]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/mm.h
mm: interval tree updates
[mirror_ubuntu-zesty-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct file_ra_state;
24 struct user_struct;
25 struct writeback_control;
26
27 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
28 extern unsigned long max_mapnr;
29 #endif
30
31 extern unsigned long num_physpages;
32 extern unsigned long totalram_pages;
33 extern void * high_memory;
34 extern int page_cluster;
35
36 #ifdef CONFIG_SYSCTL
37 extern int sysctl_legacy_va_layout;
38 #else
39 #define sysctl_legacy_va_layout 0
40 #endif
41
42 #include <asm/page.h>
43 #include <asm/pgtable.h>
44 #include <asm/processor.h>
45
46 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
47
48 /* to align the pointer to the (next) page boundary */
49 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
50
51 /*
52 * Linux kernel virtual memory manager primitives.
53 * The idea being to have a "virtual" mm in the same way
54 * we have a virtual fs - giving a cleaner interface to the
55 * mm details, and allowing different kinds of memory mappings
56 * (from shared memory to executable loading to arbitrary
57 * mmap() functions).
58 */
59
60 extern struct kmem_cache *vm_area_cachep;
61
62 #ifndef CONFIG_MMU
63 extern struct rb_root nommu_region_tree;
64 extern struct rw_semaphore nommu_region_sem;
65
66 extern unsigned int kobjsize(const void *objp);
67 #endif
68
69 /*
70 * vm_flags in vm_area_struct, see mm_types.h.
71 */
72 #define VM_NONE 0x00000000
73
74 #define VM_READ 0x00000001 /* currently active flags */
75 #define VM_WRITE 0x00000002
76 #define VM_EXEC 0x00000004
77 #define VM_SHARED 0x00000008
78
79 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
80 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
81 #define VM_MAYWRITE 0x00000020
82 #define VM_MAYEXEC 0x00000040
83 #define VM_MAYSHARE 0x00000080
84
85 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
86 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
87 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
88
89 #define VM_LOCKED 0x00002000
90 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
91
92 /* Used by sys_madvise() */
93 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
94 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
95
96 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
97 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
98 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
99 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
100 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
101 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
102 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
103 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
104
105 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
106 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
107 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
108 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
109
110 #if defined(CONFIG_X86)
111 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
112 #elif defined(CONFIG_PPC)
113 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
114 #elif defined(CONFIG_PARISC)
115 # define VM_GROWSUP VM_ARCH_1
116 #elif defined(CONFIG_IA64)
117 # define VM_GROWSUP VM_ARCH_1
118 #elif !defined(CONFIG_MMU)
119 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
120 #endif
121
122 #ifndef VM_GROWSUP
123 # define VM_GROWSUP VM_NONE
124 #endif
125
126 /* Bits set in the VMA until the stack is in its final location */
127 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
128
129 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
130 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
131 #endif
132
133 #ifdef CONFIG_STACK_GROWSUP
134 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
135 #else
136 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
137 #endif
138
139 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
140 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
141 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
142 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
143 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
144
145 /*
146 * Special vmas that are non-mergable, non-mlock()able.
147 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
148 */
149 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
150
151 /*
152 * mapping from the currently active vm_flags protection bits (the
153 * low four bits) to a page protection mask..
154 */
155 extern pgprot_t protection_map[16];
156
157 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
158 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
159 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
160 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
161 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
162 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
163
164 /*
165 * vm_fault is filled by the the pagefault handler and passed to the vma's
166 * ->fault function. The vma's ->fault is responsible for returning a bitmask
167 * of VM_FAULT_xxx flags that give details about how the fault was handled.
168 *
169 * pgoff should be used in favour of virtual_address, if possible. If pgoff
170 * is used, one may implement ->remap_pages to get nonlinear mapping support.
171 */
172 struct vm_fault {
173 unsigned int flags; /* FAULT_FLAG_xxx flags */
174 pgoff_t pgoff; /* Logical page offset based on vma */
175 void __user *virtual_address; /* Faulting virtual address */
176
177 struct page *page; /* ->fault handlers should return a
178 * page here, unless VM_FAULT_NOPAGE
179 * is set (which is also implied by
180 * VM_FAULT_ERROR).
181 */
182 };
183
184 /*
185 * These are the virtual MM functions - opening of an area, closing and
186 * unmapping it (needed to keep files on disk up-to-date etc), pointer
187 * to the functions called when a no-page or a wp-page exception occurs.
188 */
189 struct vm_operations_struct {
190 void (*open)(struct vm_area_struct * area);
191 void (*close)(struct vm_area_struct * area);
192 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
193
194 /* notification that a previously read-only page is about to become
195 * writable, if an error is returned it will cause a SIGBUS */
196 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
197
198 /* called by access_process_vm when get_user_pages() fails, typically
199 * for use by special VMAs that can switch between memory and hardware
200 */
201 int (*access)(struct vm_area_struct *vma, unsigned long addr,
202 void *buf, int len, int write);
203 #ifdef CONFIG_NUMA
204 /*
205 * set_policy() op must add a reference to any non-NULL @new mempolicy
206 * to hold the policy upon return. Caller should pass NULL @new to
207 * remove a policy and fall back to surrounding context--i.e. do not
208 * install a MPOL_DEFAULT policy, nor the task or system default
209 * mempolicy.
210 */
211 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
212
213 /*
214 * get_policy() op must add reference [mpol_get()] to any policy at
215 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
216 * in mm/mempolicy.c will do this automatically.
217 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
218 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
219 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
220 * must return NULL--i.e., do not "fallback" to task or system default
221 * policy.
222 */
223 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
224 unsigned long addr);
225 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
226 const nodemask_t *to, unsigned long flags);
227 #endif
228 /* called by sys_remap_file_pages() to populate non-linear mapping */
229 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
230 unsigned long size, pgoff_t pgoff);
231 };
232
233 struct mmu_gather;
234 struct inode;
235
236 #define page_private(page) ((page)->private)
237 #define set_page_private(page, v) ((page)->private = (v))
238
239 /*
240 * FIXME: take this include out, include page-flags.h in
241 * files which need it (119 of them)
242 */
243 #include <linux/page-flags.h>
244 #include <linux/huge_mm.h>
245
246 /*
247 * Methods to modify the page usage count.
248 *
249 * What counts for a page usage:
250 * - cache mapping (page->mapping)
251 * - private data (page->private)
252 * - page mapped in a task's page tables, each mapping
253 * is counted separately
254 *
255 * Also, many kernel routines increase the page count before a critical
256 * routine so they can be sure the page doesn't go away from under them.
257 */
258
259 /*
260 * Drop a ref, return true if the refcount fell to zero (the page has no users)
261 */
262 static inline int put_page_testzero(struct page *page)
263 {
264 VM_BUG_ON(atomic_read(&page->_count) == 0);
265 return atomic_dec_and_test(&page->_count);
266 }
267
268 /*
269 * Try to grab a ref unless the page has a refcount of zero, return false if
270 * that is the case.
271 */
272 static inline int get_page_unless_zero(struct page *page)
273 {
274 return atomic_inc_not_zero(&page->_count);
275 }
276
277 extern int page_is_ram(unsigned long pfn);
278
279 /* Support for virtually mapped pages */
280 struct page *vmalloc_to_page(const void *addr);
281 unsigned long vmalloc_to_pfn(const void *addr);
282
283 /*
284 * Determine if an address is within the vmalloc range
285 *
286 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
287 * is no special casing required.
288 */
289 static inline int is_vmalloc_addr(const void *x)
290 {
291 #ifdef CONFIG_MMU
292 unsigned long addr = (unsigned long)x;
293
294 return addr >= VMALLOC_START && addr < VMALLOC_END;
295 #else
296 return 0;
297 #endif
298 }
299 #ifdef CONFIG_MMU
300 extern int is_vmalloc_or_module_addr(const void *x);
301 #else
302 static inline int is_vmalloc_or_module_addr(const void *x)
303 {
304 return 0;
305 }
306 #endif
307
308 static inline void compound_lock(struct page *page)
309 {
310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
311 VM_BUG_ON(PageSlab(page));
312 bit_spin_lock(PG_compound_lock, &page->flags);
313 #endif
314 }
315
316 static inline void compound_unlock(struct page *page)
317 {
318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
319 VM_BUG_ON(PageSlab(page));
320 bit_spin_unlock(PG_compound_lock, &page->flags);
321 #endif
322 }
323
324 static inline unsigned long compound_lock_irqsave(struct page *page)
325 {
326 unsigned long uninitialized_var(flags);
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 local_irq_save(flags);
329 compound_lock(page);
330 #endif
331 return flags;
332 }
333
334 static inline void compound_unlock_irqrestore(struct page *page,
335 unsigned long flags)
336 {
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 compound_unlock(page);
339 local_irq_restore(flags);
340 #endif
341 }
342
343 static inline struct page *compound_head(struct page *page)
344 {
345 if (unlikely(PageTail(page)))
346 return page->first_page;
347 return page;
348 }
349
350 /*
351 * The atomic page->_mapcount, starts from -1: so that transitions
352 * both from it and to it can be tracked, using atomic_inc_and_test
353 * and atomic_add_negative(-1).
354 */
355 static inline void reset_page_mapcount(struct page *page)
356 {
357 atomic_set(&(page)->_mapcount, -1);
358 }
359
360 static inline int page_mapcount(struct page *page)
361 {
362 return atomic_read(&(page)->_mapcount) + 1;
363 }
364
365 static inline int page_count(struct page *page)
366 {
367 return atomic_read(&compound_head(page)->_count);
368 }
369
370 static inline void get_huge_page_tail(struct page *page)
371 {
372 /*
373 * __split_huge_page_refcount() cannot run
374 * from under us.
375 */
376 VM_BUG_ON(page_mapcount(page) < 0);
377 VM_BUG_ON(atomic_read(&page->_count) != 0);
378 atomic_inc(&page->_mapcount);
379 }
380
381 extern bool __get_page_tail(struct page *page);
382
383 static inline void get_page(struct page *page)
384 {
385 if (unlikely(PageTail(page)))
386 if (likely(__get_page_tail(page)))
387 return;
388 /*
389 * Getting a normal page or the head of a compound page
390 * requires to already have an elevated page->_count.
391 */
392 VM_BUG_ON(atomic_read(&page->_count) <= 0);
393 atomic_inc(&page->_count);
394 }
395
396 static inline struct page *virt_to_head_page(const void *x)
397 {
398 struct page *page = virt_to_page(x);
399 return compound_head(page);
400 }
401
402 /*
403 * Setup the page count before being freed into the page allocator for
404 * the first time (boot or memory hotplug)
405 */
406 static inline void init_page_count(struct page *page)
407 {
408 atomic_set(&page->_count, 1);
409 }
410
411 /*
412 * PageBuddy() indicate that the page is free and in the buddy system
413 * (see mm/page_alloc.c).
414 *
415 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
416 * -2 so that an underflow of the page_mapcount() won't be mistaken
417 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
418 * efficiently by most CPU architectures.
419 */
420 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
421
422 static inline int PageBuddy(struct page *page)
423 {
424 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
425 }
426
427 static inline void __SetPageBuddy(struct page *page)
428 {
429 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
430 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
431 }
432
433 static inline void __ClearPageBuddy(struct page *page)
434 {
435 VM_BUG_ON(!PageBuddy(page));
436 atomic_set(&page->_mapcount, -1);
437 }
438
439 void put_page(struct page *page);
440 void put_pages_list(struct list_head *pages);
441
442 void split_page(struct page *page, unsigned int order);
443 int split_free_page(struct page *page);
444 int capture_free_page(struct page *page, int alloc_order, int migratetype);
445
446 /*
447 * Compound pages have a destructor function. Provide a
448 * prototype for that function and accessor functions.
449 * These are _only_ valid on the head of a PG_compound page.
450 */
451 typedef void compound_page_dtor(struct page *);
452
453 static inline void set_compound_page_dtor(struct page *page,
454 compound_page_dtor *dtor)
455 {
456 page[1].lru.next = (void *)dtor;
457 }
458
459 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
460 {
461 return (compound_page_dtor *)page[1].lru.next;
462 }
463
464 static inline int compound_order(struct page *page)
465 {
466 if (!PageHead(page))
467 return 0;
468 return (unsigned long)page[1].lru.prev;
469 }
470
471 static inline int compound_trans_order(struct page *page)
472 {
473 int order;
474 unsigned long flags;
475
476 if (!PageHead(page))
477 return 0;
478
479 flags = compound_lock_irqsave(page);
480 order = compound_order(page);
481 compound_unlock_irqrestore(page, flags);
482 return order;
483 }
484
485 static inline void set_compound_order(struct page *page, unsigned long order)
486 {
487 page[1].lru.prev = (void *)order;
488 }
489
490 #ifdef CONFIG_MMU
491 /*
492 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
493 * servicing faults for write access. In the normal case, do always want
494 * pte_mkwrite. But get_user_pages can cause write faults for mappings
495 * that do not have writing enabled, when used by access_process_vm.
496 */
497 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
498 {
499 if (likely(vma->vm_flags & VM_WRITE))
500 pte = pte_mkwrite(pte);
501 return pte;
502 }
503 #endif
504
505 /*
506 * Multiple processes may "see" the same page. E.g. for untouched
507 * mappings of /dev/null, all processes see the same page full of
508 * zeroes, and text pages of executables and shared libraries have
509 * only one copy in memory, at most, normally.
510 *
511 * For the non-reserved pages, page_count(page) denotes a reference count.
512 * page_count() == 0 means the page is free. page->lru is then used for
513 * freelist management in the buddy allocator.
514 * page_count() > 0 means the page has been allocated.
515 *
516 * Pages are allocated by the slab allocator in order to provide memory
517 * to kmalloc and kmem_cache_alloc. In this case, the management of the
518 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
519 * unless a particular usage is carefully commented. (the responsibility of
520 * freeing the kmalloc memory is the caller's, of course).
521 *
522 * A page may be used by anyone else who does a __get_free_page().
523 * In this case, page_count still tracks the references, and should only
524 * be used through the normal accessor functions. The top bits of page->flags
525 * and page->virtual store page management information, but all other fields
526 * are unused and could be used privately, carefully. The management of this
527 * page is the responsibility of the one who allocated it, and those who have
528 * subsequently been given references to it.
529 *
530 * The other pages (we may call them "pagecache pages") are completely
531 * managed by the Linux memory manager: I/O, buffers, swapping etc.
532 * The following discussion applies only to them.
533 *
534 * A pagecache page contains an opaque `private' member, which belongs to the
535 * page's address_space. Usually, this is the address of a circular list of
536 * the page's disk buffers. PG_private must be set to tell the VM to call
537 * into the filesystem to release these pages.
538 *
539 * A page may belong to an inode's memory mapping. In this case, page->mapping
540 * is the pointer to the inode, and page->index is the file offset of the page,
541 * in units of PAGE_CACHE_SIZE.
542 *
543 * If pagecache pages are not associated with an inode, they are said to be
544 * anonymous pages. These may become associated with the swapcache, and in that
545 * case PG_swapcache is set, and page->private is an offset into the swapcache.
546 *
547 * In either case (swapcache or inode backed), the pagecache itself holds one
548 * reference to the page. Setting PG_private should also increment the
549 * refcount. The each user mapping also has a reference to the page.
550 *
551 * The pagecache pages are stored in a per-mapping radix tree, which is
552 * rooted at mapping->page_tree, and indexed by offset.
553 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
554 * lists, we instead now tag pages as dirty/writeback in the radix tree.
555 *
556 * All pagecache pages may be subject to I/O:
557 * - inode pages may need to be read from disk,
558 * - inode pages which have been modified and are MAP_SHARED may need
559 * to be written back to the inode on disk,
560 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
561 * modified may need to be swapped out to swap space and (later) to be read
562 * back into memory.
563 */
564
565 /*
566 * The zone field is never updated after free_area_init_core()
567 * sets it, so none of the operations on it need to be atomic.
568 */
569
570
571 /*
572 * page->flags layout:
573 *
574 * There are three possibilities for how page->flags get
575 * laid out. The first is for the normal case, without
576 * sparsemem. The second is for sparsemem when there is
577 * plenty of space for node and section. The last is when
578 * we have run out of space and have to fall back to an
579 * alternate (slower) way of determining the node.
580 *
581 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
582 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
583 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
584 */
585 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
586 #define SECTIONS_WIDTH SECTIONS_SHIFT
587 #else
588 #define SECTIONS_WIDTH 0
589 #endif
590
591 #define ZONES_WIDTH ZONES_SHIFT
592
593 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
594 #define NODES_WIDTH NODES_SHIFT
595 #else
596 #ifdef CONFIG_SPARSEMEM_VMEMMAP
597 #error "Vmemmap: No space for nodes field in page flags"
598 #endif
599 #define NODES_WIDTH 0
600 #endif
601
602 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
603 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
604 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
605 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
606
607 /*
608 * We are going to use the flags for the page to node mapping if its in
609 * there. This includes the case where there is no node, so it is implicit.
610 */
611 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
612 #define NODE_NOT_IN_PAGE_FLAGS
613 #endif
614
615 /*
616 * Define the bit shifts to access each section. For non-existent
617 * sections we define the shift as 0; that plus a 0 mask ensures
618 * the compiler will optimise away reference to them.
619 */
620 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
621 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
622 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
623
624 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
625 #ifdef NODE_NOT_IN_PAGE_FLAGS
626 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
627 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
628 SECTIONS_PGOFF : ZONES_PGOFF)
629 #else
630 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
631 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
632 NODES_PGOFF : ZONES_PGOFF)
633 #endif
634
635 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
636
637 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
638 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
639 #endif
640
641 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
642 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
643 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
644 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
645
646 static inline enum zone_type page_zonenum(const struct page *page)
647 {
648 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
649 }
650
651 /*
652 * The identification function is only used by the buddy allocator for
653 * determining if two pages could be buddies. We are not really
654 * identifying a zone since we could be using a the section number
655 * id if we have not node id available in page flags.
656 * We guarantee only that it will return the same value for two
657 * combinable pages in a zone.
658 */
659 static inline int page_zone_id(struct page *page)
660 {
661 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
662 }
663
664 static inline int zone_to_nid(struct zone *zone)
665 {
666 #ifdef CONFIG_NUMA
667 return zone->node;
668 #else
669 return 0;
670 #endif
671 }
672
673 #ifdef NODE_NOT_IN_PAGE_FLAGS
674 extern int page_to_nid(const struct page *page);
675 #else
676 static inline int page_to_nid(const struct page *page)
677 {
678 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
679 }
680 #endif
681
682 static inline struct zone *page_zone(const struct page *page)
683 {
684 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
685 }
686
687 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
688 static inline void set_page_section(struct page *page, unsigned long section)
689 {
690 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
691 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
692 }
693
694 static inline unsigned long page_to_section(const struct page *page)
695 {
696 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
697 }
698 #endif
699
700 static inline void set_page_zone(struct page *page, enum zone_type zone)
701 {
702 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
703 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
704 }
705
706 static inline void set_page_node(struct page *page, unsigned long node)
707 {
708 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
709 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
710 }
711
712 static inline void set_page_links(struct page *page, enum zone_type zone,
713 unsigned long node, unsigned long pfn)
714 {
715 set_page_zone(page, zone);
716 set_page_node(page, node);
717 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
718 set_page_section(page, pfn_to_section_nr(pfn));
719 #endif
720 }
721
722 /*
723 * Some inline functions in vmstat.h depend on page_zone()
724 */
725 #include <linux/vmstat.h>
726
727 static __always_inline void *lowmem_page_address(const struct page *page)
728 {
729 return __va(PFN_PHYS(page_to_pfn(page)));
730 }
731
732 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
733 #define HASHED_PAGE_VIRTUAL
734 #endif
735
736 #if defined(WANT_PAGE_VIRTUAL)
737 #define page_address(page) ((page)->virtual)
738 #define set_page_address(page, address) \
739 do { \
740 (page)->virtual = (address); \
741 } while(0)
742 #define page_address_init() do { } while(0)
743 #endif
744
745 #if defined(HASHED_PAGE_VIRTUAL)
746 void *page_address(const struct page *page);
747 void set_page_address(struct page *page, void *virtual);
748 void page_address_init(void);
749 #endif
750
751 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
752 #define page_address(page) lowmem_page_address(page)
753 #define set_page_address(page, address) do { } while(0)
754 #define page_address_init() do { } while(0)
755 #endif
756
757 /*
758 * On an anonymous page mapped into a user virtual memory area,
759 * page->mapping points to its anon_vma, not to a struct address_space;
760 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
761 *
762 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
763 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
764 * and then page->mapping points, not to an anon_vma, but to a private
765 * structure which KSM associates with that merged page. See ksm.h.
766 *
767 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
768 *
769 * Please note that, confusingly, "page_mapping" refers to the inode
770 * address_space which maps the page from disk; whereas "page_mapped"
771 * refers to user virtual address space into which the page is mapped.
772 */
773 #define PAGE_MAPPING_ANON 1
774 #define PAGE_MAPPING_KSM 2
775 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
776
777 extern struct address_space swapper_space;
778 static inline struct address_space *page_mapping(struct page *page)
779 {
780 struct address_space *mapping = page->mapping;
781
782 VM_BUG_ON(PageSlab(page));
783 if (unlikely(PageSwapCache(page)))
784 mapping = &swapper_space;
785 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
786 mapping = NULL;
787 return mapping;
788 }
789
790 /* Neutral page->mapping pointer to address_space or anon_vma or other */
791 static inline void *page_rmapping(struct page *page)
792 {
793 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
794 }
795
796 extern struct address_space *__page_file_mapping(struct page *);
797
798 static inline
799 struct address_space *page_file_mapping(struct page *page)
800 {
801 if (unlikely(PageSwapCache(page)))
802 return __page_file_mapping(page);
803
804 return page->mapping;
805 }
806
807 static inline int PageAnon(struct page *page)
808 {
809 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
810 }
811
812 /*
813 * Return the pagecache index of the passed page. Regular pagecache pages
814 * use ->index whereas swapcache pages use ->private
815 */
816 static inline pgoff_t page_index(struct page *page)
817 {
818 if (unlikely(PageSwapCache(page)))
819 return page_private(page);
820 return page->index;
821 }
822
823 extern pgoff_t __page_file_index(struct page *page);
824
825 /*
826 * Return the file index of the page. Regular pagecache pages use ->index
827 * whereas swapcache pages use swp_offset(->private)
828 */
829 static inline pgoff_t page_file_index(struct page *page)
830 {
831 if (unlikely(PageSwapCache(page)))
832 return __page_file_index(page);
833
834 return page->index;
835 }
836
837 /*
838 * Return true if this page is mapped into pagetables.
839 */
840 static inline int page_mapped(struct page *page)
841 {
842 return atomic_read(&(page)->_mapcount) >= 0;
843 }
844
845 /*
846 * Different kinds of faults, as returned by handle_mm_fault().
847 * Used to decide whether a process gets delivered SIGBUS or
848 * just gets major/minor fault counters bumped up.
849 */
850
851 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
852
853 #define VM_FAULT_OOM 0x0001
854 #define VM_FAULT_SIGBUS 0x0002
855 #define VM_FAULT_MAJOR 0x0004
856 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
857 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
858 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
859
860 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
861 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
862 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
863
864 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
865
866 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
867 VM_FAULT_HWPOISON_LARGE)
868
869 /* Encode hstate index for a hwpoisoned large page */
870 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
871 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
872
873 /*
874 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
875 */
876 extern void pagefault_out_of_memory(void);
877
878 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
879
880 /*
881 * Flags passed to show_mem() and show_free_areas() to suppress output in
882 * various contexts.
883 */
884 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
885
886 extern void show_free_areas(unsigned int flags);
887 extern bool skip_free_areas_node(unsigned int flags, int nid);
888
889 int shmem_zero_setup(struct vm_area_struct *);
890
891 extern int can_do_mlock(void);
892 extern int user_shm_lock(size_t, struct user_struct *);
893 extern void user_shm_unlock(size_t, struct user_struct *);
894
895 /*
896 * Parameter block passed down to zap_pte_range in exceptional cases.
897 */
898 struct zap_details {
899 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
900 struct address_space *check_mapping; /* Check page->mapping if set */
901 pgoff_t first_index; /* Lowest page->index to unmap */
902 pgoff_t last_index; /* Highest page->index to unmap */
903 };
904
905 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
906 pte_t pte);
907
908 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
909 unsigned long size);
910 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
911 unsigned long size, struct zap_details *);
912 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
913 unsigned long start, unsigned long end);
914
915 /**
916 * mm_walk - callbacks for walk_page_range
917 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
918 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
919 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
920 * this handler is required to be able to handle
921 * pmd_trans_huge() pmds. They may simply choose to
922 * split_huge_page() instead of handling it explicitly.
923 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
924 * @pte_hole: if set, called for each hole at all levels
925 * @hugetlb_entry: if set, called for each hugetlb entry
926 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
927 * is used.
928 *
929 * (see walk_page_range for more details)
930 */
931 struct mm_walk {
932 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
933 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
934 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
935 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
936 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
937 int (*hugetlb_entry)(pte_t *, unsigned long,
938 unsigned long, unsigned long, struct mm_walk *);
939 struct mm_struct *mm;
940 void *private;
941 };
942
943 int walk_page_range(unsigned long addr, unsigned long end,
944 struct mm_walk *walk);
945 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
946 unsigned long end, unsigned long floor, unsigned long ceiling);
947 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
948 struct vm_area_struct *vma);
949 void unmap_mapping_range(struct address_space *mapping,
950 loff_t const holebegin, loff_t const holelen, int even_cows);
951 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
952 unsigned long *pfn);
953 int follow_phys(struct vm_area_struct *vma, unsigned long address,
954 unsigned int flags, unsigned long *prot, resource_size_t *phys);
955 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
956 void *buf, int len, int write);
957
958 static inline void unmap_shared_mapping_range(struct address_space *mapping,
959 loff_t const holebegin, loff_t const holelen)
960 {
961 unmap_mapping_range(mapping, holebegin, holelen, 0);
962 }
963
964 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
965 extern void truncate_setsize(struct inode *inode, loff_t newsize);
966 extern int vmtruncate(struct inode *inode, loff_t offset);
967 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
968 int truncate_inode_page(struct address_space *mapping, struct page *page);
969 int generic_error_remove_page(struct address_space *mapping, struct page *page);
970 int invalidate_inode_page(struct page *page);
971
972 #ifdef CONFIG_MMU
973 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
974 unsigned long address, unsigned int flags);
975 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
976 unsigned long address, unsigned int fault_flags);
977 #else
978 static inline int handle_mm_fault(struct mm_struct *mm,
979 struct vm_area_struct *vma, unsigned long address,
980 unsigned int flags)
981 {
982 /* should never happen if there's no MMU */
983 BUG();
984 return VM_FAULT_SIGBUS;
985 }
986 static inline int fixup_user_fault(struct task_struct *tsk,
987 struct mm_struct *mm, unsigned long address,
988 unsigned int fault_flags)
989 {
990 /* should never happen if there's no MMU */
991 BUG();
992 return -EFAULT;
993 }
994 #endif
995
996 extern int make_pages_present(unsigned long addr, unsigned long end);
997 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
998 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
999 void *buf, int len, int write);
1000
1001 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1002 unsigned long start, int len, unsigned int foll_flags,
1003 struct page **pages, struct vm_area_struct **vmas,
1004 int *nonblocking);
1005 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1006 unsigned long start, int nr_pages, int write, int force,
1007 struct page **pages, struct vm_area_struct **vmas);
1008 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1009 struct page **pages);
1010 struct kvec;
1011 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1012 struct page **pages);
1013 int get_kernel_page(unsigned long start, int write, struct page **pages);
1014 struct page *get_dump_page(unsigned long addr);
1015
1016 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1017 extern void do_invalidatepage(struct page *page, unsigned long offset);
1018
1019 int __set_page_dirty_nobuffers(struct page *page);
1020 int __set_page_dirty_no_writeback(struct page *page);
1021 int redirty_page_for_writepage(struct writeback_control *wbc,
1022 struct page *page);
1023 void account_page_dirtied(struct page *page, struct address_space *mapping);
1024 void account_page_writeback(struct page *page);
1025 int set_page_dirty(struct page *page);
1026 int set_page_dirty_lock(struct page *page);
1027 int clear_page_dirty_for_io(struct page *page);
1028
1029 /* Is the vma a continuation of the stack vma above it? */
1030 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1031 {
1032 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1033 }
1034
1035 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1036 unsigned long addr)
1037 {
1038 return (vma->vm_flags & VM_GROWSDOWN) &&
1039 (vma->vm_start == addr) &&
1040 !vma_growsdown(vma->vm_prev, addr);
1041 }
1042
1043 /* Is the vma a continuation of the stack vma below it? */
1044 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1045 {
1046 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1047 }
1048
1049 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1050 unsigned long addr)
1051 {
1052 return (vma->vm_flags & VM_GROWSUP) &&
1053 (vma->vm_end == addr) &&
1054 !vma_growsup(vma->vm_next, addr);
1055 }
1056
1057 extern pid_t
1058 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1059
1060 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1061 unsigned long old_addr, struct vm_area_struct *new_vma,
1062 unsigned long new_addr, unsigned long len);
1063 extern unsigned long do_mremap(unsigned long addr,
1064 unsigned long old_len, unsigned long new_len,
1065 unsigned long flags, unsigned long new_addr);
1066 extern int mprotect_fixup(struct vm_area_struct *vma,
1067 struct vm_area_struct **pprev, unsigned long start,
1068 unsigned long end, unsigned long newflags);
1069
1070 /*
1071 * doesn't attempt to fault and will return short.
1072 */
1073 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1074 struct page **pages);
1075 /*
1076 * per-process(per-mm_struct) statistics.
1077 */
1078 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1079 {
1080 long val = atomic_long_read(&mm->rss_stat.count[member]);
1081
1082 #ifdef SPLIT_RSS_COUNTING
1083 /*
1084 * counter is updated in asynchronous manner and may go to minus.
1085 * But it's never be expected number for users.
1086 */
1087 if (val < 0)
1088 val = 0;
1089 #endif
1090 return (unsigned long)val;
1091 }
1092
1093 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1094 {
1095 atomic_long_add(value, &mm->rss_stat.count[member]);
1096 }
1097
1098 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1099 {
1100 atomic_long_inc(&mm->rss_stat.count[member]);
1101 }
1102
1103 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1104 {
1105 atomic_long_dec(&mm->rss_stat.count[member]);
1106 }
1107
1108 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1109 {
1110 return get_mm_counter(mm, MM_FILEPAGES) +
1111 get_mm_counter(mm, MM_ANONPAGES);
1112 }
1113
1114 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1115 {
1116 return max(mm->hiwater_rss, get_mm_rss(mm));
1117 }
1118
1119 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1120 {
1121 return max(mm->hiwater_vm, mm->total_vm);
1122 }
1123
1124 static inline void update_hiwater_rss(struct mm_struct *mm)
1125 {
1126 unsigned long _rss = get_mm_rss(mm);
1127
1128 if ((mm)->hiwater_rss < _rss)
1129 (mm)->hiwater_rss = _rss;
1130 }
1131
1132 static inline void update_hiwater_vm(struct mm_struct *mm)
1133 {
1134 if (mm->hiwater_vm < mm->total_vm)
1135 mm->hiwater_vm = mm->total_vm;
1136 }
1137
1138 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1139 struct mm_struct *mm)
1140 {
1141 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1142
1143 if (*maxrss < hiwater_rss)
1144 *maxrss = hiwater_rss;
1145 }
1146
1147 #if defined(SPLIT_RSS_COUNTING)
1148 void sync_mm_rss(struct mm_struct *mm);
1149 #else
1150 static inline void sync_mm_rss(struct mm_struct *mm)
1151 {
1152 }
1153 #endif
1154
1155 int vma_wants_writenotify(struct vm_area_struct *vma);
1156
1157 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1158 spinlock_t **ptl);
1159 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1160 spinlock_t **ptl)
1161 {
1162 pte_t *ptep;
1163 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1164 return ptep;
1165 }
1166
1167 #ifdef __PAGETABLE_PUD_FOLDED
1168 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1169 unsigned long address)
1170 {
1171 return 0;
1172 }
1173 #else
1174 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1175 #endif
1176
1177 #ifdef __PAGETABLE_PMD_FOLDED
1178 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1179 unsigned long address)
1180 {
1181 return 0;
1182 }
1183 #else
1184 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1185 #endif
1186
1187 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1188 pmd_t *pmd, unsigned long address);
1189 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1190
1191 /*
1192 * The following ifdef needed to get the 4level-fixup.h header to work.
1193 * Remove it when 4level-fixup.h has been removed.
1194 */
1195 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1196 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1197 {
1198 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1199 NULL: pud_offset(pgd, address);
1200 }
1201
1202 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1203 {
1204 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1205 NULL: pmd_offset(pud, address);
1206 }
1207 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1208
1209 #if USE_SPLIT_PTLOCKS
1210 /*
1211 * We tuck a spinlock to guard each pagetable page into its struct page,
1212 * at page->private, with BUILD_BUG_ON to make sure that this will not
1213 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1214 * When freeing, reset page->mapping so free_pages_check won't complain.
1215 */
1216 #define __pte_lockptr(page) &((page)->ptl)
1217 #define pte_lock_init(_page) do { \
1218 spin_lock_init(__pte_lockptr(_page)); \
1219 } while (0)
1220 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1221 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1222 #else /* !USE_SPLIT_PTLOCKS */
1223 /*
1224 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1225 */
1226 #define pte_lock_init(page) do {} while (0)
1227 #define pte_lock_deinit(page) do {} while (0)
1228 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1229 #endif /* USE_SPLIT_PTLOCKS */
1230
1231 static inline void pgtable_page_ctor(struct page *page)
1232 {
1233 pte_lock_init(page);
1234 inc_zone_page_state(page, NR_PAGETABLE);
1235 }
1236
1237 static inline void pgtable_page_dtor(struct page *page)
1238 {
1239 pte_lock_deinit(page);
1240 dec_zone_page_state(page, NR_PAGETABLE);
1241 }
1242
1243 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1244 ({ \
1245 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1246 pte_t *__pte = pte_offset_map(pmd, address); \
1247 *(ptlp) = __ptl; \
1248 spin_lock(__ptl); \
1249 __pte; \
1250 })
1251
1252 #define pte_unmap_unlock(pte, ptl) do { \
1253 spin_unlock(ptl); \
1254 pte_unmap(pte); \
1255 } while (0)
1256
1257 #define pte_alloc_map(mm, vma, pmd, address) \
1258 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1259 pmd, address))? \
1260 NULL: pte_offset_map(pmd, address))
1261
1262 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1263 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1264 pmd, address))? \
1265 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1266
1267 #define pte_alloc_kernel(pmd, address) \
1268 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1269 NULL: pte_offset_kernel(pmd, address))
1270
1271 extern void free_area_init(unsigned long * zones_size);
1272 extern void free_area_init_node(int nid, unsigned long * zones_size,
1273 unsigned long zone_start_pfn, unsigned long *zholes_size);
1274 extern void free_initmem(void);
1275
1276 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1277 /*
1278 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1279 * zones, allocate the backing mem_map and account for memory holes in a more
1280 * architecture independent manner. This is a substitute for creating the
1281 * zone_sizes[] and zholes_size[] arrays and passing them to
1282 * free_area_init_node()
1283 *
1284 * An architecture is expected to register range of page frames backed by
1285 * physical memory with memblock_add[_node]() before calling
1286 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1287 * usage, an architecture is expected to do something like
1288 *
1289 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1290 * max_highmem_pfn};
1291 * for_each_valid_physical_page_range()
1292 * memblock_add_node(base, size, nid)
1293 * free_area_init_nodes(max_zone_pfns);
1294 *
1295 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1296 * registered physical page range. Similarly
1297 * sparse_memory_present_with_active_regions() calls memory_present() for
1298 * each range when SPARSEMEM is enabled.
1299 *
1300 * See mm/page_alloc.c for more information on each function exposed by
1301 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1302 */
1303 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1304 unsigned long node_map_pfn_alignment(void);
1305 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1306 unsigned long end_pfn);
1307 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1308 unsigned long end_pfn);
1309 extern void get_pfn_range_for_nid(unsigned int nid,
1310 unsigned long *start_pfn, unsigned long *end_pfn);
1311 extern unsigned long find_min_pfn_with_active_regions(void);
1312 extern void free_bootmem_with_active_regions(int nid,
1313 unsigned long max_low_pfn);
1314 extern void sparse_memory_present_with_active_regions(int nid);
1315
1316 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1317
1318 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1319 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1320 static inline int __early_pfn_to_nid(unsigned long pfn)
1321 {
1322 return 0;
1323 }
1324 #else
1325 /* please see mm/page_alloc.c */
1326 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1327 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1328 /* there is a per-arch backend function. */
1329 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1330 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1331 #endif
1332
1333 extern void set_dma_reserve(unsigned long new_dma_reserve);
1334 extern void memmap_init_zone(unsigned long, int, unsigned long,
1335 unsigned long, enum memmap_context);
1336 extern void setup_per_zone_wmarks(void);
1337 extern int __meminit init_per_zone_wmark_min(void);
1338 extern void mem_init(void);
1339 extern void __init mmap_init(void);
1340 extern void show_mem(unsigned int flags);
1341 extern void si_meminfo(struct sysinfo * val);
1342 extern void si_meminfo_node(struct sysinfo *val, int nid);
1343 extern int after_bootmem;
1344
1345 extern __printf(3, 4)
1346 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1347
1348 extern void setup_per_cpu_pageset(void);
1349
1350 extern void zone_pcp_update(struct zone *zone);
1351 extern void zone_pcp_reset(struct zone *zone);
1352
1353 /* nommu.c */
1354 extern atomic_long_t mmap_pages_allocated;
1355 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1356
1357 /* interval_tree.c */
1358 void vma_interval_tree_insert(struct vm_area_struct *node,
1359 struct rb_root *root);
1360 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1361 struct vm_area_struct *prev,
1362 struct rb_root *root);
1363 void vma_interval_tree_remove(struct vm_area_struct *node,
1364 struct rb_root *root);
1365 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1366 unsigned long start, unsigned long last);
1367 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1368 unsigned long start, unsigned long last);
1369
1370 #define vma_interval_tree_foreach(vma, root, start, last) \
1371 for (vma = vma_interval_tree_iter_first(root, start, last); \
1372 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1373
1374 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1375 struct list_head *list)
1376 {
1377 list_add_tail(&vma->shared.nonlinear, list);
1378 }
1379
1380 /* mmap.c */
1381 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1382 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1383 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1384 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1385 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1386 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1387 struct mempolicy *);
1388 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1389 extern int split_vma(struct mm_struct *,
1390 struct vm_area_struct *, unsigned long addr, int new_below);
1391 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1392 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1393 struct rb_node **, struct rb_node *);
1394 extern void unlink_file_vma(struct vm_area_struct *);
1395 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1396 unsigned long addr, unsigned long len, pgoff_t pgoff);
1397 extern void exit_mmap(struct mm_struct *);
1398
1399 extern int mm_take_all_locks(struct mm_struct *mm);
1400 extern void mm_drop_all_locks(struct mm_struct *mm);
1401
1402 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1403 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1404
1405 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1406 extern int install_special_mapping(struct mm_struct *mm,
1407 unsigned long addr, unsigned long len,
1408 unsigned long flags, struct page **pages);
1409
1410 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1411
1412 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1413 unsigned long len, unsigned long flags,
1414 vm_flags_t vm_flags, unsigned long pgoff);
1415 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1416 unsigned long, unsigned long,
1417 unsigned long, unsigned long);
1418 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1419
1420 /* These take the mm semaphore themselves */
1421 extern unsigned long vm_brk(unsigned long, unsigned long);
1422 extern int vm_munmap(unsigned long, size_t);
1423 extern unsigned long vm_mmap(struct file *, unsigned long,
1424 unsigned long, unsigned long,
1425 unsigned long, unsigned long);
1426
1427 /* truncate.c */
1428 extern void truncate_inode_pages(struct address_space *, loff_t);
1429 extern void truncate_inode_pages_range(struct address_space *,
1430 loff_t lstart, loff_t lend);
1431
1432 /* generic vm_area_ops exported for stackable file systems */
1433 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1434 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1435
1436 /* mm/page-writeback.c */
1437 int write_one_page(struct page *page, int wait);
1438 void task_dirty_inc(struct task_struct *tsk);
1439
1440 /* readahead.c */
1441 #define VM_MAX_READAHEAD 128 /* kbytes */
1442 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1443
1444 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1445 pgoff_t offset, unsigned long nr_to_read);
1446
1447 void page_cache_sync_readahead(struct address_space *mapping,
1448 struct file_ra_state *ra,
1449 struct file *filp,
1450 pgoff_t offset,
1451 unsigned long size);
1452
1453 void page_cache_async_readahead(struct address_space *mapping,
1454 struct file_ra_state *ra,
1455 struct file *filp,
1456 struct page *pg,
1457 pgoff_t offset,
1458 unsigned long size);
1459
1460 unsigned long max_sane_readahead(unsigned long nr);
1461 unsigned long ra_submit(struct file_ra_state *ra,
1462 struct address_space *mapping,
1463 struct file *filp);
1464
1465 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1466 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1467
1468 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1469 extern int expand_downwards(struct vm_area_struct *vma,
1470 unsigned long address);
1471 #if VM_GROWSUP
1472 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1473 #else
1474 #define expand_upwards(vma, address) do { } while (0)
1475 #endif
1476
1477 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1478 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1479 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1480 struct vm_area_struct **pprev);
1481
1482 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1483 NULL if none. Assume start_addr < end_addr. */
1484 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1485 {
1486 struct vm_area_struct * vma = find_vma(mm,start_addr);
1487
1488 if (vma && end_addr <= vma->vm_start)
1489 vma = NULL;
1490 return vma;
1491 }
1492
1493 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1494 {
1495 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1496 }
1497
1498 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1499 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1500 unsigned long vm_start, unsigned long vm_end)
1501 {
1502 struct vm_area_struct *vma = find_vma(mm, vm_start);
1503
1504 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1505 vma = NULL;
1506
1507 return vma;
1508 }
1509
1510 #ifdef CONFIG_MMU
1511 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1512 #else
1513 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1514 {
1515 return __pgprot(0);
1516 }
1517 #endif
1518
1519 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1520 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1521 unsigned long pfn, unsigned long size, pgprot_t);
1522 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1523 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524 unsigned long pfn);
1525 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1526 unsigned long pfn);
1527
1528 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1529 unsigned int foll_flags);
1530 #define FOLL_WRITE 0x01 /* check pte is writable */
1531 #define FOLL_TOUCH 0x02 /* mark page accessed */
1532 #define FOLL_GET 0x04 /* do get_page on page */
1533 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1534 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1535 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1536 * and return without waiting upon it */
1537 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1538 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1539 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1540
1541 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1542 void *data);
1543 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1544 unsigned long size, pte_fn_t fn, void *data);
1545
1546 #ifdef CONFIG_PROC_FS
1547 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1548 #else
1549 static inline void vm_stat_account(struct mm_struct *mm,
1550 unsigned long flags, struct file *file, long pages)
1551 {
1552 mm->total_vm += pages;
1553 }
1554 #endif /* CONFIG_PROC_FS */
1555
1556 #ifdef CONFIG_DEBUG_PAGEALLOC
1557 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1558 #ifdef CONFIG_HIBERNATION
1559 extern bool kernel_page_present(struct page *page);
1560 #endif /* CONFIG_HIBERNATION */
1561 #else
1562 static inline void
1563 kernel_map_pages(struct page *page, int numpages, int enable) {}
1564 #ifdef CONFIG_HIBERNATION
1565 static inline bool kernel_page_present(struct page *page) { return true; }
1566 #endif /* CONFIG_HIBERNATION */
1567 #endif
1568
1569 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1570 #ifdef __HAVE_ARCH_GATE_AREA
1571 int in_gate_area_no_mm(unsigned long addr);
1572 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1573 #else
1574 int in_gate_area_no_mm(unsigned long addr);
1575 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1576 #endif /* __HAVE_ARCH_GATE_AREA */
1577
1578 int drop_caches_sysctl_handler(struct ctl_table *, int,
1579 void __user *, size_t *, loff_t *);
1580 unsigned long shrink_slab(struct shrink_control *shrink,
1581 unsigned long nr_pages_scanned,
1582 unsigned long lru_pages);
1583
1584 #ifndef CONFIG_MMU
1585 #define randomize_va_space 0
1586 #else
1587 extern int randomize_va_space;
1588 #endif
1589
1590 const char * arch_vma_name(struct vm_area_struct *vma);
1591 void print_vma_addr(char *prefix, unsigned long rip);
1592
1593 void sparse_mem_maps_populate_node(struct page **map_map,
1594 unsigned long pnum_begin,
1595 unsigned long pnum_end,
1596 unsigned long map_count,
1597 int nodeid);
1598
1599 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1600 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1601 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1602 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1603 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1604 void *vmemmap_alloc_block(unsigned long size, int node);
1605 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1606 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1607 int vmemmap_populate_basepages(struct page *start_page,
1608 unsigned long pages, int node);
1609 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1610 void vmemmap_populate_print_last(void);
1611
1612
1613 enum mf_flags {
1614 MF_COUNT_INCREASED = 1 << 0,
1615 MF_ACTION_REQUIRED = 1 << 1,
1616 MF_MUST_KILL = 1 << 2,
1617 };
1618 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1619 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1620 extern int unpoison_memory(unsigned long pfn);
1621 extern int sysctl_memory_failure_early_kill;
1622 extern int sysctl_memory_failure_recovery;
1623 extern void shake_page(struct page *p, int access);
1624 extern atomic_long_t mce_bad_pages;
1625 extern int soft_offline_page(struct page *page, int flags);
1626
1627 extern void dump_page(struct page *page);
1628
1629 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1630 extern void clear_huge_page(struct page *page,
1631 unsigned long addr,
1632 unsigned int pages_per_huge_page);
1633 extern void copy_user_huge_page(struct page *dst, struct page *src,
1634 unsigned long addr, struct vm_area_struct *vma,
1635 unsigned int pages_per_huge_page);
1636 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1637
1638 #ifdef CONFIG_DEBUG_PAGEALLOC
1639 extern unsigned int _debug_guardpage_minorder;
1640
1641 static inline unsigned int debug_guardpage_minorder(void)
1642 {
1643 return _debug_guardpage_minorder;
1644 }
1645
1646 static inline bool page_is_guard(struct page *page)
1647 {
1648 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1649 }
1650 #else
1651 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1652 static inline bool page_is_guard(struct page *page) { return false; }
1653 #endif /* CONFIG_DEBUG_PAGEALLOC */
1654
1655 #endif /* __KERNEL__ */
1656 #endif /* _LINUX_MM_H */