __set_page_dirty_no_writeback(struct page *page);
1374 int redirty_page_for_writepage(struct writeback_control *wbc,
1375 struct page *page);
1376 void account_page_dirtied(struct page *page, struct address_space *mapping);
1377 void account_page_cleaned(struct page *page, struct address_space *mapping,
1378 struct bdi_writeback *wb);
1379 int set_page_dirty(struct page *page);
1380 int set_page_dirty_lock(struct page *page);
1381 void cancel_dirty_page(struct page *page);
1382 int clear_page_dirty_for_io(struct page *page);
1383
1384 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1385
1386 /* Is the vma a continuation of the stack vma above it? */
1387 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1388 {
1389 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1390 }
1391
1392 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1393 {
1394 return !vma->vm_ops;
1395 }
1396
1397 #ifdef CONFIG_SHMEM
1398 /*
1399 * The vma_is_shmem is not inline because it is used only by slow
1400 * paths in userfault.
1401 */
1402 bool vma_is_shmem(struct vm_area_struct *vma);
1403 #else
1404 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1405 #endif
1406
1407 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1408 unsigned long addr)
1409 {
1410 return (vma->vm_flags & VM_GROWSDOWN) &&
1411 (vma->vm_start == addr) &&
1412 !vma_growsdown(vma->vm_prev, addr);
1413 }
1414
1415 /* Is the vma a continuation of the stack vma below it? */
1416 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1417 {
1418 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1419 }
1420
1421 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1422 unsigned long addr)
1423 {
1424 return (vma->vm_flags & VM_GROWSUP) &&
1425 (vma->vm_end == addr) &&
1426 !vma_growsup(vma->vm_next, addr);
1427 }
1428
1429 int vma_is_stack_for_current(struct vm_area_struct *vma);
1430
1431 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1432 unsigned long old_addr, struct vm_area_struct *new_vma,
1433 unsigned long new_addr, unsigned long len,
1434 bool need_rmap_locks);
1435 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1436 unsigned long end, pgprot_t newprot,
1437 int dirty_accountable, int prot_numa);
1438 extern int mprotect_fixup(struct vm_area_struct *vma,
1439 struct vm_area_struct **pprev, unsigned long start,
1440 unsigned long end, unsigned long newflags);
1441
1442 /*
1443 * doesn't attempt to fault and will return short.
1444 */
1445 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1446 struct page **pages);
1447 /*
1448 * per-process(per-mm_struct) statistics.
1449 */
1450 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1451 {
1452 long val = atomic_long_read(&mm->rss_stat.count[member]);
1453
1454 #ifdef SPLIT_RSS_COUNTING
1455 /*
1456 * counter is updated in asynchronous manner and may go to minus.
1457 * But it's never be expected number for users.
1458 */
1459 if (val < 0)
1460 val = 0;
1461 #endif
1462 return (unsigned long)val;
1463 }
1464
1465 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1466 {
1467 atomic_long_add(value, &mm->rss_stat.count[member]);
1468 }
1469
1470 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1471 {
1472 atomic_long_inc(&mm->rss_stat.count[member]);
1473 }
1474
1475 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1476 {
1477 atomic_long_dec(&mm->rss_stat.count[member]);
1478 }
1479
1480 /* Optimized variant when page is already known not to be PageAnon */
1481 static inline int mm_counter_file(struct page *page)
1482 {
1483 if (PageSwapBacked(page))
1484 return MM_SHMEMPAGES;
1485 return MM_FILEPAGES;
1486 }
1487
1488 static inline int mm_counter(struct page *page)
1489 {
1490 if (PageAnon(page))
1491 return MM_ANONPAGES;
1492 return mm_counter_file(page);
1493 }
1494
1495 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1496 {
1497 return get_mm_counter(mm, MM_FILEPAGES) +
1498 get_mm_counter(mm, MM_ANONPAGES) +
1499 get_mm_counter(mm, MM_SHMEMPAGES);
1500 }
1501
1502 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1503 {
1504 return max(mm->hiwater_rss, get_mm_rss(mm));
1505 }
1506
1507 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1508 {
1509 return max(mm->hiwater_vm, mm->total_vm);
1510 }
1511
1512 static inline void update_hiwater_rss(struct mm_struct *mm)
1513 {
1514 unsigned long _rss = get_mm_rss(mm);
1515
1516 if ((mm)->hiwater_rss < _rss)
1517 (mm)->hiwater_rss = _rss;
1518 }
1519
1520 static inline void update_hiwater_vm(struct mm_struct *mm)
1521 {
1522 if (mm->hiwater_vm < mm->total_vm)
1523 mm->hiwater_vm = mm->total_vm;
1524 }
1525
1526 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1527 {
1528 mm->hiwater_rss = get_mm_rss(mm);
1529 }
1530
1531 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1532 struct mm_struct *mm)
1533 {
1534 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1535
1536 if (*maxrss < hiwater_rss)
1537 *maxrss = hiwater_rss;
1538 }
1539
1540 #if defined(SPLIT_RSS_COUNTING)
1541 void sync_mm_rss(struct mm_struct *mm);
1542 #else
1543 static inline void sync_mm_rss(struct mm_struct *mm)
1544 {
1545 }
1546 #endif
1547
1548 #ifndef __HAVE_ARCH_PTE_DEVMAP
1549 static inline int pte_devmap(pte_t pte)
1550 {
1551 return 0;
1552 }
1553 #endif
1554
1555 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1556
1557 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1558 spinlock_t **ptl);
1559 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1560 spinlock_t **ptl)
1561 {
1562 pte_t *ptep;
1563 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1564 return ptep;
1565 }
1566
1567 #ifdef __PAGETABLE_P4D_FOLDED
1568 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1569 unsigned long address)
1570 {
1571 return 0;
1572 }
1573 #else
1574 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1575 #endif
1576
1577 #ifdef __PAGETABLE_PUD_FOLDED
1578 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1579 unsigned long address)
1580 {
1581 return 0;
1582 }
1583 #else
1584 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1585 #endif
1586
1587 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1588 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1589 unsigned long address)
1590 {
1591 return 0;
1592 }
1593
1594 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1595
1596 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1597 {
1598 return 0;
1599 }
1600
1601 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1602 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1603
1604 #else
1605 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1606
1607 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1608 {
1609 atomic_long_set(&mm->nr_pmds, 0);
1610 }
1611
1612 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1613 {
1614 return atomic_long_read(&mm->nr_pmds);
1615 }
1616
1617 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1618 {
1619 atomic_long_inc(&mm->nr_pmds);
1620 }
1621
1622 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1623 {
1624 atomic_long_dec(&mm->nr_pmds);
1625 }
1626 #endif
1627
1628 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1629 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1630
1631 /*
1632 * The following ifdef needed to get the 4level-fixup.h header to work.
1633 * Remove it when 4level-fixup.h has been removed.
1634 */
1635 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1636
1637 #ifndef __ARCH_HAS_5LEVEL_HACK
1638 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1639 unsigned long address)
1640 {
1641 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1642 NULL : p4d_offset(pgd, address);
1643 }
1644
1645 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1646 unsigned long address)
1647 {
1648 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1649 NULL : pud_offset(p4d, address);
1650 }
1651 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1652
1653 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1654 {
1655 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1656 NULL: pmd_offset(pud, address);
1657 }
1658 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1659
1660 #if USE_SPLIT_PTE_PTLOCKS
1661 #if ALLOC_SPLIT_PTLOCKS
1662 void __init ptlock_cache_init(void);
1663 extern bool ptlock_alloc(struct page *page);
1664 extern void ptlock_free(struct page *page);
1665
1666 static inline spinlock_t *ptlock_ptr(struct page *page)
1667 {
1668 return page->ptl;
1669 }
1670 #else /* ALLOC_SPLIT_PTLOCKS */
1671 static inline void ptlock_cache_init(void)
1672 {
1673 }
1674
1675 static inline bool ptlock_alloc(struct page *page)
1676 {
1677 return true;
1678 }
1679
1680 static inline void ptlock_free(struct page *page)
1681 {
1682 }
1683
1684 static inline spinlock_t *ptlock_ptr(struct page *page)
1685 {
1686 return &page->ptl;
1687 }
1688 #endif /* ALLOC_SPLIT_PTLOCKS */
1689
1690 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1691 {
1692 return ptlock_ptr(pmd_page(*pmd));
1693 }
1694
1695 static inline bool ptlock_init(struct page *page)
1696 {
1697 /*
1698 * prep_new_page() initialize page->private (and therefore page->ptl)
1699 * with 0. Make sure nobody took it in use in between.
1700 *
1701 * It can happen if arch try to use slab for page table allocation:
1702 * slab code uses page->slab_cache, which share storage with page->ptl.
1703 */
1704 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1705 if (!ptlock_alloc(page))
1706 return false;
1707 spin_lock_init(ptlock_ptr(page));
1708 return true;
1709 }
1710
1711 /* Reset page->mapping so free_pages_check won't complain. */
1712 static inline void pte_lock_deinit(struct page *page)
1713 {
1714 page->mapping = NULL;
1715 ptlock_free(page);
1716 }
1717
1718 #else /* !USE_SPLIT_PTE_PTLOCKS */
1719 /*
1720 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1721 */
1722 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1723 {
1724 return &mm->page_table_lock;
1725 }
1726 static inline void ptlock_cache_init(void) {}
1727 static inline bool ptlock_init(struct page *page) { return true; }
1728 static inline void pte_lock_deinit(struct page *page) {}
1729 #endif /* USE_SPLIT_PTE_PTLOCKS */
1730
1731 static inline void pgtable_init(void)
1732 {
1733 ptlock_cache_init();
1734 pgtable_cache_init();
1735 }
1736
1737 static inline bool pgtable_page_ctor(struct page *page)
1738 {
1739 if (!ptlock_init(page))
1740 return false;
1741 inc_zone_page_state(page, NR_PAGETABLE);
1742 return true;
1743 }
1744
1745 static inline void pgtable_page_dtor(struct page *page)
1746 {
1747 pte_lock_deinit(page);
1748 dec_zone_page_state(page, NR_PAGETABLE);
1749 }
1750
1751 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1752 ({ \
1753 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1754 pte_t *__pte = pte_offset_map(pmd, address); \
1755 *(ptlp) = __ptl; \
1756 spin_lock(__ptl); \
1757 __pte; \
1758 })
1759
1760 #define pte_unmap_unlock(pte, ptl) do { \
1761 spin_unlock(ptl); \
1762 pte_unmap(pte); \
1763 } while (0)
1764
1765 #define pte_alloc(mm, pmd, address) \
1766 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1767
1768 #define pte_alloc_map(mm, pmd, address) \
1769 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1770
1771 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1772 (pte_alloc(mm, pmd, address) ? \
1773 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1774
1775 #define pte_alloc_kernel(pmd, address) \
1776 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1777 NULL: pte_offset_kernel(pmd, address))
1778
1779 #if USE_SPLIT_PMD_PTLOCKS
1780
1781 static struct page *pmd_to_page(pmd_t *pmd)
1782 {
1783 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1784 return virt_to_page((void *)((unsigned long) pmd & mask));
1785 }
1786
1787 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1788 {
1789 return ptlock_ptr(pmd_to_page(pmd));
1790 }
1791
1792 static inline bool pgtable_pmd_page_ctor(struct page *page)
1793 {
1794 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1795 page->pmd_huge_pte = NULL;
1796 #endif
1797 return ptlock_init(page);
1798 }
1799
1800 static inline void pgtable_pmd_page_dtor(struct page *page)
1801 {
1802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1803 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1804 #endif
1805 ptlock_free(page);
1806 }
1807
1808 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1809
1810 #else
1811
1812 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1813 {
1814 return &mm->page_table_lock;
1815 }
1816
1817 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1818 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1819
1820 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1821
1822 #endif
1823
1824 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1825 {
1826 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1827 spin_lock(ptl);
1828 return ptl;
1829 }
1830
1831 /*
1832 * No scalability reason to split PUD locks yet, but follow the same pattern
1833 * as the PMD locks to make it easier if we decide to. The VM should not be
1834 * considered ready to switch to split PUD locks yet; there may be places
1835 * which need to be converted from page_table_lock.
1836 */
1837 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1838 {
1839 return &mm->page_table_lock;
1840 }
1841
1842 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1843 {
1844 spinlock_t *ptl = pud_lockptr(mm, pud);
1845
1846 spin_lock(ptl);
1847 return ptl;
1848 }
1849
1850 extern void __init pagecache_init(void);
1851 extern void free_area_init(unsigned long * zones_size);
1852 extern void free_area_init_node(int nid, unsigned long * zones_size,
1853 unsigned long zone_start_pfn, unsigned long *zholes_size);
1854 extern void free_initmem(void);
1855
1856 /*
1857 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1858 * into the buddy system. The freed pages will be poisoned with pattern
1859 * "poison" if it's within range [0, UCHAR_MAX].
1860 * Return pages freed into the buddy system.
1861 */
1862 extern unsigned long free_reserved_area(void *start, void *end,
1863 int poison, char *s);
1864
1865 #ifdef CONFIG_HIGHMEM
1866 /*
1867 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1868 * and totalram_pages.
1869 */
1870 extern void free_highmem_page(struct page *page);
1871 #endif
1872
1873 extern void adjust_managed_page_count(struct page *page, long count);
1874 extern void mem_init_print_info(const char *str);
1875
1876 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1877
1878 /* Free the reserved page into the buddy system, so it gets managed. */
1879 static inline void __free_reserved_page(struct page *page)
1880 {
1881 ClearPageReserved(page);
1882 init_page_count(page);
1883 __free_page(page);
1884 }
1885
1886 static inline void free_reserved_page(struct page *page)
1887 {
1888 __free_reserved_page(page);
1889 adjust_managed_page_count(page, 1);
1890 }
1891
1892 static inline void mark_page_reserved(struct page *page)
1893 {
1894 SetPageReserved(page);
1895 adjust_managed_page_count(page, -1);
1896 }
1897
1898 /*
1899 * Default method to free all the __init memory into the buddy system.
1900 * The freed pages will be poisoned with pattern "poison" if it's within
1901 * range [0, UCHAR_MAX].
1902 * Return pages freed into the buddy system.
1903 */
1904 static inline unsigned long free_initmem_default(int poison)
1905 {
1906 extern char __init_begin[], __init_end[];
1907
1908 return free_reserved_area(&__init_begin, &__init_end,
1909 poison, "unused kernel");
1910 }
1911
1912 static inline unsigned long get_num_physpages(void)
1913 {
1914 int nid;
1915 unsigned long phys_pages = 0;
1916
1917 for_each_online_node(nid)
1918 phys_pages += node_present_pages(nid);
1919
1920 return phys_pages;
1921 }
1922
1923 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1924 /*
1925 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1926 * zones, allocate the backing mem_map and account for memory holes in a more
1927 * architecture independent manner. This is a substitute for creating the
1928 * zone_sizes[] and zholes_size[] arrays and passing them to
1929 * free_area_init_node()
1930 *
1931 * An architecture is expected to register range of page frames backed by
1932 * physical memory with memblock_add[_node]() before calling
1933 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1934 * usage, an architecture is expected to do something like
1935 *
1936 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1937 * max_highmem_pfn};
1938 * for_each_valid_physical_page_range()
1939 * memblock_add_node(base, size, nid)
1940 * free_area_init_nodes(max_zone_pfns);
1941 *
1942 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1943 * registered physical page range. Similarly
1944 * sparse_memory_present_with_active_regions() calls memory_present() for
1945 * each range when SPARSEMEM is enabled.
1946 *
1947 * See mm/page_alloc.c for more information on each function exposed by
1948 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1949 */
1950 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1951 unsigned long node_map_pfn_alignment(void);
1952 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1953 unsigned long end_pfn);
1954 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1955 unsigned long end_pfn);
1956 extern void get_pfn_range_for_nid(unsigned int nid,
1957 unsigned long *start_pfn, unsigned long *end_pfn);
1958 extern unsigned long find_min_pfn_with_active_regions(void);
1959 extern void free_bootmem_with_active_regions(int nid,
1960 unsigned long max_low_pfn);
1961 extern void sparse_memory_present_with_active_regions(int nid);
1962
1963 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1964
1965 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1966 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1967 static inline int __early_pfn_to_nid(unsigned long pfn,
1968 struct mminit_pfnnid_cache *state)
1969 {
1970 return 0;
1971 }
1972 #else
1973 /* please see mm/page_alloc.c */
1974 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1975 /* there is a per-arch backend function. */
1976 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1977 struct mminit_pfnnid_cache *state);
1978 #endif
1979
1980 extern void set_dma_reserve(unsigned long new_dma_reserve);
1981 extern void memmap_init_zone(unsigned long, int, unsigned long,
1982 unsigned long, enum memmap_context);
1983 extern void setup_per_zone_wmarks(void);
1984 extern int __meminit init_per_zone_wmark_min(void);
1985 extern void mem_init(void);
1986 extern void __init mmap_init(void);
1987 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
1988 extern long si_mem_available(void);
1989 extern void si_meminfo(struct sysinfo * val);
1990 extern void si_meminfo_node(struct sysinfo *val, int nid);
1991 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1992 extern unsigned long arch_reserved_kernel_pages(void);
1993 #endif
1994
1995 extern __printf(3, 4)
1996 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
1997
1998 extern void setup_per_cpu_pageset(void);
1999
2000 extern void zone_pcp_update(struct zone *zone);
2001 extern void zone_pcp_reset(struct zone *zone);
2002
2003 /* page_alloc.c */
2004 extern int min_free_kbytes;
2005 extern int watermark_scale_factor;
2006
2007 /* nommu.c */
2008 extern atomic_long_t mmap_pages_allocated;
2009 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2010
2011 /* interval_tree.c */
2012 void vma_interval_tree_insert(struct vm_area_struct *node,
2013 struct rb_root *root);
2014 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2015 struct vm_area_struct *prev,
2016 struct rb_root *root);
2017 void vma_interval_tree_remove(struct vm_area_struct *node,
2018 struct rb_root *root);
2019 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2020 unsigned long start, unsigned long last);
2021 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2022 unsigned long start, unsigned long last);
2023
2024 #define vma_interval_tree_foreach(vma, root, start, last) \
2025 for (vma = vma_interval_tree_iter_first(root, start, last); \
2026 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2027
2028 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2029 struct rb_root *root);
2030 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2031 struct rb_root *root);
2032 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2033 struct rb_root *root, unsigned long start, unsigned long last);
2034 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2035 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2036 #ifdef CONFIG_DEBUG_VM_RB
2037 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2038 #endif
2039
2040 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2041 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2042 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2043
2044 /* mmap.c */
2045 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2046 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2047 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2048 struct vm_area_struct *expand);
2049 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2050 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2051 {
2052 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2053 }
2054 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2055 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2056 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2057 struct mempolicy *, struct vm_userfaultfd_ctx);
2058 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2059 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2060 unsigned long addr, int new_below);
2061 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2062 unsigned long addr, int new_below);
2063 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2064 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2065 struct rb_node **, struct rb_node *);
2066 extern void unlink_file_vma(struct vm_area_struct *);
2067 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2068 unsigned long addr, unsigned long len, pgoff_t pgoff,
2069 bool *need_rmap_locks);
2070 extern void exit_mmap(struct mm_struct *);
2071
2072 static inline int check_data_rlimit(unsigned long rlim,
2073 unsigned long new,
2074 unsigned long start,
2075 unsigned long end_data,
2076 unsigned long start_data)
2077 {
2078 if (rlim < RLIM_INFINITY) {
2079 if (((new - start) + (end_data - start_data)) > rlim)
2080 return -ENOSPC;
2081 }
2082
2083 return 0;
2084 }
2085
2086 extern int mm_take_all_locks(struct mm_struct *mm);
2087 extern void mm_drop_all_locks(struct mm_struct *mm);
2088
2089 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2090 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2091 extern struct file *get_task_exe_file(struct task_struct *task);
2092
2093 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2094 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2095
2096 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2097 const struct vm_special_mapping *sm);
2098 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2099 unsigned long addr, unsigned long len,
2100 unsigned long flags,
2101 const struct vm_special_mapping *spec);
2102 /* This is an obsolete alternative to _install_special_mapping. */
2103 extern int install_special_mapping(struct mm_struct *mm,
2104 unsigned long addr, unsigned long len,
2105 unsigned long flags, struct page **pages);
2106
2107 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2108
2109 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2110 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2111 struct list_head *uf);
2112 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2113 unsigned long len, unsigned long prot, unsigned long flags,
2114 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2115 struct list_head *uf);
2116 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2117 struct list_head *uf);
2118
2119 static inline unsigned long
2120 do_mmap_pgoff(struct file *file, unsigned long addr,
2121 unsigned long len, unsigned long prot, unsigned long flags,
2122 unsigned long pgoff, unsigned long *populate,
2123 struct list_head *uf)
2124 {
2125 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2126 }
2127
2128 #ifdef CONFIG_MMU
2129 extern int __mm_populate(unsigned long addr, unsigned long len,
2130 int ignore_errors);
2131 static inline void mm_populate(unsigned long addr, unsigned long len)
2132 {
2133 /* Ignore errors */
2134 (void) __mm_populate(addr, len, 1);
2135 }
2136 #else
2137 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2138 #endif
2139
2140 /* These take the mm semaphore themselves */
2141 extern int __must_check vm_brk(unsigned long, unsigned long);
2142 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2143 extern int vm_munmap(unsigned long, size_t);
2144 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2145 unsigned long, unsigned long,
2146 unsigned long, unsigned long);
2147
2148 struct vm_unmapped_area_info {
2149 #define VM_UNMAPPED_AREA_TOPDOWN 1
2150 unsigned long flags;
2151 unsigned long length;
2152 unsigned long low_limit;
2153 unsigned long high_limit;
2154 unsigned long align_mask;
2155 unsigned long align_offset;
2156 };
2157
2158 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2159 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2160
2161 /*
2162 * Search for an unmapped address range.
2163 *
2164 * We are looking for a range that:
2165 * - does not intersect with any VMA;
2166 * - is contained within the [low_limit, high_limit) interval;
2167 * - is at least the desired size.
2168 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2169 */
2170 static inline unsigned long
2171 vm_unmapped_area(struct vm_unmapped_area_info *info)
2172 {
2173 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2174 return unmapped_area_topdown(info);
2175 else
2176 return unmapped_area(info);
2177 }
2178
2179 /* truncate.c */
2180 extern void truncate_inode_pages(struct address_space *, loff_t);
2181 extern void truncate_inode_pages_range(struct address_space *,
2182 loff_t lstart, loff_t lend);
2183 extern void truncate_inode_pages_final(struct address_space *);
2184
2185 /* generic vm_area_ops exported for stackable file systems */
2186 extern int filemap_fault(struct vm_fault *vmf);
2187 extern void filemap_map_pages(struct vm_fault *vmf,
2188 pgoff_t start_pgoff, pgoff_t end_pgoff);
2189 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2190
2191 /* mm/page-writeback.c */
2192 int write_one_page(struct page *page, int wait);
2193 void task_dirty_inc(struct task_struct *tsk);
2194
2195 /* readahead.c */
2196 #define VM_MAX_READAHEAD 128 /* kbytes */
2197 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2198
2199 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2200 pgoff_t offset, unsigned long nr_to_read);
2201
2202 void page_cache_sync_readahead(struct address_space *mapping,
2203 struct file_ra_state *ra,
2204 struct file *filp,
2205 pgoff_t offset,
2206 unsigned long size);
2207
2208 void page_cache_async_readahead(struct address_space *mapping,
2209 struct file_ra_state *ra,
2210 struct file *filp,
2211 struct page *pg,
2212 pgoff_t offset,
2213 unsigned long size);
2214
2215 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2216 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2217
2218 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2219 extern int expand_downwards(struct vm_area_struct *vma,
2220 unsigned long address);
2221 #if VM_GROWSUP
2222 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2223 #else
2224 #define expand_upwards(vma, address) (0)
2225 #endif
2226
2227 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2228 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2229 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2230 struct vm_area_struct **pprev);
2231
2232 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2233 NULL if none. Assume start_addr < end_addr. */
2234 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2235 {
2236 struct vm_area_struct * vma = find_vma(mm,start_addr);
2237
2238 if (vma && end_addr <= vma->vm_start)
2239 vma = NULL;
2240 return vma;
2241 }
2242
2243 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2244 {
2245 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2246 }
2247
2248 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2249 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2250 unsigned long vm_start, unsigned long vm_end)
2251 {
2252 struct vm_area_struct *vma = find_vma(mm, vm_start);
2253
2254 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2255 vma = NULL;
2256
2257 return vma;
2258 }
2259
2260 #ifdef CONFIG_MMU
2261 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2262 void vma_set_page_prot(struct vm_area_struct *vma);
2263 #else
2264 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2265 {
2266 return __pgprot(0);
2267 }
2268 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2269 {
2270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2271 }
2272 #endif
2273
2274 #ifdef CONFIG_NUMA_BALANCING
2275 unsigned long change_prot_numa(struct vm_area_struct *vma,
2276 unsigned long start, unsigned long end);
2277 #endif
2278
2279 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2280 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2281 unsigned long pfn, unsigned long size, pgprot_t);
2282 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2283 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2284 unsigned long pfn);
2285 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2286 unsigned long pfn, pgprot_t pgprot);
2287 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2288 pfn_t pfn);
2289 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2290
2291
2292 struct page *follow_page_mask(struct vm_area_struct *vma,
2293 unsigned long address, unsigned int foll_flags,
2294 unsigned int *page_mask);
2295
2296 static inline struct page *follow_page(struct vm_area_struct *vma,
2297 unsigned long address, unsigned int foll_flags)
2298 {
2299 unsigned int unused_page_mask;
2300 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2301 }
2302
2303 #define FOLL_WRITE 0x01 /* check pte is writable */
2304 #define FOLL_TOUCH 0x02 /* mark page accessed */
2305 #define FOLL_GET 0x04 /* do get_page on page */
2306 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2307 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2308 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2309 * and return without waiting upon it */
2310 #define FOLL_POPULATE 0x40 /* fault in page */
2311 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2312 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2313 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2314 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2315 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2316 #define FOLL_MLOCK 0x1000 /* lock present pages */
2317 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2318 #define FOLL_COW 0x4000 /* internal GUP flag */
2319
2320 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2321 void *data);
2322 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2323 unsigned long size, pte_fn_t fn, void *data);
2324
2325
2326 #ifdef CONFIG_PAGE_POISONING
2327 extern bool page_poisoning_enabled(void);
2328 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2329 extern bool page_is_poisoned(struct page *page);
2330 #else
2331 static inline bool page_poisoning_enabled(void) { return false; }
2332 static inline void kernel_poison_pages(struct page *page, int numpages,
2333 int enable) { }
2334 static inline bool page_is_poisoned(struct page *page) { return false; }
2335 #endif
2336
2337 #ifdef CONFIG_DEBUG_PAGEALLOC
2338 extern bool _debug_pagealloc_enabled;
2339 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2340
2341 static inline bool debug_pagealloc_enabled(void)
2342 {
2343 return _debug_pagealloc_enabled;
2344 }
2345
2346 static inline void
2347 kernel_map_pages(struct page *page, int numpages, int enable)
2348 {
2349 if (!debug_pagealloc_enabled())
2350 return;
2351
2352 __kernel_map_pages(page, numpages, enable);
2353 }
2354 #ifdef CONFIG_HIBERNATION
2355 extern bool kernel_page_present(struct page *page);
2356 #endif /* CONFIG_HIBERNATION */
2357 #else /* CONFIG_DEBUG_PAGEALLOC */
2358 static inline void
2359 kernel_map_pages(struct page *page, int numpages, int enable) {}
2360 #ifdef CONFIG_HIBERNATION
2361 static inline bool kernel_page_present(struct page *page) { return true; }
2362 #endif /* CONFIG_HIBERNATION */
2363 static inline bool debug_pagealloc_enabled(void)
2364 {
2365 return false;
2366 }
2367 #endif /* CONFIG_DEBUG_PAGEALLOC */
2368
2369 #ifdef __HAVE_ARCH_GATE_AREA
2370 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2371 extern int in_gate_area_no_mm(unsigned long addr);
2372 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2373 #else
2374 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2375 {
2376 return NULL;
2377 }
2378 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2379 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2380 {
2381 return 0;
2382 }
2383 #endif /* __HAVE_ARCH_GATE_AREA */
2384
2385 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2386
2387 #ifdef CONFIG_SYSCTL
2388 extern int sysctl_drop_caches;
2389 int drop_caches_sysctl_handler(struct ctl_table *, int,
2390 void __user *, size_t *, loff_t *);
2391 #endif
2392
2393 void drop_slab(void);
2394 void drop_slab_node(int nid);
2395
2396 #ifndef CONFIG_MMU
2397 #define randomize_va_space 0
2398 #else
2399 extern int randomize_va_space;
2400 #endif
2401
2402 const char * arch_vma_name(struct vm_area_struct *vma);
2403 void print_vma_addr(char *prefix, unsigned long rip);
2404
2405 void sparse_mem_maps_populate_node(struct page **map_map,
2406 unsigned long pnum_begin,
2407 unsigned long pnum_end,
2408 unsigned long map_count,
2409 int nodeid);
2410
2411 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2412 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2413 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2414 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2415 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2416 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2417 void *vmemmap_alloc_block(unsigned long size, int node);
2418 struct vmem_altmap;
2419 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2420 struct vmem_altmap *altmap);
2421 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2422 {
2423 return __vmemmap_alloc_block_buf(size, node, NULL);
2424 }
2425
2426 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2427 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2428 int node);
2429 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2430 void vmemmap_populate_print_last(void);
2431 #ifdef CONFIG_MEMORY_HOTPLUG
2432 void vmemmap_free(unsigned long start, unsigned long end);
2433 #endif
2434 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2435 unsigned long size);
2436
2437 enum mf_flags {
2438 MF_COUNT_INCREASED = 1 << 0,
2439 MF_ACTION_REQUIRED = 1 << 1,
2440 MF_MUST_KILL = 1 << 2,
2441 MF_SOFT_OFFLINE = 1 << 3,
2442 };
2443 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2444 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2445 extern int unpoison_memory(unsigned long pfn);
2446 extern int get_hwpoison_page(struct page *page);
2447 #define put_hwpoison_page(page) put_page(page)
2448 extern int sysctl_memory_failure_early_kill;
2449 extern int sysctl_memory_failure_recovery;
2450 extern void shake_page(struct page *p, int access);
2451 extern atomic_long_t num_poisoned_pages;
2452 extern int soft_offline_page(struct page *page, int flags);
2453
2454
2455 /*
2456 * Error handlers for various types of pages.
2457 */
2458 enum mf_result {
2459 MF_IGNORED, /* Error: cannot be handled */
2460 MF_FAILED, /* Error: handling failed */
2461 MF_DELAYED, /* Will be handled later */
2462 MF_RECOVERED, /* Successfully recovered */
2463 };
2464
2465 enum mf_action_page_type {
2466 MF_MSG_KERNEL,
2467 MF_MSG_KERNEL_HIGH_ORDER,
2468 MF_MSG_SLAB,
2469 MF_MSG_DIFFERENT_COMPOUND,
2470 MF_MSG_POISONED_HUGE,
2471 MF_MSG_HUGE,
2472 MF_MSG_FREE_HUGE,
2473 MF_MSG_UNMAP_FAILED,
2474 MF_MSG_DIRTY_SWAPCACHE,
2475 MF_MSG_CLEAN_SWAPCACHE,
2476 MF_MSG_DIRTY_MLOCKED_LRU,
2477 MF_MSG_CLEAN_MLOCKED_LRU,
2478 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2479 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2480 MF_MSG_DIRTY_LRU,
2481 MF_MSG_CLEAN_LRU,
2482 MF_MSG_TRUNCATED_LRU,
2483 MF_MSG_BUDDY,
2484 MF_MSG_BUDDY_2ND,
2485 MF_MSG_UNKNOWN,
2486 };
2487
2488 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2489 extern void clear_huge_page(struct page *page,
2490 unsigned long addr,
2491 unsigned int pages_per_huge_page);
2492 extern void copy_user_huge_page(struct page *dst, struct page *src,
2493 unsigned long addr, struct vm_area_struct *vma,
2494 unsigned int pages_per_huge_page);
2495 extern long copy_huge_page_from_user(struct page *dst_page,
2496 const void __user *usr_src,
2497 unsigned int pages_per_huge_page,
2498 bool allow_pagefault);
2499 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2500
2501 extern struct page_ext_operations debug_guardpage_ops;
2502 extern struct page_ext_operations page_poisoning_ops;
2503
2504 #ifdef CONFIG_DEBUG_PAGEALLOC
2505 extern unsigned int _debug_guardpage_minorder;
2506 extern bool _debug_guardpage_enabled;
2507
2508 static inline unsigned int debug_guardpage_minorder(void)
2509 {
2510 return _debug_guardpage_minorder;
2511 }
2512
2513 static inline bool debug_guardpage_enabled(void)
2514 {
2515 return _debug_guardpage_enabled;
2516 }
2517
2518 static inline bool page_is_guard(struct page *page)
2519 {
2520 struct page_ext *page_ext;
2521
2522 if (!debug_guardpage_enabled())
2523 return false;
2524
2525 page_ext = lookup_page_ext(page);
2526 if (unlikely(!page_ext))
2527 return false;
2528
2529 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2530 }
2531 #else
2532 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2533 static inline bool debug_guardpage_enabled(void) { return false; }
2534 static inline bool page_is_guard(struct page *page) { return false; }
2535 #endif /* CONFIG_DEBUG_PAGEALLOC */
2536
2537 #if MAX_NUMNODES > 1
2538 void __init setup_nr_node_ids(void);
2539 #else
2540 static inline void setup_nr_node_ids(void) {}
2541 #endif
2542
2543 #endif /* __KERNEL__ */
2544 #endif /* _LINUX_MM_H */