]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm.h
workqueue: avoid hard lockups in show_workqueue_state()
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28
29 struct mempolicy;
30 struct anon_vma;
31 struct anon_vma_chain;
32 struct file_ra_state;
33 struct user_struct;
34 struct writeback_control;
35 struct bdi_writeback;
36
37 void init_mm_internals(void);
38
39 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
40 extern unsigned long max_mapnr;
41
42 static inline void set_max_mapnr(unsigned long limit)
43 {
44 max_mapnr = limit;
45 }
46 #else
47 static inline void set_max_mapnr(unsigned long limit) { }
48 #endif
49
50 extern unsigned long totalram_pages;
51 extern void * high_memory;
52 extern int page_cluster;
53
54 #ifdef CONFIG_SYSCTL
55 extern int sysctl_legacy_va_layout;
56 #else
57 #define sysctl_legacy_va_layout 0
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 extern const int mmap_rnd_bits_min;
62 extern const int mmap_rnd_bits_max;
63 extern int mmap_rnd_bits __read_mostly;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 extern const int mmap_rnd_compat_bits_min;
67 extern const int mmap_rnd_compat_bits_max;
68 extern int mmap_rnd_compat_bits __read_mostly;
69 #endif
70
71 #include <asm/page.h>
72 #include <asm/pgtable.h>
73 #include <asm/processor.h>
74
75 #ifndef __pa_symbol
76 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77 #endif
78
79 #ifndef page_to_virt
80 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81 #endif
82
83 #ifndef lm_alias
84 #define lm_alias(x) __va(__pa_symbol(x))
85 #endif
86
87 /*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94 #ifndef mm_forbids_zeropage
95 #define mm_forbids_zeropage(X) (0)
96 #endif
97
98 /*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103 #ifndef mm_zero_struct_page
104 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105 #endif
106
107 /*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123 #define MAPCOUNT_ELF_CORE_MARGIN (5)
124 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126 extern int sysctl_max_map_count;
127
128 extern unsigned long sysctl_user_reserve_kbytes;
129 extern unsigned long sysctl_admin_reserve_kbytes;
130
131 extern int sysctl_overcommit_memory;
132 extern int sysctl_overcommit_ratio;
133 extern unsigned long sysctl_overcommit_kbytes;
134
135 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
140 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
142 /* to align the pointer to the (next) page boundary */
143 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
145 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
146 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
147
148 /*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
157 extern struct kmem_cache *vm_area_cachep;
158
159 #ifndef CONFIG_MMU
160 extern struct rb_root nommu_region_tree;
161 extern struct rw_semaphore nommu_region_sem;
162
163 extern unsigned int kobjsize(const void *objp);
164 #endif
165
166 /*
167 * vm_flags in vm_area_struct, see mm_types.h.
168 * When changing, update also include/trace/events/mmflags.h
169 */
170 #define VM_NONE 0x00000000
171
172 #define VM_READ 0x00000001 /* currently active flags */
173 #define VM_WRITE 0x00000002
174 #define VM_EXEC 0x00000004
175 #define VM_SHARED 0x00000008
176
177 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
178 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
179 #define VM_MAYWRITE 0x00000020
180 #define VM_MAYEXEC 0x00000040
181 #define VM_MAYSHARE 0x00000080
182
183 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
184 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
185 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
186 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
187 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
188
189 #define VM_LOCKED 0x00002000
190 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
191
192 /* Used by sys_madvise() */
193 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
194 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
195
196 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
197 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
198 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
199 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
200 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
201 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
202 #define VM_SYNC 0x00800000 /* Synchronous page faults */
203 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
204 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
205 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
206
207 #ifdef CONFIG_MEM_SOFT_DIRTY
208 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
209 #else
210 # define VM_SOFTDIRTY 0
211 #endif
212
213 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
214 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
215 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
216 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
217
218 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
219 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
220 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
221 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
222 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
225 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
226 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
227 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
228 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
229 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
230
231 #if defined(CONFIG_X86)
232 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
233 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
234 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
235 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
236 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
237 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
238 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
239 #endif
240 #elif defined(CONFIG_PPC)
241 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
242 #elif defined(CONFIG_PARISC)
243 # define VM_GROWSUP VM_ARCH_1
244 #elif defined(CONFIG_METAG)
245 # define VM_GROWSUP VM_ARCH_1
246 #elif defined(CONFIG_IA64)
247 # define VM_GROWSUP VM_ARCH_1
248 #elif !defined(CONFIG_MMU)
249 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
250 #endif
251
252 #if defined(CONFIG_X86_INTEL_MPX)
253 /* MPX specific bounds table or bounds directory */
254 # define VM_MPX VM_HIGH_ARCH_4
255 #else
256 # define VM_MPX VM_NONE
257 #endif
258
259 #ifndef VM_GROWSUP
260 # define VM_GROWSUP VM_NONE
261 #endif
262
263 /* Bits set in the VMA until the stack is in its final location */
264 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
265
266 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
267 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
268 #endif
269
270 #ifdef CONFIG_STACK_GROWSUP
271 #define VM_STACK VM_GROWSUP
272 #else
273 #define VM_STACK VM_GROWSDOWN
274 #endif
275
276 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
277
278 /*
279 * Special vmas that are non-mergable, non-mlock()able.
280 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
281 */
282 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
283
284 /* This mask defines which mm->def_flags a process can inherit its parent */
285 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
286
287 /* This mask is used to clear all the VMA flags used by mlock */
288 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
289
290 /*
291 * mapping from the currently active vm_flags protection bits (the
292 * low four bits) to a page protection mask..
293 */
294 extern pgprot_t protection_map[16];
295
296 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
297 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
298 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
299 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
300 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
301 #define FAULT_FLAG_TRIED 0x20 /* Second try */
302 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
303 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
304 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
305
306 #define FAULT_FLAG_TRACE \
307 { FAULT_FLAG_WRITE, "WRITE" }, \
308 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
309 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
310 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
311 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
312 { FAULT_FLAG_TRIED, "TRIED" }, \
313 { FAULT_FLAG_USER, "USER" }, \
314 { FAULT_FLAG_REMOTE, "REMOTE" }, \
315 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
316
317 /*
318 * vm_fault is filled by the the pagefault handler and passed to the vma's
319 * ->fault function. The vma's ->fault is responsible for returning a bitmask
320 * of VM_FAULT_xxx flags that give details about how the fault was handled.
321 *
322 * MM layer fills up gfp_mask for page allocations but fault handler might
323 * alter it if its implementation requires a different allocation context.
324 *
325 * pgoff should be used in favour of virtual_address, if possible.
326 */
327 struct vm_fault {
328 struct vm_area_struct *vma; /* Target VMA */
329 unsigned int flags; /* FAULT_FLAG_xxx flags */
330 gfp_t gfp_mask; /* gfp mask to be used for allocations */
331 pgoff_t pgoff; /* Logical page offset based on vma */
332 unsigned long address; /* Faulting virtual address */
333 pmd_t *pmd; /* Pointer to pmd entry matching
334 * the 'address' */
335 pud_t *pud; /* Pointer to pud entry matching
336 * the 'address'
337 */
338 pte_t orig_pte; /* Value of PTE at the time of fault */
339
340 struct page *cow_page; /* Page handler may use for COW fault */
341 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
342 struct page *page; /* ->fault handlers should return a
343 * page here, unless VM_FAULT_NOPAGE
344 * is set (which is also implied by
345 * VM_FAULT_ERROR).
346 */
347 /* These three entries are valid only while holding ptl lock */
348 pte_t *pte; /* Pointer to pte entry matching
349 * the 'address'. NULL if the page
350 * table hasn't been allocated.
351 */
352 spinlock_t *ptl; /* Page table lock.
353 * Protects pte page table if 'pte'
354 * is not NULL, otherwise pmd.
355 */
356 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
357 * vm_ops->map_pages() calls
358 * alloc_set_pte() from atomic context.
359 * do_fault_around() pre-allocates
360 * page table to avoid allocation from
361 * atomic context.
362 */
363 };
364
365 /* page entry size for vm->huge_fault() */
366 enum page_entry_size {
367 PE_SIZE_PTE = 0,
368 PE_SIZE_PMD,
369 PE_SIZE_PUD,
370 };
371
372 /*
373 * These are the virtual MM functions - opening of an area, closing and
374 * unmapping it (needed to keep files on disk up-to-date etc), pointer
375 * to the functions called when a no-page or a wp-page exception occurs.
376 */
377 struct vm_operations_struct {
378 void (*open)(struct vm_area_struct * area);
379 void (*close)(struct vm_area_struct * area);
380 int (*mremap)(struct vm_area_struct * area);
381 int (*fault)(struct vm_fault *vmf);
382 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
383 void (*map_pages)(struct vm_fault *vmf,
384 pgoff_t start_pgoff, pgoff_t end_pgoff);
385
386 /* notification that a previously read-only page is about to become
387 * writable, if an error is returned it will cause a SIGBUS */
388 int (*page_mkwrite)(struct vm_fault *vmf);
389
390 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
391 int (*pfn_mkwrite)(struct vm_fault *vmf);
392
393 /* called by access_process_vm when get_user_pages() fails, typically
394 * for use by special VMAs that can switch between memory and hardware
395 */
396 int (*access)(struct vm_area_struct *vma, unsigned long addr,
397 void *buf, int len, int write);
398
399 /* Called by the /proc/PID/maps code to ask the vma whether it
400 * has a special name. Returning non-NULL will also cause this
401 * vma to be dumped unconditionally. */
402 const char *(*name)(struct vm_area_struct *vma);
403
404 #ifdef CONFIG_NUMA
405 /*
406 * set_policy() op must add a reference to any non-NULL @new mempolicy
407 * to hold the policy upon return. Caller should pass NULL @new to
408 * remove a policy and fall back to surrounding context--i.e. do not
409 * install a MPOL_DEFAULT policy, nor the task or system default
410 * mempolicy.
411 */
412 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
413
414 /*
415 * get_policy() op must add reference [mpol_get()] to any policy at
416 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
417 * in mm/mempolicy.c will do this automatically.
418 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
419 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
420 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
421 * must return NULL--i.e., do not "fallback" to task or system default
422 * policy.
423 */
424 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
425 unsigned long addr);
426 #endif
427 /*
428 * Called by vm_normal_page() for special PTEs to find the
429 * page for @addr. This is useful if the default behavior
430 * (using pte_page()) would not find the correct page.
431 */
432 struct page *(*find_special_page)(struct vm_area_struct *vma,
433 unsigned long addr);
434 };
435
436 struct mmu_gather;
437 struct inode;
438
439 #define page_private(page) ((page)->private)
440 #define set_page_private(page, v) ((page)->private = (v))
441
442 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
443 static inline int pmd_devmap(pmd_t pmd)
444 {
445 return 0;
446 }
447 static inline int pud_devmap(pud_t pud)
448 {
449 return 0;
450 }
451 static inline int pgd_devmap(pgd_t pgd)
452 {
453 return 0;
454 }
455 #endif
456
457 /*
458 * FIXME: take this include out, include page-flags.h in
459 * files which need it (119 of them)
460 */
461 #include <linux/page-flags.h>
462 #include <linux/huge_mm.h>
463
464 /*
465 * Methods to modify the page usage count.
466 *
467 * What counts for a page usage:
468 * - cache mapping (page->mapping)
469 * - private data (page->private)
470 * - page mapped in a task's page tables, each mapping
471 * is counted separately
472 *
473 * Also, many kernel routines increase the page count before a critical
474 * routine so they can be sure the page doesn't go away from under them.
475 */
476
477 /*
478 * Drop a ref, return true if the refcount fell to zero (the page has no users)
479 */
480 static inline int put_page_testzero(struct page *page)
481 {
482 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
483 return page_ref_dec_and_test(page);
484 }
485
486 /*
487 * Try to grab a ref unless the page has a refcount of zero, return false if
488 * that is the case.
489 * This can be called when MMU is off so it must not access
490 * any of the virtual mappings.
491 */
492 static inline int get_page_unless_zero(struct page *page)
493 {
494 return page_ref_add_unless(page, 1, 0);
495 }
496
497 extern int page_is_ram(unsigned long pfn);
498
499 enum {
500 REGION_INTERSECTS,
501 REGION_DISJOINT,
502 REGION_MIXED,
503 };
504
505 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
506 unsigned long desc);
507
508 /* Support for virtually mapped pages */
509 struct page *vmalloc_to_page(const void *addr);
510 unsigned long vmalloc_to_pfn(const void *addr);
511
512 /*
513 * Determine if an address is within the vmalloc range
514 *
515 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
516 * is no special casing required.
517 */
518 static inline bool is_vmalloc_addr(const void *x)
519 {
520 #ifdef CONFIG_MMU
521 unsigned long addr = (unsigned long)x;
522
523 return addr >= VMALLOC_START && addr < VMALLOC_END;
524 #else
525 return false;
526 #endif
527 }
528 #ifdef CONFIG_MMU
529 extern int is_vmalloc_or_module_addr(const void *x);
530 #else
531 static inline int is_vmalloc_or_module_addr(const void *x)
532 {
533 return 0;
534 }
535 #endif
536
537 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
538 static inline void *kvmalloc(size_t size, gfp_t flags)
539 {
540 return kvmalloc_node(size, flags, NUMA_NO_NODE);
541 }
542 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
543 {
544 return kvmalloc_node(size, flags | __GFP_ZERO, node);
545 }
546 static inline void *kvzalloc(size_t size, gfp_t flags)
547 {
548 return kvmalloc(size, flags | __GFP_ZERO);
549 }
550
551 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
552 {
553 if (size != 0 && n > SIZE_MAX / size)
554 return NULL;
555
556 return kvmalloc(n * size, flags);
557 }
558
559 extern void kvfree(const void *addr);
560
561 static inline atomic_t *compound_mapcount_ptr(struct page *page)
562 {
563 return &page[1].compound_mapcount;
564 }
565
566 static inline int compound_mapcount(struct page *page)
567 {
568 VM_BUG_ON_PAGE(!PageCompound(page), page);
569 page = compound_head(page);
570 return atomic_read(compound_mapcount_ptr(page)) + 1;
571 }
572
573 /*
574 * The atomic page->_mapcount, starts from -1: so that transitions
575 * both from it and to it can be tracked, using atomic_inc_and_test
576 * and atomic_add_negative(-1).
577 */
578 static inline void page_mapcount_reset(struct page *page)
579 {
580 atomic_set(&(page)->_mapcount, -1);
581 }
582
583 int __page_mapcount(struct page *page);
584
585 static inline int page_mapcount(struct page *page)
586 {
587 VM_BUG_ON_PAGE(PageSlab(page), page);
588
589 if (unlikely(PageCompound(page)))
590 return __page_mapcount(page);
591 return atomic_read(&page->_mapcount) + 1;
592 }
593
594 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
595 int total_mapcount(struct page *page);
596 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
597 #else
598 static inline int total_mapcount(struct page *page)
599 {
600 return page_mapcount(page);
601 }
602 static inline int page_trans_huge_mapcount(struct page *page,
603 int *total_mapcount)
604 {
605 int mapcount = page_mapcount(page);
606 if (total_mapcount)
607 *total_mapcount = mapcount;
608 return mapcount;
609 }
610 #endif
611
612 static inline struct page *virt_to_head_page(const void *x)
613 {
614 struct page *page = virt_to_page(x);
615
616 return compound_head(page);
617 }
618
619 void __put_page(struct page *page);
620
621 void put_pages_list(struct list_head *pages);
622
623 void split_page(struct page *page, unsigned int order);
624
625 /*
626 * Compound pages have a destructor function. Provide a
627 * prototype for that function and accessor functions.
628 * These are _only_ valid on the head of a compound page.
629 */
630 typedef void compound_page_dtor(struct page *);
631
632 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
633 enum compound_dtor_id {
634 NULL_COMPOUND_DTOR,
635 COMPOUND_PAGE_DTOR,
636 #ifdef CONFIG_HUGETLB_PAGE
637 HUGETLB_PAGE_DTOR,
638 #endif
639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
640 TRANSHUGE_PAGE_DTOR,
641 #endif
642 NR_COMPOUND_DTORS,
643 };
644 extern compound_page_dtor * const compound_page_dtors[];
645
646 static inline void set_compound_page_dtor(struct page *page,
647 enum compound_dtor_id compound_dtor)
648 {
649 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
650 page[1].compound_dtor = compound_dtor;
651 }
652
653 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
654 {
655 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
656 return compound_page_dtors[page[1].compound_dtor];
657 }
658
659 static inline unsigned int compound_order(struct page *page)
660 {
661 if (!PageHead(page))
662 return 0;
663 return page[1].compound_order;
664 }
665
666 static inline void set_compound_order(struct page *page, unsigned int order)
667 {
668 page[1].compound_order = order;
669 }
670
671 void free_compound_page(struct page *page);
672
673 #ifdef CONFIG_MMU
674 /*
675 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
676 * servicing faults for write access. In the normal case, do always want
677 * pte_mkwrite. But get_user_pages can cause write faults for mappings
678 * that do not have writing enabled, when used by access_process_vm.
679 */
680 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
681 {
682 if (likely(vma->vm_flags & VM_WRITE))
683 pte = pte_mkwrite(pte);
684 return pte;
685 }
686
687 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
688 struct page *page);
689 int finish_fault(struct vm_fault *vmf);
690 int finish_mkwrite_fault(struct vm_fault *vmf);
691 #endif
692
693 /*
694 * Multiple processes may "see" the same page. E.g. for untouched
695 * mappings of /dev/null, all processes see the same page full of
696 * zeroes, and text pages of executables and shared libraries have
697 * only one copy in memory, at most, normally.
698 *
699 * For the non-reserved pages, page_count(page) denotes a reference count.
700 * page_count() == 0 means the page is free. page->lru is then used for
701 * freelist management in the buddy allocator.
702 * page_count() > 0 means the page has been allocated.
703 *
704 * Pages are allocated by the slab allocator in order to provide memory
705 * to kmalloc and kmem_cache_alloc. In this case, the management of the
706 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
707 * unless a particular usage is carefully commented. (the responsibility of
708 * freeing the kmalloc memory is the caller's, of course).
709 *
710 * A page may be used by anyone else who does a __get_free_page().
711 * In this case, page_count still tracks the references, and should only
712 * be used through the normal accessor functions. The top bits of page->flags
713 * and page->virtual store page management information, but all other fields
714 * are unused and could be used privately, carefully. The management of this
715 * page is the responsibility of the one who allocated it, and those who have
716 * subsequently been given references to it.
717 *
718 * The other pages (we may call them "pagecache pages") are completely
719 * managed by the Linux memory manager: I/O, buffers, swapping etc.
720 * The following discussion applies only to them.
721 *
722 * A pagecache page contains an opaque `private' member, which belongs to the
723 * page's address_space. Usually, this is the address of a circular list of
724 * the page's disk buffers. PG_private must be set to tell the VM to call
725 * into the filesystem to release these pages.
726 *
727 * A page may belong to an inode's memory mapping. In this case, page->mapping
728 * is the pointer to the inode, and page->index is the file offset of the page,
729 * in units of PAGE_SIZE.
730 *
731 * If pagecache pages are not associated with an inode, they are said to be
732 * anonymous pages. These may become associated with the swapcache, and in that
733 * case PG_swapcache is set, and page->private is an offset into the swapcache.
734 *
735 * In either case (swapcache or inode backed), the pagecache itself holds one
736 * reference to the page. Setting PG_private should also increment the
737 * refcount. The each user mapping also has a reference to the page.
738 *
739 * The pagecache pages are stored in a per-mapping radix tree, which is
740 * rooted at mapping->page_tree, and indexed by offset.
741 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
742 * lists, we instead now tag pages as dirty/writeback in the radix tree.
743 *
744 * All pagecache pages may be subject to I/O:
745 * - inode pages may need to be read from disk,
746 * - inode pages which have been modified and are MAP_SHARED may need
747 * to be written back to the inode on disk,
748 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
749 * modified may need to be swapped out to swap space and (later) to be read
750 * back into memory.
751 */
752
753 /*
754 * The zone field is never updated after free_area_init_core()
755 * sets it, so none of the operations on it need to be atomic.
756 */
757
758 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
759 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
760 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
761 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
762 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
763
764 /*
765 * Define the bit shifts to access each section. For non-existent
766 * sections we define the shift as 0; that plus a 0 mask ensures
767 * the compiler will optimise away reference to them.
768 */
769 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
770 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
771 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
772 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
773
774 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
775 #ifdef NODE_NOT_IN_PAGE_FLAGS
776 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
777 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
778 SECTIONS_PGOFF : ZONES_PGOFF)
779 #else
780 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
781 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
782 NODES_PGOFF : ZONES_PGOFF)
783 #endif
784
785 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
786
787 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
788 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
789 #endif
790
791 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
792 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
793 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
794 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
795 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
796
797 static inline enum zone_type page_zonenum(const struct page *page)
798 {
799 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
800 }
801
802 #ifdef CONFIG_ZONE_DEVICE
803 static inline bool is_zone_device_page(const struct page *page)
804 {
805 return page_zonenum(page) == ZONE_DEVICE;
806 }
807 #else
808 static inline bool is_zone_device_page(const struct page *page)
809 {
810 return false;
811 }
812 #endif
813
814 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
815 void put_zone_device_private_or_public_page(struct page *page);
816 DECLARE_STATIC_KEY_FALSE(device_private_key);
817 #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
818 static inline bool is_device_private_page(const struct page *page);
819 static inline bool is_device_public_page(const struct page *page);
820 #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
821 static inline void put_zone_device_private_or_public_page(struct page *page)
822 {
823 }
824 #define IS_HMM_ENABLED 0
825 static inline bool is_device_private_page(const struct page *page)
826 {
827 return false;
828 }
829 static inline bool is_device_public_page(const struct page *page)
830 {
831 return false;
832 }
833 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
834
835
836 static inline void get_page(struct page *page)
837 {
838 page = compound_head(page);
839 /*
840 * Getting a normal page or the head of a compound page
841 * requires to already have an elevated page->_refcount.
842 */
843 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
844 page_ref_inc(page);
845 }
846
847 static inline void put_page(struct page *page)
848 {
849 page = compound_head(page);
850
851 /*
852 * For private device pages we need to catch refcount transition from
853 * 2 to 1, when refcount reach one it means the private device page is
854 * free and we need to inform the device driver through callback. See
855 * include/linux/memremap.h and HMM for details.
856 */
857 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
858 unlikely(is_device_public_page(page)))) {
859 put_zone_device_private_or_public_page(page);
860 return;
861 }
862
863 if (put_page_testzero(page))
864 __put_page(page);
865 }
866
867 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
868 #define SECTION_IN_PAGE_FLAGS
869 #endif
870
871 /*
872 * The identification function is mainly used by the buddy allocator for
873 * determining if two pages could be buddies. We are not really identifying
874 * the zone since we could be using the section number id if we do not have
875 * node id available in page flags.
876 * We only guarantee that it will return the same value for two combinable
877 * pages in a zone.
878 */
879 static inline int page_zone_id(struct page *page)
880 {
881 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
882 }
883
884 static inline int zone_to_nid(struct zone *zone)
885 {
886 #ifdef CONFIG_NUMA
887 return zone->node;
888 #else
889 return 0;
890 #endif
891 }
892
893 #ifdef NODE_NOT_IN_PAGE_FLAGS
894 extern int page_to_nid(const struct page *page);
895 #else
896 static inline int page_to_nid(const struct page *page)
897 {
898 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
899 }
900 #endif
901
902 #ifdef CONFIG_NUMA_BALANCING
903 static inline int cpu_pid_to_cpupid(int cpu, int pid)
904 {
905 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
906 }
907
908 static inline int cpupid_to_pid(int cpupid)
909 {
910 return cpupid & LAST__PID_MASK;
911 }
912
913 static inline int cpupid_to_cpu(int cpupid)
914 {
915 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
916 }
917
918 static inline int cpupid_to_nid(int cpupid)
919 {
920 return cpu_to_node(cpupid_to_cpu(cpupid));
921 }
922
923 static inline bool cpupid_pid_unset(int cpupid)
924 {
925 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
926 }
927
928 static inline bool cpupid_cpu_unset(int cpupid)
929 {
930 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
931 }
932
933 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
934 {
935 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
936 }
937
938 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
939 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
940 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
941 {
942 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
943 }
944
945 static inline int page_cpupid_last(struct page *page)
946 {
947 return page->_last_cpupid;
948 }
949 static inline void page_cpupid_reset_last(struct page *page)
950 {
951 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
952 }
953 #else
954 static inline int page_cpupid_last(struct page *page)
955 {
956 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
957 }
958
959 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
960
961 static inline void page_cpupid_reset_last(struct page *page)
962 {
963 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
964 }
965 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
966 #else /* !CONFIG_NUMA_BALANCING */
967 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
968 {
969 return page_to_nid(page); /* XXX */
970 }
971
972 static inline int page_cpupid_last(struct page *page)
973 {
974 return page_to_nid(page); /* XXX */
975 }
976
977 static inline int cpupid_to_nid(int cpupid)
978 {
979 return -1;
980 }
981
982 static inline int cpupid_to_pid(int cpupid)
983 {
984 return -1;
985 }
986
987 static inline int cpupid_to_cpu(int cpupid)
988 {
989 return -1;
990 }
991
992 static inline int cpu_pid_to_cpupid(int nid, int pid)
993 {
994 return -1;
995 }
996
997 static inline bool cpupid_pid_unset(int cpupid)
998 {
999 return 1;
1000 }
1001
1002 static inline void page_cpupid_reset_last(struct page *page)
1003 {
1004 }
1005
1006 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1007 {
1008 return false;
1009 }
1010 #endif /* CONFIG_NUMA_BALANCING */
1011
1012 static inline struct zone *page_zone(const struct page *page)
1013 {
1014 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1015 }
1016
1017 static inline pg_data_t *page_pgdat(const struct page *page)
1018 {
1019 return NODE_DATA(page_to_nid(page));
1020 }
1021
1022 #ifdef SECTION_IN_PAGE_FLAGS
1023 static inline void set_page_section(struct page *page, unsigned long section)
1024 {
1025 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1026 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1027 }
1028
1029 static inline unsigned long page_to_section(const struct page *page)
1030 {
1031 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1032 }
1033 #endif
1034
1035 static inline void set_page_zone(struct page *page, enum zone_type zone)
1036 {
1037 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1038 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1039 }
1040
1041 static inline void set_page_node(struct page *page, unsigned long node)
1042 {
1043 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1044 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1045 }
1046
1047 static inline void set_page_links(struct page *page, enum zone_type zone,
1048 unsigned long node, unsigned long pfn)
1049 {
1050 set_page_zone(page, zone);
1051 set_page_node(page, node);
1052 #ifdef SECTION_IN_PAGE_FLAGS
1053 set_page_section(page, pfn_to_section_nr(pfn));
1054 #endif
1055 }
1056
1057 #ifdef CONFIG_MEMCG
1058 static inline struct mem_cgroup *page_memcg(struct page *page)
1059 {
1060 return page->mem_cgroup;
1061 }
1062 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1063 {
1064 WARN_ON_ONCE(!rcu_read_lock_held());
1065 return READ_ONCE(page->mem_cgroup);
1066 }
1067 #else
1068 static inline struct mem_cgroup *page_memcg(struct page *page)
1069 {
1070 return NULL;
1071 }
1072 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1073 {
1074 WARN_ON_ONCE(!rcu_read_lock_held());
1075 return NULL;
1076 }
1077 #endif
1078
1079 /*
1080 * Some inline functions in vmstat.h depend on page_zone()
1081 */
1082 #include <linux/vmstat.h>
1083
1084 static __always_inline void *lowmem_page_address(const struct page *page)
1085 {
1086 return page_to_virt(page);
1087 }
1088
1089 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1090 #define HASHED_PAGE_VIRTUAL
1091 #endif
1092
1093 #if defined(WANT_PAGE_VIRTUAL)
1094 static inline void *page_address(const struct page *page)
1095 {
1096 return page->virtual;
1097 }
1098 static inline void set_page_address(struct page *page, void *address)
1099 {
1100 page->virtual = address;
1101 }
1102 #define page_address_init() do { } while(0)
1103 #endif
1104
1105 #if defined(HASHED_PAGE_VIRTUAL)
1106 void *page_address(const struct page *page);
1107 void set_page_address(struct page *page, void *virtual);
1108 void page_address_init(void);
1109 #endif
1110
1111 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1112 #define page_address(page) lowmem_page_address(page)
1113 #define set_page_address(page, address) do { } while(0)
1114 #define page_address_init() do { } while(0)
1115 #endif
1116
1117 extern void *page_rmapping(struct page *page);
1118 extern struct anon_vma *page_anon_vma(struct page *page);
1119 extern struct address_space *page_mapping(struct page *page);
1120
1121 extern struct address_space *__page_file_mapping(struct page *);
1122
1123 static inline
1124 struct address_space *page_file_mapping(struct page *page)
1125 {
1126 if (unlikely(PageSwapCache(page)))
1127 return __page_file_mapping(page);
1128
1129 return page->mapping;
1130 }
1131
1132 extern pgoff_t __page_file_index(struct page *page);
1133
1134 /*
1135 * Return the pagecache index of the passed page. Regular pagecache pages
1136 * use ->index whereas swapcache pages use swp_offset(->private)
1137 */
1138 static inline pgoff_t page_index(struct page *page)
1139 {
1140 if (unlikely(PageSwapCache(page)))
1141 return __page_file_index(page);
1142 return page->index;
1143 }
1144
1145 bool page_mapped(struct page *page);
1146 struct address_space *page_mapping(struct page *page);
1147
1148 /*
1149 * Return true only if the page has been allocated with
1150 * ALLOC_NO_WATERMARKS and the low watermark was not
1151 * met implying that the system is under some pressure.
1152 */
1153 static inline bool page_is_pfmemalloc(struct page *page)
1154 {
1155 /*
1156 * Page index cannot be this large so this must be
1157 * a pfmemalloc page.
1158 */
1159 return page->index == -1UL;
1160 }
1161
1162 /*
1163 * Only to be called by the page allocator on a freshly allocated
1164 * page.
1165 */
1166 static inline void set_page_pfmemalloc(struct page *page)
1167 {
1168 page->index = -1UL;
1169 }
1170
1171 static inline void clear_page_pfmemalloc(struct page *page)
1172 {
1173 page->index = 0;
1174 }
1175
1176 /*
1177 * Different kinds of faults, as returned by handle_mm_fault().
1178 * Used to decide whether a process gets delivered SIGBUS or
1179 * just gets major/minor fault counters bumped up.
1180 */
1181
1182 #define VM_FAULT_OOM 0x0001
1183 #define VM_FAULT_SIGBUS 0x0002
1184 #define VM_FAULT_MAJOR 0x0004
1185 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1186 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1187 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1188 #define VM_FAULT_SIGSEGV 0x0040
1189
1190 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1191 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1192 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1193 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1194 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1195 #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1196 * and needs fsync() to complete (for
1197 * synchronous page faults in DAX) */
1198
1199 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1200 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1201 VM_FAULT_FALLBACK)
1202
1203 #define VM_FAULT_RESULT_TRACE \
1204 { VM_FAULT_OOM, "OOM" }, \
1205 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1206 { VM_FAULT_MAJOR, "MAJOR" }, \
1207 { VM_FAULT_WRITE, "WRITE" }, \
1208 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1209 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1210 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1211 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1212 { VM_FAULT_LOCKED, "LOCKED" }, \
1213 { VM_FAULT_RETRY, "RETRY" }, \
1214 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1215 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1216 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1217
1218 /* Encode hstate index for a hwpoisoned large page */
1219 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1220 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1221
1222 /*
1223 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1224 */
1225 extern void pagefault_out_of_memory(void);
1226
1227 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1228
1229 /*
1230 * Flags passed to show_mem() and show_free_areas() to suppress output in
1231 * various contexts.
1232 */
1233 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1234
1235 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1236
1237 extern bool can_do_mlock(void);
1238 extern int user_shm_lock(size_t, struct user_struct *);
1239 extern void user_shm_unlock(size_t, struct user_struct *);
1240
1241 /*
1242 * Parameter block passed down to zap_pte_range in exceptional cases.
1243 */
1244 struct zap_details {
1245 struct address_space *check_mapping; /* Check page->mapping if set */
1246 pgoff_t first_index; /* Lowest page->index to unmap */
1247 pgoff_t last_index; /* Highest page->index to unmap */
1248 };
1249
1250 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1251 pte_t pte, bool with_public_device);
1252 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1253
1254 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1255 pmd_t pmd);
1256
1257 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1258 unsigned long size);
1259 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1260 unsigned long size);
1261 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1262 unsigned long start, unsigned long end);
1263
1264 /**
1265 * mm_walk - callbacks for walk_page_range
1266 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1267 * this handler should only handle pud_trans_huge() puds.
1268 * the pmd_entry or pte_entry callbacks will be used for
1269 * regular PUDs.
1270 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1271 * this handler is required to be able to handle
1272 * pmd_trans_huge() pmds. They may simply choose to
1273 * split_huge_page() instead of handling it explicitly.
1274 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1275 * @pte_hole: if set, called for each hole at all levels
1276 * @hugetlb_entry: if set, called for each hugetlb entry
1277 * @test_walk: caller specific callback function to determine whether
1278 * we walk over the current vma or not. Returning 0
1279 * value means "do page table walk over the current vma,"
1280 * and a negative one means "abort current page table walk
1281 * right now." 1 means "skip the current vma."
1282 * @mm: mm_struct representing the target process of page table walk
1283 * @vma: vma currently walked (NULL if walking outside vmas)
1284 * @private: private data for callbacks' usage
1285 *
1286 * (see the comment on walk_page_range() for more details)
1287 */
1288 struct mm_walk {
1289 int (*pud_entry)(pud_t *pud, unsigned long addr,
1290 unsigned long next, struct mm_walk *walk);
1291 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1292 unsigned long next, struct mm_walk *walk);
1293 int (*pte_entry)(pte_t *pte, unsigned long addr,
1294 unsigned long next, struct mm_walk *walk);
1295 int (*pte_hole)(unsigned long addr, unsigned long next,
1296 struct mm_walk *walk);
1297 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1298 unsigned long addr, unsigned long next,
1299 struct mm_walk *walk);
1300 int (*test_walk)(unsigned long addr, unsigned long next,
1301 struct mm_walk *walk);
1302 struct mm_struct *mm;
1303 struct vm_area_struct *vma;
1304 void *private;
1305 };
1306
1307 int walk_page_range(unsigned long addr, unsigned long end,
1308 struct mm_walk *walk);
1309 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1310 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1311 unsigned long end, unsigned long floor, unsigned long ceiling);
1312 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1313 struct vm_area_struct *vma);
1314 void unmap_mapping_range(struct address_space *mapping,
1315 loff_t const holebegin, loff_t const holelen, int even_cows);
1316 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1317 unsigned long *start, unsigned long *end,
1318 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1319 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1320 unsigned long *pfn);
1321 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1322 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1323 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1324 void *buf, int len, int write);
1325
1326 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1327 loff_t const holebegin, loff_t const holelen)
1328 {
1329 unmap_mapping_range(mapping, holebegin, holelen, 0);
1330 }
1331
1332 extern void truncate_pagecache(struct inode *inode, loff_t new);
1333 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1334 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1335 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1336 int truncate_inode_page(struct address_space *mapping, struct page *page);
1337 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1338 int invalidate_inode_page(struct page *page);
1339
1340 #ifdef CONFIG_MMU
1341 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1342 unsigned int flags);
1343 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1344 unsigned long address, unsigned int fault_flags,
1345 bool *unlocked);
1346 #else
1347 static inline int handle_mm_fault(struct vm_area_struct *vma,
1348 unsigned long address, unsigned int flags)
1349 {
1350 /* should never happen if there's no MMU */
1351 BUG();
1352 return VM_FAULT_SIGBUS;
1353 }
1354 static inline int fixup_user_fault(struct task_struct *tsk,
1355 struct mm_struct *mm, unsigned long address,
1356 unsigned int fault_flags, bool *unlocked)
1357 {
1358 /* should never happen if there's no MMU */
1359 BUG();
1360 return -EFAULT;
1361 }
1362 #endif
1363
1364 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1365 unsigned int gup_flags);
1366 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1367 void *buf, int len, unsigned int gup_flags);
1368 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1369 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1370
1371 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1372 unsigned long start, unsigned long nr_pages,
1373 unsigned int gup_flags, struct page **pages,
1374 struct vm_area_struct **vmas, int *locked);
1375 long get_user_pages(unsigned long start, unsigned long nr_pages,
1376 unsigned int gup_flags, struct page **pages,
1377 struct vm_area_struct **vmas);
1378 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1379 unsigned int gup_flags, struct page **pages, int *locked);
1380 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1381 struct page **pages, unsigned int gup_flags);
1382 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1383 struct page **pages);
1384
1385 /* Container for pinned pfns / pages */
1386 struct frame_vector {
1387 unsigned int nr_allocated; /* Number of frames we have space for */
1388 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1389 bool got_ref; /* Did we pin pages by getting page ref? */
1390 bool is_pfns; /* Does array contain pages or pfns? */
1391 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1392 * pfns_vector_pages() or pfns_vector_pfns()
1393 * for access */
1394 };
1395
1396 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1397 void frame_vector_destroy(struct frame_vector *vec);
1398 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1399 unsigned int gup_flags, struct frame_vector *vec);
1400 void put_vaddr_frames(struct frame_vector *vec);
1401 int frame_vector_to_pages(struct frame_vector *vec);
1402 void frame_vector_to_pfns(struct frame_vector *vec);
1403
1404 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1405 {
1406 return vec->nr_frames;
1407 }
1408
1409 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1410 {
1411 if (vec->is_pfns) {
1412 int err = frame_vector_to_pages(vec);
1413
1414 if (err)
1415 return ERR_PTR(err);
1416 }
1417 return (struct page **)(vec->ptrs);
1418 }
1419
1420 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1421 {
1422 if (!vec->is_pfns)
1423 frame_vector_to_pfns(vec);
1424 return (unsigned long *)(vec->ptrs);
1425 }
1426
1427 struct kvec;
1428 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1429 struct page **pages);
1430 int get_kernel_page(unsigned long start, int write, struct page **pages);
1431 struct page *get_dump_page(unsigned long addr);
1432
1433 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1434 extern void do_invalidatepage(struct page *page, unsigned int offset,
1435 unsigned int length);
1436
1437 int __set_page_dirty_nobuffers(struct page *page);
1438 int __set_page_dirty_no_writeback(struct page *page);
1439 int redirty_page_for_writepage(struct writeback_control *wbc,
1440 struct page *page);
1441 void account_page_dirtied(struct page *page, struct address_space *mapping);
1442 void account_page_cleaned(struct page *page, struct address_space *mapping,
1443 struct bdi_writeback *wb);
1444 int set_page_dirty(struct page *page);
1445 int set_page_dirty_lock(struct page *page);
1446 void __cancel_dirty_page(struct page *page);
1447 static inline void cancel_dirty_page(struct page *page)
1448 {
1449 /* Avoid atomic ops, locking, etc. when not actually needed. */
1450 if (PageDirty(page))
1451 __cancel_dirty_page(page);
1452 }
1453 int clear_page_dirty_for_io(struct page *page);
1454
1455 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1456
1457 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1458 {
1459 return !vma->vm_ops;
1460 }
1461
1462 #ifdef CONFIG_SHMEM
1463 /*
1464 * The vma_is_shmem is not inline because it is used only by slow
1465 * paths in userfault.
1466 */
1467 bool vma_is_shmem(struct vm_area_struct *vma);
1468 #else
1469 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1470 #endif
1471
1472 int vma_is_stack_for_current(struct vm_area_struct *vma);
1473
1474 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1475 unsigned long old_addr, struct vm_area_struct *new_vma,
1476 unsigned long new_addr, unsigned long len,
1477 bool need_rmap_locks);
1478 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1479 unsigned long end, pgprot_t newprot,
1480 int dirty_accountable, int prot_numa);
1481 extern int mprotect_fixup(struct vm_area_struct *vma,
1482 struct vm_area_struct **pprev, unsigned long start,
1483 unsigned long end, unsigned long newflags);
1484
1485 /*
1486 * doesn't attempt to fault and will return short.
1487 */
1488 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1489 struct page **pages);
1490 /*
1491 * per-process(per-mm_struct) statistics.
1492 */
1493 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1494 {
1495 long val = atomic_long_read(&mm->rss_stat.count[member]);
1496
1497 #ifdef SPLIT_RSS_COUNTING
1498 /*
1499 * counter is updated in asynchronous manner and may go to minus.
1500 * But it's never be expected number for users.
1501 */
1502 if (val < 0)
1503 val = 0;
1504 #endif
1505 return (unsigned long)val;
1506 }
1507
1508 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1509 {
1510 atomic_long_add(value, &mm->rss_stat.count[member]);
1511 }
1512
1513 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1514 {
1515 atomic_long_inc(&mm->rss_stat.count[member]);
1516 }
1517
1518 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1519 {
1520 atomic_long_dec(&mm->rss_stat.count[member]);
1521 }
1522
1523 /* Optimized variant when page is already known not to be PageAnon */
1524 static inline int mm_counter_file(struct page *page)
1525 {
1526 if (PageSwapBacked(page))
1527 return MM_SHMEMPAGES;
1528 return MM_FILEPAGES;
1529 }
1530
1531 static inline int mm_counter(struct page *page)
1532 {
1533 if (PageAnon(page))
1534 return MM_ANONPAGES;
1535 return mm_counter_file(page);
1536 }
1537
1538 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1539 {
1540 return get_mm_counter(mm, MM_FILEPAGES) +
1541 get_mm_counter(mm, MM_ANONPAGES) +
1542 get_mm_counter(mm, MM_SHMEMPAGES);
1543 }
1544
1545 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1546 {
1547 return max(mm->hiwater_rss, get_mm_rss(mm));
1548 }
1549
1550 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1551 {
1552 return max(mm->hiwater_vm, mm->total_vm);
1553 }
1554
1555 static inline void update_hiwater_rss(struct mm_struct *mm)
1556 {
1557 unsigned long _rss = get_mm_rss(mm);
1558
1559 if ((mm)->hiwater_rss < _rss)
1560 (mm)->hiwater_rss = _rss;
1561 }
1562
1563 static inline void update_hiwater_vm(struct mm_struct *mm)
1564 {
1565 if (mm->hiwater_vm < mm->total_vm)
1566 mm->hiwater_vm = mm->total_vm;
1567 }
1568
1569 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1570 {
1571 mm->hiwater_rss = get_mm_rss(mm);
1572 }
1573
1574 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1575 struct mm_struct *mm)
1576 {
1577 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1578
1579 if (*maxrss < hiwater_rss)
1580 *maxrss = hiwater_rss;
1581 }
1582
1583 #if defined(SPLIT_RSS_COUNTING)
1584 void sync_mm_rss(struct mm_struct *mm);
1585 #else
1586 static inline void sync_mm_rss(struct mm_struct *mm)
1587 {
1588 }
1589 #endif
1590
1591 #ifndef __HAVE_ARCH_PTE_DEVMAP
1592 static inline int pte_devmap(pte_t pte)
1593 {
1594 return 0;
1595 }
1596 #endif
1597
1598 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1599
1600 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1601 spinlock_t **ptl);
1602 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1603 spinlock_t **ptl)
1604 {
1605 pte_t *ptep;
1606 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1607 return ptep;
1608 }
1609
1610 #ifdef __PAGETABLE_P4D_FOLDED
1611 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1612 unsigned long address)
1613 {
1614 return 0;
1615 }
1616 #else
1617 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1618 #endif
1619
1620 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1621 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1622 unsigned long address)
1623 {
1624 return 0;
1625 }
1626 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1627 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1628
1629 #else
1630 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1631
1632 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1633 {
1634 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1635 }
1636
1637 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1638 {
1639 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1640 }
1641 #endif
1642
1643 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1644 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1645 unsigned long address)
1646 {
1647 return 0;
1648 }
1649
1650 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1651 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1652
1653 #else
1654 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1655
1656 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1657 {
1658 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1659 }
1660
1661 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1662 {
1663 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1664 }
1665 #endif
1666
1667 #ifdef CONFIG_MMU
1668 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1669 {
1670 atomic_long_set(&mm->pgtables_bytes, 0);
1671 }
1672
1673 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1674 {
1675 return atomic_long_read(&mm->pgtables_bytes);
1676 }
1677
1678 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1679 {
1680 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1681 }
1682
1683 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1684 {
1685 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1686 }
1687 #else
1688
1689 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1690 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1691 {
1692 return 0;
1693 }
1694
1695 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1696 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1697 #endif
1698
1699 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1700 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1701
1702 /*
1703 * The following ifdef needed to get the 4level-fixup.h header to work.
1704 * Remove it when 4level-fixup.h has been removed.
1705 */
1706 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1707
1708 #ifndef __ARCH_HAS_5LEVEL_HACK
1709 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1710 unsigned long address)
1711 {
1712 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1713 NULL : p4d_offset(pgd, address);
1714 }
1715
1716 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1717 unsigned long address)
1718 {
1719 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1720 NULL : pud_offset(p4d, address);
1721 }
1722 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1723
1724 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1725 {
1726 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1727 NULL: pmd_offset(pud, address);
1728 }
1729 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1730
1731 #if USE_SPLIT_PTE_PTLOCKS
1732 #if ALLOC_SPLIT_PTLOCKS
1733 void __init ptlock_cache_init(void);
1734 extern bool ptlock_alloc(struct page *page);
1735 extern void ptlock_free(struct page *page);
1736
1737 static inline spinlock_t *ptlock_ptr(struct page *page)
1738 {
1739 return page->ptl;
1740 }
1741 #else /* ALLOC_SPLIT_PTLOCKS */
1742 static inline void ptlock_cache_init(void)
1743 {
1744 }
1745
1746 static inline bool ptlock_alloc(struct page *page)
1747 {
1748 return true;
1749 }
1750
1751 static inline void ptlock_free(struct page *page)
1752 {
1753 }
1754
1755 static inline spinlock_t *ptlock_ptr(struct page *page)
1756 {
1757 return &page->ptl;
1758 }
1759 #endif /* ALLOC_SPLIT_PTLOCKS */
1760
1761 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1762 {
1763 return ptlock_ptr(pmd_page(*pmd));
1764 }
1765
1766 static inline bool ptlock_init(struct page *page)
1767 {
1768 /*
1769 * prep_new_page() initialize page->private (and therefore page->ptl)
1770 * with 0. Make sure nobody took it in use in between.
1771 *
1772 * It can happen if arch try to use slab for page table allocation:
1773 * slab code uses page->slab_cache, which share storage with page->ptl.
1774 */
1775 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1776 if (!ptlock_alloc(page))
1777 return false;
1778 spin_lock_init(ptlock_ptr(page));
1779 return true;
1780 }
1781
1782 /* Reset page->mapping so free_pages_check won't complain. */
1783 static inline void pte_lock_deinit(struct page *page)
1784 {
1785 page->mapping = NULL;
1786 ptlock_free(page);
1787 }
1788
1789 #else /* !USE_SPLIT_PTE_PTLOCKS */
1790 /*
1791 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1792 */
1793 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1794 {
1795 return &mm->page_table_lock;
1796 }
1797 static inline void ptlock_cache_init(void) {}
1798 static inline bool ptlock_init(struct page *page) { return true; }
1799 static inline void pte_lock_deinit(struct page *page) {}
1800 #endif /* USE_SPLIT_PTE_PTLOCKS */
1801
1802 static inline void pgtable_init(void)
1803 {
1804 ptlock_cache_init();
1805 pgtable_cache_init();
1806 }
1807
1808 static inline bool pgtable_page_ctor(struct page *page)
1809 {
1810 if (!ptlock_init(page))
1811 return false;
1812 inc_zone_page_state(page, NR_PAGETABLE);
1813 return true;
1814 }
1815
1816 static inline void pgtable_page_dtor(struct page *page)
1817 {
1818 pte_lock_deinit(page);
1819 dec_zone_page_state(page, NR_PAGETABLE);
1820 }
1821
1822 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1823 ({ \
1824 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1825 pte_t *__pte = pte_offset_map(pmd, address); \
1826 *(ptlp) = __ptl; \
1827 spin_lock(__ptl); \
1828 __pte; \
1829 })
1830
1831 #define pte_unmap_unlock(pte, ptl) do { \
1832 spin_unlock(ptl); \
1833 pte_unmap(pte); \
1834 } while (0)
1835
1836 #define pte_alloc(mm, pmd, address) \
1837 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1838
1839 #define pte_alloc_map(mm, pmd, address) \
1840 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1841
1842 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1843 (pte_alloc(mm, pmd, address) ? \
1844 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1845
1846 #define pte_alloc_kernel(pmd, address) \
1847 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1848 NULL: pte_offset_kernel(pmd, address))
1849
1850 #if USE_SPLIT_PMD_PTLOCKS
1851
1852 static struct page *pmd_to_page(pmd_t *pmd)
1853 {
1854 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1855 return virt_to_page((void *)((unsigned long) pmd & mask));
1856 }
1857
1858 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1859 {
1860 return ptlock_ptr(pmd_to_page(pmd));
1861 }
1862
1863 static inline bool pgtable_pmd_page_ctor(struct page *page)
1864 {
1865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1866 page->pmd_huge_pte = NULL;
1867 #endif
1868 return ptlock_init(page);
1869 }
1870
1871 static inline void pgtable_pmd_page_dtor(struct page *page)
1872 {
1873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1874 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1875 #endif
1876 ptlock_free(page);
1877 }
1878
1879 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1880
1881 #else
1882
1883 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1884 {
1885 return &mm->page_table_lock;
1886 }
1887
1888 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1889 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1890
1891 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1892
1893 #endif
1894
1895 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1896 {
1897 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1898 spin_lock(ptl);
1899 return ptl;
1900 }
1901
1902 /*
1903 * No scalability reason to split PUD locks yet, but follow the same pattern
1904 * as the PMD locks to make it easier if we decide to. The VM should not be
1905 * considered ready to switch to split PUD locks yet; there may be places
1906 * which need to be converted from page_table_lock.
1907 */
1908 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1909 {
1910 return &mm->page_table_lock;
1911 }
1912
1913 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1914 {
1915 spinlock_t *ptl = pud_lockptr(mm, pud);
1916
1917 spin_lock(ptl);
1918 return ptl;
1919 }
1920
1921 extern void __init pagecache_init(void);
1922 extern void free_area_init(unsigned long * zones_size);
1923 extern void free_area_init_node(int nid, unsigned long * zones_size,
1924 unsigned long zone_start_pfn, unsigned long *zholes_size);
1925 extern void free_initmem(void);
1926
1927 /*
1928 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1929 * into the buddy system. The freed pages will be poisoned with pattern
1930 * "poison" if it's within range [0, UCHAR_MAX].
1931 * Return pages freed into the buddy system.
1932 */
1933 extern unsigned long free_reserved_area(void *start, void *end,
1934 int poison, char *s);
1935
1936 #ifdef CONFIG_HIGHMEM
1937 /*
1938 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1939 * and totalram_pages.
1940 */
1941 extern void free_highmem_page(struct page *page);
1942 #endif
1943
1944 extern void adjust_managed_page_count(struct page *page, long count);
1945 extern void mem_init_print_info(const char *str);
1946
1947 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1948
1949 /* Free the reserved page into the buddy system, so it gets managed. */
1950 static inline void __free_reserved_page(struct page *page)
1951 {
1952 ClearPageReserved(page);
1953 init_page_count(page);
1954 __free_page(page);
1955 }
1956
1957 static inline void free_reserved_page(struct page *page)
1958 {
1959 __free_reserved_page(page);
1960 adjust_managed_page_count(page, 1);
1961 }
1962
1963 static inline void mark_page_reserved(struct page *page)
1964 {
1965 SetPageReserved(page);
1966 adjust_managed_page_count(page, -1);
1967 }
1968
1969 /*
1970 * Default method to free all the __init memory into the buddy system.
1971 * The freed pages will be poisoned with pattern "poison" if it's within
1972 * range [0, UCHAR_MAX].
1973 * Return pages freed into the buddy system.
1974 */
1975 static inline unsigned long free_initmem_default(int poison)
1976 {
1977 extern char __init_begin[], __init_end[];
1978
1979 return free_reserved_area(&__init_begin, &__init_end,
1980 poison, "unused kernel");
1981 }
1982
1983 static inline unsigned long get_num_physpages(void)
1984 {
1985 int nid;
1986 unsigned long phys_pages = 0;
1987
1988 for_each_online_node(nid)
1989 phys_pages += node_present_pages(nid);
1990
1991 return phys_pages;
1992 }
1993
1994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1995 /*
1996 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1997 * zones, allocate the backing mem_map and account for memory holes in a more
1998 * architecture independent manner. This is a substitute for creating the
1999 * zone_sizes[] and zholes_size[] arrays and passing them to
2000 * free_area_init_node()
2001 *
2002 * An architecture is expected to register range of page frames backed by
2003 * physical memory with memblock_add[_node]() before calling
2004 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2005 * usage, an architecture is expected to do something like
2006 *
2007 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2008 * max_highmem_pfn};
2009 * for_each_valid_physical_page_range()
2010 * memblock_add_node(base, size, nid)
2011 * free_area_init_nodes(max_zone_pfns);
2012 *
2013 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2014 * registered physical page range. Similarly
2015 * sparse_memory_present_with_active_regions() calls memory_present() for
2016 * each range when SPARSEMEM is enabled.
2017 *
2018 * See mm/page_alloc.c for more information on each function exposed by
2019 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2020 */
2021 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2022 unsigned long node_map_pfn_alignment(void);
2023 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2024 unsigned long end_pfn);
2025 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2026 unsigned long end_pfn);
2027 extern void get_pfn_range_for_nid(unsigned int nid,
2028 unsigned long *start_pfn, unsigned long *end_pfn);
2029 extern unsigned long find_min_pfn_with_active_regions(void);
2030 extern void free_bootmem_with_active_regions(int nid,
2031 unsigned long max_low_pfn);
2032 extern void sparse_memory_present_with_active_regions(int nid);
2033
2034 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2035
2036 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2037 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2038 static inline int __early_pfn_to_nid(unsigned long pfn,
2039 struct mminit_pfnnid_cache *state)
2040 {
2041 return 0;
2042 }
2043 #else
2044 /* please see mm/page_alloc.c */
2045 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2046 /* there is a per-arch backend function. */
2047 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2048 struct mminit_pfnnid_cache *state);
2049 #endif
2050
2051 #ifdef CONFIG_HAVE_MEMBLOCK
2052 void zero_resv_unavail(void);
2053 #else
2054 static inline void zero_resv_unavail(void) {}
2055 #endif
2056
2057 extern void set_dma_reserve(unsigned long new_dma_reserve);
2058 extern void memmap_init_zone(unsigned long, int, unsigned long,
2059 unsigned long, enum memmap_context);
2060 extern void setup_per_zone_wmarks(void);
2061 extern int __meminit init_per_zone_wmark_min(void);
2062 extern void mem_init(void);
2063 extern void __init mmap_init(void);
2064 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2065 extern long si_mem_available(void);
2066 extern void si_meminfo(struct sysinfo * val);
2067 extern void si_meminfo_node(struct sysinfo *val, int nid);
2068 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2069 extern unsigned long arch_reserved_kernel_pages(void);
2070 #endif
2071
2072 extern __printf(3, 4)
2073 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2074
2075 extern void setup_per_cpu_pageset(void);
2076
2077 extern void zone_pcp_update(struct zone *zone);
2078 extern void zone_pcp_reset(struct zone *zone);
2079
2080 /* page_alloc.c */
2081 extern int min_free_kbytes;
2082 extern int watermark_scale_factor;
2083
2084 /* nommu.c */
2085 extern atomic_long_t mmap_pages_allocated;
2086 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2087
2088 /* interval_tree.c */
2089 void vma_interval_tree_insert(struct vm_area_struct *node,
2090 struct rb_root_cached *root);
2091 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2092 struct vm_area_struct *prev,
2093 struct rb_root_cached *root);
2094 void vma_interval_tree_remove(struct vm_area_struct *node,
2095 struct rb_root_cached *root);
2096 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2097 unsigned long start, unsigned long last);
2098 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2099 unsigned long start, unsigned long last);
2100
2101 #define vma_interval_tree_foreach(vma, root, start, last) \
2102 for (vma = vma_interval_tree_iter_first(root, start, last); \
2103 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2104
2105 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2106 struct rb_root_cached *root);
2107 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2108 struct rb_root_cached *root);
2109 struct anon_vma_chain *
2110 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2111 unsigned long start, unsigned long last);
2112 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2113 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2114 #ifdef CONFIG_DEBUG_VM_RB
2115 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2116 #endif
2117
2118 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2119 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2120 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2121
2122 /* mmap.c */
2123 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2124 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2125 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2126 struct vm_area_struct *expand);
2127 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2128 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2129 {
2130 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2131 }
2132 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2133 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2134 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2135 struct mempolicy *, struct vm_userfaultfd_ctx);
2136 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2137 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2138 unsigned long addr, int new_below);
2139 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2140 unsigned long addr, int new_below);
2141 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2142 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2143 struct rb_node **, struct rb_node *);
2144 extern void unlink_file_vma(struct vm_area_struct *);
2145 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2146 unsigned long addr, unsigned long len, pgoff_t pgoff,
2147 bool *need_rmap_locks);
2148 extern void exit_mmap(struct mm_struct *);
2149
2150 static inline int check_data_rlimit(unsigned long rlim,
2151 unsigned long new,
2152 unsigned long start,
2153 unsigned long end_data,
2154 unsigned long start_data)
2155 {
2156 if (rlim < RLIM_INFINITY) {
2157 if (((new - start) + (end_data - start_data)) > rlim)
2158 return -ENOSPC;
2159 }
2160
2161 return 0;
2162 }
2163
2164 extern int mm_take_all_locks(struct mm_struct *mm);
2165 extern void mm_drop_all_locks(struct mm_struct *mm);
2166
2167 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2168 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2169 extern struct file *get_task_exe_file(struct task_struct *task);
2170
2171 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2172 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2173
2174 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2175 const struct vm_special_mapping *sm);
2176 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2177 unsigned long addr, unsigned long len,
2178 unsigned long flags,
2179 const struct vm_special_mapping *spec);
2180 /* This is an obsolete alternative to _install_special_mapping. */
2181 extern int install_special_mapping(struct mm_struct *mm,
2182 unsigned long addr, unsigned long len,
2183 unsigned long flags, struct page **pages);
2184
2185 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2186
2187 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2188 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2189 struct list_head *uf);
2190 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2191 unsigned long len, unsigned long prot, unsigned long flags,
2192 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2193 struct list_head *uf);
2194 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2195 struct list_head *uf);
2196
2197 static inline unsigned long
2198 do_mmap_pgoff(struct file *file, unsigned long addr,
2199 unsigned long len, unsigned long prot, unsigned long flags,
2200 unsigned long pgoff, unsigned long *populate,
2201 struct list_head *uf)
2202 {
2203 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2204 }
2205
2206 #ifdef CONFIG_MMU
2207 extern int __mm_populate(unsigned long addr, unsigned long len,
2208 int ignore_errors);
2209 static inline void mm_populate(unsigned long addr, unsigned long len)
2210 {
2211 /* Ignore errors */
2212 (void) __mm_populate(addr, len, 1);
2213 }
2214 #else
2215 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2216 #endif
2217
2218 /* These take the mm semaphore themselves */
2219 extern int __must_check vm_brk(unsigned long, unsigned long);
2220 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2221 extern int vm_munmap(unsigned long, size_t);
2222 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2223 unsigned long, unsigned long,
2224 unsigned long, unsigned long);
2225
2226 struct vm_unmapped_area_info {
2227 #define VM_UNMAPPED_AREA_TOPDOWN 1
2228 unsigned long flags;
2229 unsigned long length;
2230 unsigned long low_limit;
2231 unsigned long high_limit;
2232 unsigned long align_mask;
2233 unsigned long align_offset;
2234 };
2235
2236 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2237 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2238
2239 /*
2240 * Search for an unmapped address range.
2241 *
2242 * We are looking for a range that:
2243 * - does not intersect with any VMA;
2244 * - is contained within the [low_limit, high_limit) interval;
2245 * - is at least the desired size.
2246 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2247 */
2248 static inline unsigned long
2249 vm_unmapped_area(struct vm_unmapped_area_info *info)
2250 {
2251 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2252 return unmapped_area_topdown(info);
2253 else
2254 return unmapped_area(info);
2255 }
2256
2257 /* truncate.c */
2258 extern void truncate_inode_pages(struct address_space *, loff_t);
2259 extern void truncate_inode_pages_range(struct address_space *,
2260 loff_t lstart, loff_t lend);
2261 extern void truncate_inode_pages_final(struct address_space *);
2262
2263 /* generic vm_area_ops exported for stackable file systems */
2264 extern int filemap_fault(struct vm_fault *vmf);
2265 extern void filemap_map_pages(struct vm_fault *vmf,
2266 pgoff_t start_pgoff, pgoff_t end_pgoff);
2267 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2268
2269 /* mm/page-writeback.c */
2270 int __must_check write_one_page(struct page *page);
2271 void task_dirty_inc(struct task_struct *tsk);
2272
2273 /* readahead.c */
2274 #define VM_MAX_READAHEAD 128 /* kbytes */
2275 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2276
2277 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2278 pgoff_t offset, unsigned long nr_to_read);
2279
2280 void page_cache_sync_readahead(struct address_space *mapping,
2281 struct file_ra_state *ra,
2282 struct file *filp,
2283 pgoff_t offset,
2284 unsigned long size);
2285
2286 void page_cache_async_readahead(struct address_space *mapping,
2287 struct file_ra_state *ra,
2288 struct file *filp,
2289 struct page *pg,
2290 pgoff_t offset,
2291 unsigned long size);
2292
2293 extern unsigned long stack_guard_gap;
2294 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2295 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2296
2297 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2298 extern int expand_downwards(struct vm_area_struct *vma,
2299 unsigned long address);
2300 #if VM_GROWSUP
2301 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2302 #else
2303 #define expand_upwards(vma, address) (0)
2304 #endif
2305
2306 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2307 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2308 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2309 struct vm_area_struct **pprev);
2310
2311 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2312 NULL if none. Assume start_addr < end_addr. */
2313 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2314 {
2315 struct vm_area_struct * vma = find_vma(mm,start_addr);
2316
2317 if (vma && end_addr <= vma->vm_start)
2318 vma = NULL;
2319 return vma;
2320 }
2321
2322 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2323 {
2324 unsigned long vm_start = vma->vm_start;
2325
2326 if (vma->vm_flags & VM_GROWSDOWN) {
2327 vm_start -= stack_guard_gap;
2328 if (vm_start > vma->vm_start)
2329 vm_start = 0;
2330 }
2331 return vm_start;
2332 }
2333
2334 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2335 {
2336 unsigned long vm_end = vma->vm_end;
2337
2338 if (vma->vm_flags & VM_GROWSUP) {
2339 vm_end += stack_guard_gap;
2340 if (vm_end < vma->vm_end)
2341 vm_end = -PAGE_SIZE;
2342 }
2343 return vm_end;
2344 }
2345
2346 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2347 {
2348 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2349 }
2350
2351 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2352 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2353 unsigned long vm_start, unsigned long vm_end)
2354 {
2355 struct vm_area_struct *vma = find_vma(mm, vm_start);
2356
2357 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2358 vma = NULL;
2359
2360 return vma;
2361 }
2362
2363 #ifdef CONFIG_MMU
2364 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2365 void vma_set_page_prot(struct vm_area_struct *vma);
2366 #else
2367 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2368 {
2369 return __pgprot(0);
2370 }
2371 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2372 {
2373 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2374 }
2375 #endif
2376
2377 #ifdef CONFIG_NUMA_BALANCING
2378 unsigned long change_prot_numa(struct vm_area_struct *vma,
2379 unsigned long start, unsigned long end);
2380 #endif
2381
2382 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2383 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2384 unsigned long pfn, unsigned long size, pgprot_t);
2385 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2386 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2387 unsigned long pfn);
2388 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2389 unsigned long pfn, pgprot_t pgprot);
2390 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2391 pfn_t pfn);
2392 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2393 pfn_t pfn);
2394 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2395
2396
2397 struct page *follow_page_mask(struct vm_area_struct *vma,
2398 unsigned long address, unsigned int foll_flags,
2399 unsigned int *page_mask);
2400
2401 static inline struct page *follow_page(struct vm_area_struct *vma,
2402 unsigned long address, unsigned int foll_flags)
2403 {
2404 unsigned int unused_page_mask;
2405 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2406 }
2407
2408 #define FOLL_WRITE 0x01 /* check pte is writable */
2409 #define FOLL_TOUCH 0x02 /* mark page accessed */
2410 #define FOLL_GET 0x04 /* do get_page on page */
2411 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2412 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2413 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2414 * and return without waiting upon it */
2415 #define FOLL_POPULATE 0x40 /* fault in page */
2416 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2417 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2418 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2419 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2420 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2421 #define FOLL_MLOCK 0x1000 /* lock present pages */
2422 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2423 #define FOLL_COW 0x4000 /* internal GUP flag */
2424
2425 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2426 {
2427 if (vm_fault & VM_FAULT_OOM)
2428 return -ENOMEM;
2429 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2430 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2431 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2432 return -EFAULT;
2433 return 0;
2434 }
2435
2436 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2437 void *data);
2438 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2439 unsigned long size, pte_fn_t fn, void *data);
2440
2441
2442 #ifdef CONFIG_PAGE_POISONING
2443 extern bool page_poisoning_enabled(void);
2444 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2445 extern bool page_is_poisoned(struct page *page);
2446 #else
2447 static inline bool page_poisoning_enabled(void) { return false; }
2448 static inline void kernel_poison_pages(struct page *page, int numpages,
2449 int enable) { }
2450 static inline bool page_is_poisoned(struct page *page) { return false; }
2451 #endif
2452
2453 #ifdef CONFIG_DEBUG_PAGEALLOC
2454 extern bool _debug_pagealloc_enabled;
2455 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2456
2457 static inline bool debug_pagealloc_enabled(void)
2458 {
2459 return _debug_pagealloc_enabled;
2460 }
2461
2462 static inline void
2463 kernel_map_pages(struct page *page, int numpages, int enable)
2464 {
2465 if (!debug_pagealloc_enabled())
2466 return;
2467
2468 __kernel_map_pages(page, numpages, enable);
2469 }
2470 #ifdef CONFIG_HIBERNATION
2471 extern bool kernel_page_present(struct page *page);
2472 #endif /* CONFIG_HIBERNATION */
2473 #else /* CONFIG_DEBUG_PAGEALLOC */
2474 static inline void
2475 kernel_map_pages(struct page *page, int numpages, int enable) {}
2476 #ifdef CONFIG_HIBERNATION
2477 static inline bool kernel_page_present(struct page *page) { return true; }
2478 #endif /* CONFIG_HIBERNATION */
2479 static inline bool debug_pagealloc_enabled(void)
2480 {
2481 return false;
2482 }
2483 #endif /* CONFIG_DEBUG_PAGEALLOC */
2484
2485 #ifdef __HAVE_ARCH_GATE_AREA
2486 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2487 extern int in_gate_area_no_mm(unsigned long addr);
2488 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2489 #else
2490 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2491 {
2492 return NULL;
2493 }
2494 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2495 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2496 {
2497 return 0;
2498 }
2499 #endif /* __HAVE_ARCH_GATE_AREA */
2500
2501 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2502
2503 #ifdef CONFIG_SYSCTL
2504 extern int sysctl_drop_caches;
2505 int drop_caches_sysctl_handler(struct ctl_table *, int,
2506 void __user *, size_t *, loff_t *);
2507 #endif
2508
2509 void drop_slab(void);
2510 void drop_slab_node(int nid);
2511
2512 #ifndef CONFIG_MMU
2513 #define randomize_va_space 0
2514 #else
2515 extern int randomize_va_space;
2516 #endif
2517
2518 const char * arch_vma_name(struct vm_area_struct *vma);
2519 void print_vma_addr(char *prefix, unsigned long rip);
2520
2521 void sparse_mem_maps_populate_node(struct page **map_map,
2522 unsigned long pnum_begin,
2523 unsigned long pnum_end,
2524 unsigned long map_count,
2525 int nodeid);
2526
2527 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2528 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2529 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2530 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2531 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2532 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2533 void *vmemmap_alloc_block(unsigned long size, int node);
2534 struct vmem_altmap;
2535 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2536 struct vmem_altmap *altmap);
2537 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2538 {
2539 return __vmemmap_alloc_block_buf(size, node, NULL);
2540 }
2541
2542 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2543 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2544 int node);
2545 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2546 void vmemmap_populate_print_last(void);
2547 #ifdef CONFIG_MEMORY_HOTPLUG
2548 void vmemmap_free(unsigned long start, unsigned long end);
2549 #endif
2550 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2551 unsigned long nr_pages);
2552
2553 enum mf_flags {
2554 MF_COUNT_INCREASED = 1 << 0,
2555 MF_ACTION_REQUIRED = 1 << 1,
2556 MF_MUST_KILL = 1 << 2,
2557 MF_SOFT_OFFLINE = 1 << 3,
2558 };
2559 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2560 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2561 extern int unpoison_memory(unsigned long pfn);
2562 extern int get_hwpoison_page(struct page *page);
2563 #define put_hwpoison_page(page) put_page(page)
2564 extern int sysctl_memory_failure_early_kill;
2565 extern int sysctl_memory_failure_recovery;
2566 extern void shake_page(struct page *p, int access);
2567 extern atomic_long_t num_poisoned_pages;
2568 extern int soft_offline_page(struct page *page, int flags);
2569
2570
2571 /*
2572 * Error handlers for various types of pages.
2573 */
2574 enum mf_result {
2575 MF_IGNORED, /* Error: cannot be handled */
2576 MF_FAILED, /* Error: handling failed */
2577 MF_DELAYED, /* Will be handled later */
2578 MF_RECOVERED, /* Successfully recovered */
2579 };
2580
2581 enum mf_action_page_type {
2582 MF_MSG_KERNEL,
2583 MF_MSG_KERNEL_HIGH_ORDER,
2584 MF_MSG_SLAB,
2585 MF_MSG_DIFFERENT_COMPOUND,
2586 MF_MSG_POISONED_HUGE,
2587 MF_MSG_HUGE,
2588 MF_MSG_FREE_HUGE,
2589 MF_MSG_UNMAP_FAILED,
2590 MF_MSG_DIRTY_SWAPCACHE,
2591 MF_MSG_CLEAN_SWAPCACHE,
2592 MF_MSG_DIRTY_MLOCKED_LRU,
2593 MF_MSG_CLEAN_MLOCKED_LRU,
2594 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2595 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2596 MF_MSG_DIRTY_LRU,
2597 MF_MSG_CLEAN_LRU,
2598 MF_MSG_TRUNCATED_LRU,
2599 MF_MSG_BUDDY,
2600 MF_MSG_BUDDY_2ND,
2601 MF_MSG_UNKNOWN,
2602 };
2603
2604 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2605 extern void clear_huge_page(struct page *page,
2606 unsigned long addr_hint,
2607 unsigned int pages_per_huge_page);
2608 extern void copy_user_huge_page(struct page *dst, struct page *src,
2609 unsigned long addr, struct vm_area_struct *vma,
2610 unsigned int pages_per_huge_page);
2611 extern long copy_huge_page_from_user(struct page *dst_page,
2612 const void __user *usr_src,
2613 unsigned int pages_per_huge_page,
2614 bool allow_pagefault);
2615 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2616
2617 extern struct page_ext_operations debug_guardpage_ops;
2618
2619 #ifdef CONFIG_DEBUG_PAGEALLOC
2620 extern unsigned int _debug_guardpage_minorder;
2621 extern bool _debug_guardpage_enabled;
2622
2623 static inline unsigned int debug_guardpage_minorder(void)
2624 {
2625 return _debug_guardpage_minorder;
2626 }
2627
2628 static inline bool debug_guardpage_enabled(void)
2629 {
2630 return _debug_guardpage_enabled;
2631 }
2632
2633 static inline bool page_is_guard(struct page *page)
2634 {
2635 struct page_ext *page_ext;
2636
2637 if (!debug_guardpage_enabled())
2638 return false;
2639
2640 page_ext = lookup_page_ext(page);
2641 if (unlikely(!page_ext))
2642 return false;
2643
2644 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2645 }
2646 #else
2647 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2648 static inline bool debug_guardpage_enabled(void) { return false; }
2649 static inline bool page_is_guard(struct page *page) { return false; }
2650 #endif /* CONFIG_DEBUG_PAGEALLOC */
2651
2652 #if MAX_NUMNODES > 1
2653 void __init setup_nr_node_ids(void);
2654 #else
2655 static inline void setup_nr_node_ids(void) {}
2656 #endif
2657
2658 #endif /* __KERNEL__ */
2659 #endif /* _LINUX_MM_H */