]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mm.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/joern/logfs
[mirror_ubuntu-artful-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16
17 struct mempolicy;
18 struct anon_vma;
19 struct file_ra_state;
20 struct user_struct;
21 struct writeback_control;
22 struct rlimit;
23
24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
27
28 extern unsigned long num_physpages;
29 extern unsigned long totalram_pages;
30 extern void * high_memory;
31 extern int page_cluster;
32
33 #ifdef CONFIG_SYSCTL
34 extern int sysctl_legacy_va_layout;
35 #else
36 #define sysctl_legacy_va_layout 0
37 #endif
38
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
42
43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
45 /* to align the pointer to the (next) page boundary */
46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
47
48 /*
49 * Linux kernel virtual memory manager primitives.
50 * The idea being to have a "virtual" mm in the same way
51 * we have a virtual fs - giving a cleaner interface to the
52 * mm details, and allowing different kinds of memory mappings
53 * (from shared memory to executable loading to arbitrary
54 * mmap() functions).
55 */
56
57 extern struct kmem_cache *vm_area_cachep;
58
59 #ifndef CONFIG_MMU
60 extern struct rb_root nommu_region_tree;
61 extern struct rw_semaphore nommu_region_sem;
62
63 extern unsigned int kobjsize(const void *objp);
64 #endif
65
66 /*
67 * vm_flags in vm_area_struct, see mm_types.h.
68 */
69 #define VM_READ 0x00000001 /* currently active flags */
70 #define VM_WRITE 0x00000002
71 #define VM_EXEC 0x00000004
72 #define VM_SHARED 0x00000008
73
74 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
75 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
76 #define VM_MAYWRITE 0x00000020
77 #define VM_MAYEXEC 0x00000040
78 #define VM_MAYSHARE 0x00000080
79
80 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
81 #define VM_GROWSUP 0x00000200
82 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
83 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
84
85 #define VM_EXECUTABLE 0x00001000
86 #define VM_LOCKED 0x00002000
87 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
88
89 /* Used by sys_madvise() */
90 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
91 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
92
93 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
94 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
95 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
96 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
97 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
98 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
99 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
100 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
101 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
102 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
103
104 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
105 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
106 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
107 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
108 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
109
110 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
111 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
112 #endif
113
114 #ifdef CONFIG_STACK_GROWSUP
115 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
116 #else
117 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
118 #endif
119
120 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
121 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
122 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
123 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
124 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
125
126 /*
127 * special vmas that are non-mergable, non-mlock()able
128 */
129 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
130
131 /*
132 * mapping from the currently active vm_flags protection bits (the
133 * low four bits) to a page protection mask..
134 */
135 extern pgprot_t protection_map[16];
136
137 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
138 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
139 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
140
141 /*
142 * This interface is used by x86 PAT code to identify a pfn mapping that is
143 * linear over entire vma. This is to optimize PAT code that deals with
144 * marking the physical region with a particular prot. This is not for generic
145 * mm use. Note also that this check will not work if the pfn mapping is
146 * linear for a vma starting at physical address 0. In which case PAT code
147 * falls back to slow path of reserving physical range page by page.
148 */
149 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
150 {
151 return (vma->vm_flags & VM_PFN_AT_MMAP);
152 }
153
154 static inline int is_pfn_mapping(struct vm_area_struct *vma)
155 {
156 return (vma->vm_flags & VM_PFNMAP);
157 }
158
159 /*
160 * vm_fault is filled by the the pagefault handler and passed to the vma's
161 * ->fault function. The vma's ->fault is responsible for returning a bitmask
162 * of VM_FAULT_xxx flags that give details about how the fault was handled.
163 *
164 * pgoff should be used in favour of virtual_address, if possible. If pgoff
165 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
166 * mapping support.
167 */
168 struct vm_fault {
169 unsigned int flags; /* FAULT_FLAG_xxx flags */
170 pgoff_t pgoff; /* Logical page offset based on vma */
171 void __user *virtual_address; /* Faulting virtual address */
172
173 struct page *page; /* ->fault handlers should return a
174 * page here, unless VM_FAULT_NOPAGE
175 * is set (which is also implied by
176 * VM_FAULT_ERROR).
177 */
178 };
179
180 /*
181 * These are the virtual MM functions - opening of an area, closing and
182 * unmapping it (needed to keep files on disk up-to-date etc), pointer
183 * to the functions called when a no-page or a wp-page exception occurs.
184 */
185 struct vm_operations_struct {
186 void (*open)(struct vm_area_struct * area);
187 void (*close)(struct vm_area_struct * area);
188 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
189
190 /* notification that a previously read-only page is about to become
191 * writable, if an error is returned it will cause a SIGBUS */
192 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
193
194 /* called by access_process_vm when get_user_pages() fails, typically
195 * for use by special VMAs that can switch between memory and hardware
196 */
197 int (*access)(struct vm_area_struct *vma, unsigned long addr,
198 void *buf, int len, int write);
199 #ifdef CONFIG_NUMA
200 /*
201 * set_policy() op must add a reference to any non-NULL @new mempolicy
202 * to hold the policy upon return. Caller should pass NULL @new to
203 * remove a policy and fall back to surrounding context--i.e. do not
204 * install a MPOL_DEFAULT policy, nor the task or system default
205 * mempolicy.
206 */
207 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
208
209 /*
210 * get_policy() op must add reference [mpol_get()] to any policy at
211 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
212 * in mm/mempolicy.c will do this automatically.
213 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
214 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
215 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
216 * must return NULL--i.e., do not "fallback" to task or system default
217 * policy.
218 */
219 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
220 unsigned long addr);
221 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
222 const nodemask_t *to, unsigned long flags);
223 #endif
224 };
225
226 struct mmu_gather;
227 struct inode;
228
229 #define page_private(page) ((page)->private)
230 #define set_page_private(page, v) ((page)->private = (v))
231
232 /*
233 * FIXME: take this include out, include page-flags.h in
234 * files which need it (119 of them)
235 */
236 #include <linux/page-flags.h>
237
238 /*
239 * Methods to modify the page usage count.
240 *
241 * What counts for a page usage:
242 * - cache mapping (page->mapping)
243 * - private data (page->private)
244 * - page mapped in a task's page tables, each mapping
245 * is counted separately
246 *
247 * Also, many kernel routines increase the page count before a critical
248 * routine so they can be sure the page doesn't go away from under them.
249 */
250
251 /*
252 * Drop a ref, return true if the refcount fell to zero (the page has no users)
253 */
254 static inline int put_page_testzero(struct page *page)
255 {
256 VM_BUG_ON(atomic_read(&page->_count) == 0);
257 return atomic_dec_and_test(&page->_count);
258 }
259
260 /*
261 * Try to grab a ref unless the page has a refcount of zero, return false if
262 * that is the case.
263 */
264 static inline int get_page_unless_zero(struct page *page)
265 {
266 return atomic_inc_not_zero(&page->_count);
267 }
268
269 extern int page_is_ram(unsigned long pfn);
270
271 /* Support for virtually mapped pages */
272 struct page *vmalloc_to_page(const void *addr);
273 unsigned long vmalloc_to_pfn(const void *addr);
274
275 /*
276 * Determine if an address is within the vmalloc range
277 *
278 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
279 * is no special casing required.
280 */
281 static inline int is_vmalloc_addr(const void *x)
282 {
283 #ifdef CONFIG_MMU
284 unsigned long addr = (unsigned long)x;
285
286 return addr >= VMALLOC_START && addr < VMALLOC_END;
287 #else
288 return 0;
289 #endif
290 }
291 #ifdef CONFIG_MMU
292 extern int is_vmalloc_or_module_addr(const void *x);
293 #else
294 static inline int is_vmalloc_or_module_addr(const void *x)
295 {
296 return 0;
297 }
298 #endif
299
300 static inline struct page *compound_head(struct page *page)
301 {
302 if (unlikely(PageTail(page)))
303 return page->first_page;
304 return page;
305 }
306
307 static inline int page_count(struct page *page)
308 {
309 return atomic_read(&compound_head(page)->_count);
310 }
311
312 static inline void get_page(struct page *page)
313 {
314 page = compound_head(page);
315 VM_BUG_ON(atomic_read(&page->_count) == 0);
316 atomic_inc(&page->_count);
317 }
318
319 static inline struct page *virt_to_head_page(const void *x)
320 {
321 struct page *page = virt_to_page(x);
322 return compound_head(page);
323 }
324
325 /*
326 * Setup the page count before being freed into the page allocator for
327 * the first time (boot or memory hotplug)
328 */
329 static inline void init_page_count(struct page *page)
330 {
331 atomic_set(&page->_count, 1);
332 }
333
334 void put_page(struct page *page);
335 void put_pages_list(struct list_head *pages);
336
337 void split_page(struct page *page, unsigned int order);
338
339 /*
340 * Compound pages have a destructor function. Provide a
341 * prototype for that function and accessor functions.
342 * These are _only_ valid on the head of a PG_compound page.
343 */
344 typedef void compound_page_dtor(struct page *);
345
346 static inline void set_compound_page_dtor(struct page *page,
347 compound_page_dtor *dtor)
348 {
349 page[1].lru.next = (void *)dtor;
350 }
351
352 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
353 {
354 return (compound_page_dtor *)page[1].lru.next;
355 }
356
357 static inline int compound_order(struct page *page)
358 {
359 if (!PageHead(page))
360 return 0;
361 return (unsigned long)page[1].lru.prev;
362 }
363
364 static inline void set_compound_order(struct page *page, unsigned long order)
365 {
366 page[1].lru.prev = (void *)order;
367 }
368
369 /*
370 * Multiple processes may "see" the same page. E.g. for untouched
371 * mappings of /dev/null, all processes see the same page full of
372 * zeroes, and text pages of executables and shared libraries have
373 * only one copy in memory, at most, normally.
374 *
375 * For the non-reserved pages, page_count(page) denotes a reference count.
376 * page_count() == 0 means the page is free. page->lru is then used for
377 * freelist management in the buddy allocator.
378 * page_count() > 0 means the page has been allocated.
379 *
380 * Pages are allocated by the slab allocator in order to provide memory
381 * to kmalloc and kmem_cache_alloc. In this case, the management of the
382 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
383 * unless a particular usage is carefully commented. (the responsibility of
384 * freeing the kmalloc memory is the caller's, of course).
385 *
386 * A page may be used by anyone else who does a __get_free_page().
387 * In this case, page_count still tracks the references, and should only
388 * be used through the normal accessor functions. The top bits of page->flags
389 * and page->virtual store page management information, but all other fields
390 * are unused and could be used privately, carefully. The management of this
391 * page is the responsibility of the one who allocated it, and those who have
392 * subsequently been given references to it.
393 *
394 * The other pages (we may call them "pagecache pages") are completely
395 * managed by the Linux memory manager: I/O, buffers, swapping etc.
396 * The following discussion applies only to them.
397 *
398 * A pagecache page contains an opaque `private' member, which belongs to the
399 * page's address_space. Usually, this is the address of a circular list of
400 * the page's disk buffers. PG_private must be set to tell the VM to call
401 * into the filesystem to release these pages.
402 *
403 * A page may belong to an inode's memory mapping. In this case, page->mapping
404 * is the pointer to the inode, and page->index is the file offset of the page,
405 * in units of PAGE_CACHE_SIZE.
406 *
407 * If pagecache pages are not associated with an inode, they are said to be
408 * anonymous pages. These may become associated with the swapcache, and in that
409 * case PG_swapcache is set, and page->private is an offset into the swapcache.
410 *
411 * In either case (swapcache or inode backed), the pagecache itself holds one
412 * reference to the page. Setting PG_private should also increment the
413 * refcount. The each user mapping also has a reference to the page.
414 *
415 * The pagecache pages are stored in a per-mapping radix tree, which is
416 * rooted at mapping->page_tree, and indexed by offset.
417 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
418 * lists, we instead now tag pages as dirty/writeback in the radix tree.
419 *
420 * All pagecache pages may be subject to I/O:
421 * - inode pages may need to be read from disk,
422 * - inode pages which have been modified and are MAP_SHARED may need
423 * to be written back to the inode on disk,
424 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
425 * modified may need to be swapped out to swap space and (later) to be read
426 * back into memory.
427 */
428
429 /*
430 * The zone field is never updated after free_area_init_core()
431 * sets it, so none of the operations on it need to be atomic.
432 */
433
434
435 /*
436 * page->flags layout:
437 *
438 * There are three possibilities for how page->flags get
439 * laid out. The first is for the normal case, without
440 * sparsemem. The second is for sparsemem when there is
441 * plenty of space for node and section. The last is when
442 * we have run out of space and have to fall back to an
443 * alternate (slower) way of determining the node.
444 *
445 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
446 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
447 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
448 */
449 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
450 #define SECTIONS_WIDTH SECTIONS_SHIFT
451 #else
452 #define SECTIONS_WIDTH 0
453 #endif
454
455 #define ZONES_WIDTH ZONES_SHIFT
456
457 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
458 #define NODES_WIDTH NODES_SHIFT
459 #else
460 #ifdef CONFIG_SPARSEMEM_VMEMMAP
461 #error "Vmemmap: No space for nodes field in page flags"
462 #endif
463 #define NODES_WIDTH 0
464 #endif
465
466 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
467 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
468 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
469 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
470
471 /*
472 * We are going to use the flags for the page to node mapping if its in
473 * there. This includes the case where there is no node, so it is implicit.
474 */
475 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
476 #define NODE_NOT_IN_PAGE_FLAGS
477 #endif
478
479 #ifndef PFN_SECTION_SHIFT
480 #define PFN_SECTION_SHIFT 0
481 #endif
482
483 /*
484 * Define the bit shifts to access each section. For non-existant
485 * sections we define the shift as 0; that plus a 0 mask ensures
486 * the compiler will optimise away reference to them.
487 */
488 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
489 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
490 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
491
492 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
493 #ifdef NODE_NOT_IN_PAGEFLAGS
494 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
495 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
496 SECTIONS_PGOFF : ZONES_PGOFF)
497 #else
498 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
499 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
500 NODES_PGOFF : ZONES_PGOFF)
501 #endif
502
503 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
504
505 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
506 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
507 #endif
508
509 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
510 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
511 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
512 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
513
514 static inline enum zone_type page_zonenum(struct page *page)
515 {
516 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
517 }
518
519 /*
520 * The identification function is only used by the buddy allocator for
521 * determining if two pages could be buddies. We are not really
522 * identifying a zone since we could be using a the section number
523 * id if we have not node id available in page flags.
524 * We guarantee only that it will return the same value for two
525 * combinable pages in a zone.
526 */
527 static inline int page_zone_id(struct page *page)
528 {
529 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
530 }
531
532 static inline int zone_to_nid(struct zone *zone)
533 {
534 #ifdef CONFIG_NUMA
535 return zone->node;
536 #else
537 return 0;
538 #endif
539 }
540
541 #ifdef NODE_NOT_IN_PAGE_FLAGS
542 extern int page_to_nid(struct page *page);
543 #else
544 static inline int page_to_nid(struct page *page)
545 {
546 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
547 }
548 #endif
549
550 static inline struct zone *page_zone(struct page *page)
551 {
552 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
553 }
554
555 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
556 static inline unsigned long page_to_section(struct page *page)
557 {
558 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
559 }
560 #endif
561
562 static inline void set_page_zone(struct page *page, enum zone_type zone)
563 {
564 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
565 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
566 }
567
568 static inline void set_page_node(struct page *page, unsigned long node)
569 {
570 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
571 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
572 }
573
574 static inline void set_page_section(struct page *page, unsigned long section)
575 {
576 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
577 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
578 }
579
580 static inline void set_page_links(struct page *page, enum zone_type zone,
581 unsigned long node, unsigned long pfn)
582 {
583 set_page_zone(page, zone);
584 set_page_node(page, node);
585 set_page_section(page, pfn_to_section_nr(pfn));
586 }
587
588 /*
589 * Some inline functions in vmstat.h depend on page_zone()
590 */
591 #include <linux/vmstat.h>
592
593 static __always_inline void *lowmem_page_address(struct page *page)
594 {
595 return __va(page_to_pfn(page) << PAGE_SHIFT);
596 }
597
598 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
599 #define HASHED_PAGE_VIRTUAL
600 #endif
601
602 #if defined(WANT_PAGE_VIRTUAL)
603 #define page_address(page) ((page)->virtual)
604 #define set_page_address(page, address) \
605 do { \
606 (page)->virtual = (address); \
607 } while(0)
608 #define page_address_init() do { } while(0)
609 #endif
610
611 #if defined(HASHED_PAGE_VIRTUAL)
612 void *page_address(struct page *page);
613 void set_page_address(struct page *page, void *virtual);
614 void page_address_init(void);
615 #endif
616
617 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
618 #define page_address(page) lowmem_page_address(page)
619 #define set_page_address(page, address) do { } while(0)
620 #define page_address_init() do { } while(0)
621 #endif
622
623 /*
624 * On an anonymous page mapped into a user virtual memory area,
625 * page->mapping points to its anon_vma, not to a struct address_space;
626 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
627 *
628 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
629 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
630 * and then page->mapping points, not to an anon_vma, but to a private
631 * structure which KSM associates with that merged page. See ksm.h.
632 *
633 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
634 *
635 * Please note that, confusingly, "page_mapping" refers to the inode
636 * address_space which maps the page from disk; whereas "page_mapped"
637 * refers to user virtual address space into which the page is mapped.
638 */
639 #define PAGE_MAPPING_ANON 1
640 #define PAGE_MAPPING_KSM 2
641 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
642
643 extern struct address_space swapper_space;
644 static inline struct address_space *page_mapping(struct page *page)
645 {
646 struct address_space *mapping = page->mapping;
647
648 VM_BUG_ON(PageSlab(page));
649 if (unlikely(PageSwapCache(page)))
650 mapping = &swapper_space;
651 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
652 mapping = NULL;
653 return mapping;
654 }
655
656 /* Neutral page->mapping pointer to address_space or anon_vma or other */
657 static inline void *page_rmapping(struct page *page)
658 {
659 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
660 }
661
662 static inline int PageAnon(struct page *page)
663 {
664 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
665 }
666
667 /*
668 * Return the pagecache index of the passed page. Regular pagecache pages
669 * use ->index whereas swapcache pages use ->private
670 */
671 static inline pgoff_t page_index(struct page *page)
672 {
673 if (unlikely(PageSwapCache(page)))
674 return page_private(page);
675 return page->index;
676 }
677
678 /*
679 * The atomic page->_mapcount, like _count, starts from -1:
680 * so that transitions both from it and to it can be tracked,
681 * using atomic_inc_and_test and atomic_add_negative(-1).
682 */
683 static inline void reset_page_mapcount(struct page *page)
684 {
685 atomic_set(&(page)->_mapcount, -1);
686 }
687
688 static inline int page_mapcount(struct page *page)
689 {
690 return atomic_read(&(page)->_mapcount) + 1;
691 }
692
693 /*
694 * Return true if this page is mapped into pagetables.
695 */
696 static inline int page_mapped(struct page *page)
697 {
698 return atomic_read(&(page)->_mapcount) >= 0;
699 }
700
701 /*
702 * Different kinds of faults, as returned by handle_mm_fault().
703 * Used to decide whether a process gets delivered SIGBUS or
704 * just gets major/minor fault counters bumped up.
705 */
706
707 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
708
709 #define VM_FAULT_OOM 0x0001
710 #define VM_FAULT_SIGBUS 0x0002
711 #define VM_FAULT_MAJOR 0x0004
712 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
713 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
714
715 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
716 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
717
718 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
719
720 /*
721 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
722 */
723 extern void pagefault_out_of_memory(void);
724
725 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
726
727 extern void show_free_areas(void);
728
729 int shmem_lock(struct file *file, int lock, struct user_struct *user);
730 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
731 int shmem_zero_setup(struct vm_area_struct *);
732
733 #ifndef CONFIG_MMU
734 extern unsigned long shmem_get_unmapped_area(struct file *file,
735 unsigned long addr,
736 unsigned long len,
737 unsigned long pgoff,
738 unsigned long flags);
739 #endif
740
741 extern int can_do_mlock(void);
742 extern int user_shm_lock(size_t, struct user_struct *);
743 extern void user_shm_unlock(size_t, struct user_struct *);
744
745 /*
746 * Parameter block passed down to zap_pte_range in exceptional cases.
747 */
748 struct zap_details {
749 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
750 struct address_space *check_mapping; /* Check page->mapping if set */
751 pgoff_t first_index; /* Lowest page->index to unmap */
752 pgoff_t last_index; /* Highest page->index to unmap */
753 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
754 unsigned long truncate_count; /* Compare vm_truncate_count */
755 };
756
757 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
758 pte_t pte);
759
760 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
761 unsigned long size);
762 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
763 unsigned long size, struct zap_details *);
764 unsigned long unmap_vmas(struct mmu_gather **tlb,
765 struct vm_area_struct *start_vma, unsigned long start_addr,
766 unsigned long end_addr, unsigned long *nr_accounted,
767 struct zap_details *);
768
769 /**
770 * mm_walk - callbacks for walk_page_range
771 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
772 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
773 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
774 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
775 * @pte_hole: if set, called for each hole at all levels
776 * @hugetlb_entry: if set, called for each hugetlb entry
777 *
778 * (see walk_page_range for more details)
779 */
780 struct mm_walk {
781 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
782 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
783 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
784 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
785 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
786 int (*hugetlb_entry)(pte_t *, unsigned long,
787 unsigned long, unsigned long, struct mm_walk *);
788 struct mm_struct *mm;
789 void *private;
790 };
791
792 int walk_page_range(unsigned long addr, unsigned long end,
793 struct mm_walk *walk);
794 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
795 unsigned long end, unsigned long floor, unsigned long ceiling);
796 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
797 struct vm_area_struct *vma);
798 void unmap_mapping_range(struct address_space *mapping,
799 loff_t const holebegin, loff_t const holelen, int even_cows);
800 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
801 unsigned long *pfn);
802 int follow_phys(struct vm_area_struct *vma, unsigned long address,
803 unsigned int flags, unsigned long *prot, resource_size_t *phys);
804 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
805 void *buf, int len, int write);
806
807 static inline void unmap_shared_mapping_range(struct address_space *mapping,
808 loff_t const holebegin, loff_t const holelen)
809 {
810 unmap_mapping_range(mapping, holebegin, holelen, 0);
811 }
812
813 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
814 extern int vmtruncate(struct inode *inode, loff_t offset);
815 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
816
817 int truncate_inode_page(struct address_space *mapping, struct page *page);
818 int generic_error_remove_page(struct address_space *mapping, struct page *page);
819
820 int invalidate_inode_page(struct page *page);
821
822 #ifdef CONFIG_MMU
823 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
824 unsigned long address, unsigned int flags);
825 #else
826 static inline int handle_mm_fault(struct mm_struct *mm,
827 struct vm_area_struct *vma, unsigned long address,
828 unsigned int flags)
829 {
830 /* should never happen if there's no MMU */
831 BUG();
832 return VM_FAULT_SIGBUS;
833 }
834 #endif
835
836 extern int make_pages_present(unsigned long addr, unsigned long end);
837 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
838
839 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
840 unsigned long start, int nr_pages, int write, int force,
841 struct page **pages, struct vm_area_struct **vmas);
842 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
843 struct page **pages);
844 struct page *get_dump_page(unsigned long addr);
845
846 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
847 extern void do_invalidatepage(struct page *page, unsigned long offset);
848
849 int __set_page_dirty_nobuffers(struct page *page);
850 int __set_page_dirty_no_writeback(struct page *page);
851 int redirty_page_for_writepage(struct writeback_control *wbc,
852 struct page *page);
853 void account_page_dirtied(struct page *page, struct address_space *mapping);
854 int set_page_dirty(struct page *page);
855 int set_page_dirty_lock(struct page *page);
856 int clear_page_dirty_for_io(struct page *page);
857
858 extern unsigned long move_page_tables(struct vm_area_struct *vma,
859 unsigned long old_addr, struct vm_area_struct *new_vma,
860 unsigned long new_addr, unsigned long len);
861 extern unsigned long do_mremap(unsigned long addr,
862 unsigned long old_len, unsigned long new_len,
863 unsigned long flags, unsigned long new_addr);
864 extern int mprotect_fixup(struct vm_area_struct *vma,
865 struct vm_area_struct **pprev, unsigned long start,
866 unsigned long end, unsigned long newflags);
867
868 /*
869 * doesn't attempt to fault and will return short.
870 */
871 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
872 struct page **pages);
873 /*
874 * per-process(per-mm_struct) statistics.
875 */
876 #if defined(SPLIT_RSS_COUNTING)
877 /*
878 * The mm counters are not protected by its page_table_lock,
879 * so must be incremented atomically.
880 */
881 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
882 {
883 atomic_long_set(&mm->rss_stat.count[member], value);
884 }
885
886 unsigned long get_mm_counter(struct mm_struct *mm, int member);
887
888 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
889 {
890 atomic_long_add(value, &mm->rss_stat.count[member]);
891 }
892
893 static inline void inc_mm_counter(struct mm_struct *mm, int member)
894 {
895 atomic_long_inc(&mm->rss_stat.count[member]);
896 }
897
898 static inline void dec_mm_counter(struct mm_struct *mm, int member)
899 {
900 atomic_long_dec(&mm->rss_stat.count[member]);
901 }
902
903 #else /* !USE_SPLIT_PTLOCKS */
904 /*
905 * The mm counters are protected by its page_table_lock,
906 * so can be incremented directly.
907 */
908 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
909 {
910 mm->rss_stat.count[member] = value;
911 }
912
913 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
914 {
915 return mm->rss_stat.count[member];
916 }
917
918 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
919 {
920 mm->rss_stat.count[member] += value;
921 }
922
923 static inline void inc_mm_counter(struct mm_struct *mm, int member)
924 {
925 mm->rss_stat.count[member]++;
926 }
927
928 static inline void dec_mm_counter(struct mm_struct *mm, int member)
929 {
930 mm->rss_stat.count[member]--;
931 }
932
933 #endif /* !USE_SPLIT_PTLOCKS */
934
935 static inline unsigned long get_mm_rss(struct mm_struct *mm)
936 {
937 return get_mm_counter(mm, MM_FILEPAGES) +
938 get_mm_counter(mm, MM_ANONPAGES);
939 }
940
941 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
942 {
943 return max(mm->hiwater_rss, get_mm_rss(mm));
944 }
945
946 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
947 {
948 return max(mm->hiwater_vm, mm->total_vm);
949 }
950
951 static inline void update_hiwater_rss(struct mm_struct *mm)
952 {
953 unsigned long _rss = get_mm_rss(mm);
954
955 if ((mm)->hiwater_rss < _rss)
956 (mm)->hiwater_rss = _rss;
957 }
958
959 static inline void update_hiwater_vm(struct mm_struct *mm)
960 {
961 if (mm->hiwater_vm < mm->total_vm)
962 mm->hiwater_vm = mm->total_vm;
963 }
964
965 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
966 struct mm_struct *mm)
967 {
968 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
969
970 if (*maxrss < hiwater_rss)
971 *maxrss = hiwater_rss;
972 }
973
974 #if defined(SPLIT_RSS_COUNTING)
975 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
976 #else
977 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
978 {
979 }
980 #endif
981
982 /*
983 * A callback you can register to apply pressure to ageable caches.
984 *
985 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
986 * look through the least-recently-used 'nr_to_scan' entries and
987 * attempt to free them up. It should return the number of objects
988 * which remain in the cache. If it returns -1, it means it cannot do
989 * any scanning at this time (eg. there is a risk of deadlock).
990 *
991 * The 'gfpmask' refers to the allocation we are currently trying to
992 * fulfil.
993 *
994 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
995 * querying the cache size, so a fastpath for that case is appropriate.
996 */
997 struct shrinker {
998 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
999 int seeks; /* seeks to recreate an obj */
1000
1001 /* These are for internal use */
1002 struct list_head list;
1003 long nr; /* objs pending delete */
1004 };
1005 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1006 extern void register_shrinker(struct shrinker *);
1007 extern void unregister_shrinker(struct shrinker *);
1008
1009 int vma_wants_writenotify(struct vm_area_struct *vma);
1010
1011 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
1012
1013 #ifdef __PAGETABLE_PUD_FOLDED
1014 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1015 unsigned long address)
1016 {
1017 return 0;
1018 }
1019 #else
1020 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1021 #endif
1022
1023 #ifdef __PAGETABLE_PMD_FOLDED
1024 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1025 unsigned long address)
1026 {
1027 return 0;
1028 }
1029 #else
1030 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1031 #endif
1032
1033 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1034 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1035
1036 /*
1037 * The following ifdef needed to get the 4level-fixup.h header to work.
1038 * Remove it when 4level-fixup.h has been removed.
1039 */
1040 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1041 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1042 {
1043 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1044 NULL: pud_offset(pgd, address);
1045 }
1046
1047 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1048 {
1049 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1050 NULL: pmd_offset(pud, address);
1051 }
1052 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1053
1054 #if USE_SPLIT_PTLOCKS
1055 /*
1056 * We tuck a spinlock to guard each pagetable page into its struct page,
1057 * at page->private, with BUILD_BUG_ON to make sure that this will not
1058 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1059 * When freeing, reset page->mapping so free_pages_check won't complain.
1060 */
1061 #define __pte_lockptr(page) &((page)->ptl)
1062 #define pte_lock_init(_page) do { \
1063 spin_lock_init(__pte_lockptr(_page)); \
1064 } while (0)
1065 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1066 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1067 #else /* !USE_SPLIT_PTLOCKS */
1068 /*
1069 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1070 */
1071 #define pte_lock_init(page) do {} while (0)
1072 #define pte_lock_deinit(page) do {} while (0)
1073 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1074 #endif /* USE_SPLIT_PTLOCKS */
1075
1076 static inline void pgtable_page_ctor(struct page *page)
1077 {
1078 pte_lock_init(page);
1079 inc_zone_page_state(page, NR_PAGETABLE);
1080 }
1081
1082 static inline void pgtable_page_dtor(struct page *page)
1083 {
1084 pte_lock_deinit(page);
1085 dec_zone_page_state(page, NR_PAGETABLE);
1086 }
1087
1088 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1089 ({ \
1090 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1091 pte_t *__pte = pte_offset_map(pmd, address); \
1092 *(ptlp) = __ptl; \
1093 spin_lock(__ptl); \
1094 __pte; \
1095 })
1096
1097 #define pte_unmap_unlock(pte, ptl) do { \
1098 spin_unlock(ptl); \
1099 pte_unmap(pte); \
1100 } while (0)
1101
1102 #define pte_alloc_map(mm, pmd, address) \
1103 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1104 NULL: pte_offset_map(pmd, address))
1105
1106 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1107 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1108 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1109
1110 #define pte_alloc_kernel(pmd, address) \
1111 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1112 NULL: pte_offset_kernel(pmd, address))
1113
1114 extern void free_area_init(unsigned long * zones_size);
1115 extern void free_area_init_node(int nid, unsigned long * zones_size,
1116 unsigned long zone_start_pfn, unsigned long *zholes_size);
1117 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1118 /*
1119 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1120 * zones, allocate the backing mem_map and account for memory holes in a more
1121 * architecture independent manner. This is a substitute for creating the
1122 * zone_sizes[] and zholes_size[] arrays and passing them to
1123 * free_area_init_node()
1124 *
1125 * An architecture is expected to register range of page frames backed by
1126 * physical memory with add_active_range() before calling
1127 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1128 * usage, an architecture is expected to do something like
1129 *
1130 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1131 * max_highmem_pfn};
1132 * for_each_valid_physical_page_range()
1133 * add_active_range(node_id, start_pfn, end_pfn)
1134 * free_area_init_nodes(max_zone_pfns);
1135 *
1136 * If the architecture guarantees that there are no holes in the ranges
1137 * registered with add_active_range(), free_bootmem_active_regions()
1138 * will call free_bootmem_node() for each registered physical page range.
1139 * Similarly sparse_memory_present_with_active_regions() calls
1140 * memory_present() for each range when SPARSEMEM is enabled.
1141 *
1142 * See mm/page_alloc.c for more information on each function exposed by
1143 * CONFIG_ARCH_POPULATES_NODE_MAP
1144 */
1145 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1146 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1147 unsigned long end_pfn);
1148 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1149 unsigned long end_pfn);
1150 extern void remove_all_active_ranges(void);
1151 void sort_node_map(void);
1152 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1153 unsigned long end_pfn);
1154 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1155 unsigned long end_pfn);
1156 extern void get_pfn_range_for_nid(unsigned int nid,
1157 unsigned long *start_pfn, unsigned long *end_pfn);
1158 extern unsigned long find_min_pfn_with_active_regions(void);
1159 extern void free_bootmem_with_active_regions(int nid,
1160 unsigned long max_low_pfn);
1161 int add_from_early_node_map(struct range *range, int az,
1162 int nr_range, int nid);
1163 void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1164 u64 goal, u64 limit);
1165 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1166 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1167 extern void sparse_memory_present_with_active_regions(int nid);
1168 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1169
1170 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1171 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1172 static inline int __early_pfn_to_nid(unsigned long pfn)
1173 {
1174 return 0;
1175 }
1176 #else
1177 /* please see mm/page_alloc.c */
1178 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1179 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1180 /* there is a per-arch backend function. */
1181 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1182 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1183 #endif
1184
1185 extern void set_dma_reserve(unsigned long new_dma_reserve);
1186 extern void memmap_init_zone(unsigned long, int, unsigned long,
1187 unsigned long, enum memmap_context);
1188 extern void setup_per_zone_wmarks(void);
1189 extern void calculate_zone_inactive_ratio(struct zone *zone);
1190 extern void mem_init(void);
1191 extern void __init mmap_init(void);
1192 extern void show_mem(void);
1193 extern void si_meminfo(struct sysinfo * val);
1194 extern void si_meminfo_node(struct sysinfo *val, int nid);
1195 extern int after_bootmem;
1196
1197 extern void setup_per_cpu_pageset(void);
1198
1199 extern void zone_pcp_update(struct zone *zone);
1200
1201 /* nommu.c */
1202 extern atomic_long_t mmap_pages_allocated;
1203 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1204
1205 /* prio_tree.c */
1206 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1207 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1208 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1209 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1210 struct prio_tree_iter *iter);
1211
1212 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1213 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1214 (vma = vma_prio_tree_next(vma, iter)); )
1215
1216 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1217 struct list_head *list)
1218 {
1219 vma->shared.vm_set.parent = NULL;
1220 list_add_tail(&vma->shared.vm_set.list, list);
1221 }
1222
1223 /* mmap.c */
1224 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1225 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1226 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1227 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1228 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1229 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1230 struct mempolicy *);
1231 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1232 extern int split_vma(struct mm_struct *,
1233 struct vm_area_struct *, unsigned long addr, int new_below);
1234 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1235 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1236 struct rb_node **, struct rb_node *);
1237 extern void unlink_file_vma(struct vm_area_struct *);
1238 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1239 unsigned long addr, unsigned long len, pgoff_t pgoff);
1240 extern void exit_mmap(struct mm_struct *);
1241
1242 extern int mm_take_all_locks(struct mm_struct *mm);
1243 extern void mm_drop_all_locks(struct mm_struct *mm);
1244
1245 #ifdef CONFIG_PROC_FS
1246 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1247 extern void added_exe_file_vma(struct mm_struct *mm);
1248 extern void removed_exe_file_vma(struct mm_struct *mm);
1249 #else
1250 static inline void added_exe_file_vma(struct mm_struct *mm)
1251 {}
1252
1253 static inline void removed_exe_file_vma(struct mm_struct *mm)
1254 {}
1255 #endif /* CONFIG_PROC_FS */
1256
1257 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1258 extern int install_special_mapping(struct mm_struct *mm,
1259 unsigned long addr, unsigned long len,
1260 unsigned long flags, struct page **pages);
1261
1262 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1263
1264 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1265 unsigned long len, unsigned long prot,
1266 unsigned long flag, unsigned long pgoff);
1267 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1268 unsigned long len, unsigned long flags,
1269 unsigned int vm_flags, unsigned long pgoff);
1270
1271 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1272 unsigned long len, unsigned long prot,
1273 unsigned long flag, unsigned long offset)
1274 {
1275 unsigned long ret = -EINVAL;
1276 if ((offset + PAGE_ALIGN(len)) < offset)
1277 goto out;
1278 if (!(offset & ~PAGE_MASK))
1279 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1280 out:
1281 return ret;
1282 }
1283
1284 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1285
1286 extern unsigned long do_brk(unsigned long, unsigned long);
1287
1288 /* filemap.c */
1289 extern unsigned long page_unuse(struct page *);
1290 extern void truncate_inode_pages(struct address_space *, loff_t);
1291 extern void truncate_inode_pages_range(struct address_space *,
1292 loff_t lstart, loff_t lend);
1293
1294 /* generic vm_area_ops exported for stackable file systems */
1295 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1296
1297 /* mm/page-writeback.c */
1298 int write_one_page(struct page *page, int wait);
1299 void task_dirty_inc(struct task_struct *tsk);
1300
1301 /* readahead.c */
1302 #define VM_MAX_READAHEAD 128 /* kbytes */
1303 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1304
1305 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1306 pgoff_t offset, unsigned long nr_to_read);
1307
1308 void page_cache_sync_readahead(struct address_space *mapping,
1309 struct file_ra_state *ra,
1310 struct file *filp,
1311 pgoff_t offset,
1312 unsigned long size);
1313
1314 void page_cache_async_readahead(struct address_space *mapping,
1315 struct file_ra_state *ra,
1316 struct file *filp,
1317 struct page *pg,
1318 pgoff_t offset,
1319 unsigned long size);
1320
1321 unsigned long max_sane_readahead(unsigned long nr);
1322 unsigned long ra_submit(struct file_ra_state *ra,
1323 struct address_space *mapping,
1324 struct file *filp);
1325
1326 /* Do stack extension */
1327 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1328 #ifdef CONFIG_IA64
1329 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1330 #endif
1331 extern int expand_stack_downwards(struct vm_area_struct *vma,
1332 unsigned long address);
1333
1334 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1335 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1336 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1337 struct vm_area_struct **pprev);
1338
1339 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1340 NULL if none. Assume start_addr < end_addr. */
1341 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1342 {
1343 struct vm_area_struct * vma = find_vma(mm,start_addr);
1344
1345 if (vma && end_addr <= vma->vm_start)
1346 vma = NULL;
1347 return vma;
1348 }
1349
1350 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1351 {
1352 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1353 }
1354
1355 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1356 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1357 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1358 unsigned long pfn, unsigned long size, pgprot_t);
1359 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1360 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1361 unsigned long pfn);
1362 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1363 unsigned long pfn);
1364
1365 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1366 unsigned int foll_flags);
1367 #define FOLL_WRITE 0x01 /* check pte is writable */
1368 #define FOLL_TOUCH 0x02 /* mark page accessed */
1369 #define FOLL_GET 0x04 /* do get_page on page */
1370 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1371 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1372
1373 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1374 void *data);
1375 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1376 unsigned long size, pte_fn_t fn, void *data);
1377
1378 #ifdef CONFIG_PROC_FS
1379 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1380 #else
1381 static inline void vm_stat_account(struct mm_struct *mm,
1382 unsigned long flags, struct file *file, long pages)
1383 {
1384 }
1385 #endif /* CONFIG_PROC_FS */
1386
1387 #ifdef CONFIG_DEBUG_PAGEALLOC
1388 extern int debug_pagealloc_enabled;
1389
1390 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1391
1392 static inline void enable_debug_pagealloc(void)
1393 {
1394 debug_pagealloc_enabled = 1;
1395 }
1396 #ifdef CONFIG_HIBERNATION
1397 extern bool kernel_page_present(struct page *page);
1398 #endif /* CONFIG_HIBERNATION */
1399 #else
1400 static inline void
1401 kernel_map_pages(struct page *page, int numpages, int enable) {}
1402 static inline void enable_debug_pagealloc(void)
1403 {
1404 }
1405 #ifdef CONFIG_HIBERNATION
1406 static inline bool kernel_page_present(struct page *page) { return true; }
1407 #endif /* CONFIG_HIBERNATION */
1408 #endif
1409
1410 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1411 #ifdef __HAVE_ARCH_GATE_AREA
1412 int in_gate_area_no_task(unsigned long addr);
1413 int in_gate_area(struct task_struct *task, unsigned long addr);
1414 #else
1415 int in_gate_area_no_task(unsigned long addr);
1416 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1417 #endif /* __HAVE_ARCH_GATE_AREA */
1418
1419 int drop_caches_sysctl_handler(struct ctl_table *, int,
1420 void __user *, size_t *, loff_t *);
1421 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1422 unsigned long lru_pages);
1423
1424 #ifndef CONFIG_MMU
1425 #define randomize_va_space 0
1426 #else
1427 extern int randomize_va_space;
1428 #endif
1429
1430 const char * arch_vma_name(struct vm_area_struct *vma);
1431 void print_vma_addr(char *prefix, unsigned long rip);
1432
1433 void sparse_mem_maps_populate_node(struct page **map_map,
1434 unsigned long pnum_begin,
1435 unsigned long pnum_end,
1436 unsigned long map_count,
1437 int nodeid);
1438
1439 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1440 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1441 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1442 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1443 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1444 void *vmemmap_alloc_block(unsigned long size, int node);
1445 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1446 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1447 int vmemmap_populate_basepages(struct page *start_page,
1448 unsigned long pages, int node);
1449 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1450 void vmemmap_populate_print_last(void);
1451
1452 extern int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
1453 size_t size);
1454 extern void refund_locked_memory(struct mm_struct *mm, size_t size);
1455
1456 enum mf_flags {
1457 MF_COUNT_INCREASED = 1 << 0,
1458 };
1459 extern void memory_failure(unsigned long pfn, int trapno);
1460 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1461 extern int unpoison_memory(unsigned long pfn);
1462 extern int sysctl_memory_failure_early_kill;
1463 extern int sysctl_memory_failure_recovery;
1464 extern void shake_page(struct page *p, int access);
1465 extern atomic_long_t mce_bad_pages;
1466 extern int soft_offline_page(struct page *page, int flags);
1467
1468 extern void dump_page(struct page *page);
1469
1470 #endif /* __KERNEL__ */
1471 #endif /* _LINUX_MM_H */