]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/mm.h
Merge tag 'gfs2-v5.9-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct file_ra_state;
39 struct user_struct;
40 struct writeback_control;
41 struct bdi_writeback;
42 struct pt_regs;
43
44 void init_mm_internals(void);
45
46 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48
49 static inline void set_max_mapnr(unsigned long limit)
50 {
51 max_mapnr = limit;
52 }
53 #else
54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56
57 extern atomic_long_t _totalram_pages;
58 static inline unsigned long totalram_pages(void)
59 {
60 return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62
63 static inline void totalram_pages_inc(void)
64 {
65 atomic_long_inc(&_totalram_pages);
66 }
67
68 static inline void totalram_pages_dec(void)
69 {
70 atomic_long_dec(&_totalram_pages);
71 }
72
73 static inline void totalram_pages_add(long count)
74 {
75 atomic_long_add(count, &_totalram_pages);
76 }
77
78 extern void * high_memory;
79 extern int page_cluster;
80
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97
98 #include <asm/page.h>
99 #include <asm/processor.h>
100
101 /*
102 * Architectures that support memory tagging (assigning tags to memory regions,
103 * embedding these tags into addresses that point to these memory regions, and
104 * checking that the memory and the pointer tags match on memory accesses)
105 * redefine this macro to strip tags from pointers.
106 * It's defined as noop for arcitectures that don't support memory tagging.
107 */
108 #ifndef untagged_addr
109 #define untagged_addr(addr) (addr)
110 #endif
111
112 #ifndef __pa_symbol
113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
114 #endif
115
116 #ifndef page_to_virt
117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
118 #endif
119
120 #ifndef lm_alias
121 #define lm_alias(x) __va(__pa_symbol(x))
122 #endif
123
124 /*
125 * To prevent common memory management code establishing
126 * a zero page mapping on a read fault.
127 * This macro should be defined within <asm/pgtable.h>.
128 * s390 does this to prevent multiplexing of hardware bits
129 * related to the physical page in case of virtualization.
130 */
131 #ifndef mm_forbids_zeropage
132 #define mm_forbids_zeropage(X) (0)
133 #endif
134
135 /*
136 * On some architectures it is expensive to call memset() for small sizes.
137 * If an architecture decides to implement their own version of
138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139 * define their own version of this macro in <asm/pgtable.h>
140 */
141 #if BITS_PER_LONG == 64
142 /* This function must be updated when the size of struct page grows above 80
143 * or reduces below 56. The idea that compiler optimizes out switch()
144 * statement, and only leaves move/store instructions. Also the compiler can
145 * combine write statments if they are both assignments and can be reordered,
146 * this can result in several of the writes here being dropped.
147 */
148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149 static inline void __mm_zero_struct_page(struct page *page)
150 {
151 unsigned long *_pp = (void *)page;
152
153 /* Check that struct page is either 56, 64, 72, or 80 bytes */
154 BUILD_BUG_ON(sizeof(struct page) & 7);
155 BUILD_BUG_ON(sizeof(struct page) < 56);
156 BUILD_BUG_ON(sizeof(struct page) > 80);
157
158 switch (sizeof(struct page)) {
159 case 80:
160 _pp[9] = 0;
161 fallthrough;
162 case 72:
163 _pp[8] = 0;
164 fallthrough;
165 case 64:
166 _pp[7] = 0;
167 fallthrough;
168 case 56:
169 _pp[6] = 0;
170 _pp[5] = 0;
171 _pp[4] = 0;
172 _pp[3] = 0;
173 _pp[2] = 0;
174 _pp[1] = 0;
175 _pp[0] = 0;
176 }
177 }
178 #else
179 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
180 #endif
181
182 /*
183 * Default maximum number of active map areas, this limits the number of vmas
184 * per mm struct. Users can overwrite this number by sysctl but there is a
185 * problem.
186 *
187 * When a program's coredump is generated as ELF format, a section is created
188 * per a vma. In ELF, the number of sections is represented in unsigned short.
189 * This means the number of sections should be smaller than 65535 at coredump.
190 * Because the kernel adds some informative sections to a image of program at
191 * generating coredump, we need some margin. The number of extra sections is
192 * 1-3 now and depends on arch. We use "5" as safe margin, here.
193 *
194 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
195 * not a hard limit any more. Although some userspace tools can be surprised by
196 * that.
197 */
198 #define MAPCOUNT_ELF_CORE_MARGIN (5)
199 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
200
201 extern int sysctl_max_map_count;
202
203 extern unsigned long sysctl_user_reserve_kbytes;
204 extern unsigned long sysctl_admin_reserve_kbytes;
205
206 extern int sysctl_overcommit_memory;
207 extern int sysctl_overcommit_ratio;
208 extern unsigned long sysctl_overcommit_kbytes;
209
210 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
214 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
216
217 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
218
219 /* to align the pointer to the (next) page boundary */
220 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
221
222 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
223 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
224
225 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
226
227 /*
228 * Linux kernel virtual memory manager primitives.
229 * The idea being to have a "virtual" mm in the same way
230 * we have a virtual fs - giving a cleaner interface to the
231 * mm details, and allowing different kinds of memory mappings
232 * (from shared memory to executable loading to arbitrary
233 * mmap() functions).
234 */
235
236 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
237 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
238 void vm_area_free(struct vm_area_struct *);
239
240 #ifndef CONFIG_MMU
241 extern struct rb_root nommu_region_tree;
242 extern struct rw_semaphore nommu_region_sem;
243
244 extern unsigned int kobjsize(const void *objp);
245 #endif
246
247 /*
248 * vm_flags in vm_area_struct, see mm_types.h.
249 * When changing, update also include/trace/events/mmflags.h
250 */
251 #define VM_NONE 0x00000000
252
253 #define VM_READ 0x00000001 /* currently active flags */
254 #define VM_WRITE 0x00000002
255 #define VM_EXEC 0x00000004
256 #define VM_SHARED 0x00000008
257
258 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
259 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
260 #define VM_MAYWRITE 0x00000020
261 #define VM_MAYEXEC 0x00000040
262 #define VM_MAYSHARE 0x00000080
263
264 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
265 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
266 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
267 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
268 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
269
270 #define VM_LOCKED 0x00002000
271 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
272
273 /* Used by sys_madvise() */
274 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
275 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
276
277 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
278 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
279 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
280 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
281 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
282 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
283 #define VM_SYNC 0x00800000 /* Synchronous page faults */
284 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
285 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
286 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
287
288 #ifdef CONFIG_MEM_SOFT_DIRTY
289 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
290 #else
291 # define VM_SOFTDIRTY 0
292 #endif
293
294 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
295 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
296 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
297 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
298
299 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
300 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
302 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
306 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
307 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
308 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
309 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
310 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
311
312 #ifdef CONFIG_ARCH_HAS_PKEYS
313 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
314 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
315 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
316 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
317 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
318 #ifdef CONFIG_PPC
319 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
320 #else
321 # define VM_PKEY_BIT4 0
322 #endif
323 #endif /* CONFIG_ARCH_HAS_PKEYS */
324
325 #if defined(CONFIG_X86)
326 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
327 #elif defined(CONFIG_PARISC)
328 # define VM_GROWSUP VM_ARCH_1
329 #elif defined(CONFIG_IA64)
330 # define VM_GROWSUP VM_ARCH_1
331 #elif defined(CONFIG_SPARC64)
332 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
333 # define VM_ARCH_CLEAR VM_SPARC_ADI
334 #elif defined(CONFIG_ARM64)
335 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
336 # define VM_ARCH_CLEAR VM_ARM64_BTI
337 #elif !defined(CONFIG_MMU)
338 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
339 #endif
340
341 #ifndef VM_GROWSUP
342 # define VM_GROWSUP VM_NONE
343 #endif
344
345 /* Bits set in the VMA until the stack is in its final location */
346 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
347
348 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
349
350 /* Common data flag combinations */
351 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
352 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
353 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
354 VM_MAYWRITE | VM_MAYEXEC)
355 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
356 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
357
358 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
359 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
360 #endif
361
362 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
363 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
364 #endif
365
366 #ifdef CONFIG_STACK_GROWSUP
367 #define VM_STACK VM_GROWSUP
368 #else
369 #define VM_STACK VM_GROWSDOWN
370 #endif
371
372 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
373
374 /* VMA basic access permission flags */
375 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
376
377
378 /*
379 * Special vmas that are non-mergable, non-mlock()able.
380 */
381 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
382
383 /* This mask prevents VMA from being scanned with khugepaged */
384 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
385
386 /* This mask defines which mm->def_flags a process can inherit its parent */
387 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
388
389 /* This mask is used to clear all the VMA flags used by mlock */
390 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
391
392 /* Arch-specific flags to clear when updating VM flags on protection change */
393 #ifndef VM_ARCH_CLEAR
394 # define VM_ARCH_CLEAR VM_NONE
395 #endif
396 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
397
398 /*
399 * mapping from the currently active vm_flags protection bits (the
400 * low four bits) to a page protection mask..
401 */
402 extern pgprot_t protection_map[16];
403
404 /**
405 * Fault flag definitions.
406 *
407 * @FAULT_FLAG_WRITE: Fault was a write fault.
408 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
409 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
410 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
411 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
412 * @FAULT_FLAG_TRIED: The fault has been tried once.
413 * @FAULT_FLAG_USER: The fault originated in userspace.
414 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
415 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
416 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
417 *
418 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
419 * whether we would allow page faults to retry by specifying these two
420 * fault flags correctly. Currently there can be three legal combinations:
421 *
422 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
423 * this is the first try
424 *
425 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
426 * we've already tried at least once
427 *
428 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
429 *
430 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
431 * be used. Note that page faults can be allowed to retry for multiple times,
432 * in which case we'll have an initial fault with flags (a) then later on
433 * continuous faults with flags (b). We should always try to detect pending
434 * signals before a retry to make sure the continuous page faults can still be
435 * interrupted if necessary.
436 */
437 #define FAULT_FLAG_WRITE 0x01
438 #define FAULT_FLAG_MKWRITE 0x02
439 #define FAULT_FLAG_ALLOW_RETRY 0x04
440 #define FAULT_FLAG_RETRY_NOWAIT 0x08
441 #define FAULT_FLAG_KILLABLE 0x10
442 #define FAULT_FLAG_TRIED 0x20
443 #define FAULT_FLAG_USER 0x40
444 #define FAULT_FLAG_REMOTE 0x80
445 #define FAULT_FLAG_INSTRUCTION 0x100
446 #define FAULT_FLAG_INTERRUPTIBLE 0x200
447
448 /*
449 * The default fault flags that should be used by most of the
450 * arch-specific page fault handlers.
451 */
452 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
453 FAULT_FLAG_KILLABLE | \
454 FAULT_FLAG_INTERRUPTIBLE)
455
456 /**
457 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
458 *
459 * This is mostly used for places where we want to try to avoid taking
460 * the mmap_lock for too long a time when waiting for another condition
461 * to change, in which case we can try to be polite to release the
462 * mmap_lock in the first round to avoid potential starvation of other
463 * processes that would also want the mmap_lock.
464 *
465 * Return: true if the page fault allows retry and this is the first
466 * attempt of the fault handling; false otherwise.
467 */
468 static inline bool fault_flag_allow_retry_first(unsigned int flags)
469 {
470 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
471 (!(flags & FAULT_FLAG_TRIED));
472 }
473
474 #define FAULT_FLAG_TRACE \
475 { FAULT_FLAG_WRITE, "WRITE" }, \
476 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
477 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
478 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
479 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
480 { FAULT_FLAG_TRIED, "TRIED" }, \
481 { FAULT_FLAG_USER, "USER" }, \
482 { FAULT_FLAG_REMOTE, "REMOTE" }, \
483 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
484 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
485
486 /*
487 * vm_fault is filled by the pagefault handler and passed to the vma's
488 * ->fault function. The vma's ->fault is responsible for returning a bitmask
489 * of VM_FAULT_xxx flags that give details about how the fault was handled.
490 *
491 * MM layer fills up gfp_mask for page allocations but fault handler might
492 * alter it if its implementation requires a different allocation context.
493 *
494 * pgoff should be used in favour of virtual_address, if possible.
495 */
496 struct vm_fault {
497 struct vm_area_struct *vma; /* Target VMA */
498 unsigned int flags; /* FAULT_FLAG_xxx flags */
499 gfp_t gfp_mask; /* gfp mask to be used for allocations */
500 pgoff_t pgoff; /* Logical page offset based on vma */
501 unsigned long address; /* Faulting virtual address */
502 pmd_t *pmd; /* Pointer to pmd entry matching
503 * the 'address' */
504 pud_t *pud; /* Pointer to pud entry matching
505 * the 'address'
506 */
507 pte_t orig_pte; /* Value of PTE at the time of fault */
508
509 struct page *cow_page; /* Page handler may use for COW fault */
510 struct page *page; /* ->fault handlers should return a
511 * page here, unless VM_FAULT_NOPAGE
512 * is set (which is also implied by
513 * VM_FAULT_ERROR).
514 */
515 /* These three entries are valid only while holding ptl lock */
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
525 * vm_ops->map_pages() calls
526 * alloc_set_pte() from atomic context.
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
531 };
532
533 /* page entry size for vm->huge_fault() */
534 enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538 };
539
540 /*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
543 * to the functions called when a no-page or a wp-page exception occurs.
544 */
545 struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
547 void (*close)(struct vm_area_struct * area);
548 int (*split)(struct vm_area_struct * area, unsigned long addr);
549 int (*mremap)(struct vm_area_struct * area);
550 vm_fault_t (*fault)(struct vm_fault *vmf);
551 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
552 enum page_entry_size pe_size);
553 void (*map_pages)(struct vm_fault *vmf,
554 pgoff_t start_pgoff, pgoff_t end_pgoff);
555 unsigned long (*pagesize)(struct vm_area_struct * area);
556
557 /* notification that a previously read-only page is about to become
558 * writable, if an error is returned it will cause a SIGBUS */
559 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
560
561 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
562 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
563
564 /* called by access_process_vm when get_user_pages() fails, typically
565 * for use by special VMAs that can switch between memory and hardware
566 */
567 int (*access)(struct vm_area_struct *vma, unsigned long addr,
568 void *buf, int len, int write);
569
570 /* Called by the /proc/PID/maps code to ask the vma whether it
571 * has a special name. Returning non-NULL will also cause this
572 * vma to be dumped unconditionally. */
573 const char *(*name)(struct vm_area_struct *vma);
574
575 #ifdef CONFIG_NUMA
576 /*
577 * set_policy() op must add a reference to any non-NULL @new mempolicy
578 * to hold the policy upon return. Caller should pass NULL @new to
579 * remove a policy and fall back to surrounding context--i.e. do not
580 * install a MPOL_DEFAULT policy, nor the task or system default
581 * mempolicy.
582 */
583 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
584
585 /*
586 * get_policy() op must add reference [mpol_get()] to any policy at
587 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
588 * in mm/mempolicy.c will do this automatically.
589 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
590 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
591 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
592 * must return NULL--i.e., do not "fallback" to task or system default
593 * policy.
594 */
595 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
596 unsigned long addr);
597 #endif
598 /*
599 * Called by vm_normal_page() for special PTEs to find the
600 * page for @addr. This is useful if the default behavior
601 * (using pte_page()) would not find the correct page.
602 */
603 struct page *(*find_special_page)(struct vm_area_struct *vma,
604 unsigned long addr);
605 };
606
607 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
608 {
609 static const struct vm_operations_struct dummy_vm_ops = {};
610
611 memset(vma, 0, sizeof(*vma));
612 vma->vm_mm = mm;
613 vma->vm_ops = &dummy_vm_ops;
614 INIT_LIST_HEAD(&vma->anon_vma_chain);
615 }
616
617 static inline void vma_set_anonymous(struct vm_area_struct *vma)
618 {
619 vma->vm_ops = NULL;
620 }
621
622 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
623 {
624 return !vma->vm_ops;
625 }
626
627 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
628 {
629 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
630
631 if (!maybe_stack)
632 return false;
633
634 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
635 VM_STACK_INCOMPLETE_SETUP)
636 return true;
637
638 return false;
639 }
640
641 static inline bool vma_is_foreign(struct vm_area_struct *vma)
642 {
643 if (!current->mm)
644 return true;
645
646 if (current->mm != vma->vm_mm)
647 return true;
648
649 return false;
650 }
651
652 static inline bool vma_is_accessible(struct vm_area_struct *vma)
653 {
654 return vma->vm_flags & VM_ACCESS_FLAGS;
655 }
656
657 #ifdef CONFIG_SHMEM
658 /*
659 * The vma_is_shmem is not inline because it is used only by slow
660 * paths in userfault.
661 */
662 bool vma_is_shmem(struct vm_area_struct *vma);
663 #else
664 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
665 #endif
666
667 int vma_is_stack_for_current(struct vm_area_struct *vma);
668
669 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
670 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
671
672 struct mmu_gather;
673 struct inode;
674
675 #include <linux/huge_mm.h>
676
677 /*
678 * Methods to modify the page usage count.
679 *
680 * What counts for a page usage:
681 * - cache mapping (page->mapping)
682 * - private data (page->private)
683 * - page mapped in a task's page tables, each mapping
684 * is counted separately
685 *
686 * Also, many kernel routines increase the page count before a critical
687 * routine so they can be sure the page doesn't go away from under them.
688 */
689
690 /*
691 * Drop a ref, return true if the refcount fell to zero (the page has no users)
692 */
693 static inline int put_page_testzero(struct page *page)
694 {
695 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
696 return page_ref_dec_and_test(page);
697 }
698
699 /*
700 * Try to grab a ref unless the page has a refcount of zero, return false if
701 * that is the case.
702 * This can be called when MMU is off so it must not access
703 * any of the virtual mappings.
704 */
705 static inline int get_page_unless_zero(struct page *page)
706 {
707 return page_ref_add_unless(page, 1, 0);
708 }
709
710 extern int page_is_ram(unsigned long pfn);
711
712 enum {
713 REGION_INTERSECTS,
714 REGION_DISJOINT,
715 REGION_MIXED,
716 };
717
718 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
719 unsigned long desc);
720
721 /* Support for virtually mapped pages */
722 struct page *vmalloc_to_page(const void *addr);
723 unsigned long vmalloc_to_pfn(const void *addr);
724
725 /*
726 * Determine if an address is within the vmalloc range
727 *
728 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
729 * is no special casing required.
730 */
731
732 #ifndef is_ioremap_addr
733 #define is_ioremap_addr(x) is_vmalloc_addr(x)
734 #endif
735
736 #ifdef CONFIG_MMU
737 extern bool is_vmalloc_addr(const void *x);
738 extern int is_vmalloc_or_module_addr(const void *x);
739 #else
740 static inline bool is_vmalloc_addr(const void *x)
741 {
742 return false;
743 }
744 static inline int is_vmalloc_or_module_addr(const void *x)
745 {
746 return 0;
747 }
748 #endif
749
750 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
751 static inline void *kvmalloc(size_t size, gfp_t flags)
752 {
753 return kvmalloc_node(size, flags, NUMA_NO_NODE);
754 }
755 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
756 {
757 return kvmalloc_node(size, flags | __GFP_ZERO, node);
758 }
759 static inline void *kvzalloc(size_t size, gfp_t flags)
760 {
761 return kvmalloc(size, flags | __GFP_ZERO);
762 }
763
764 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
765 {
766 size_t bytes;
767
768 if (unlikely(check_mul_overflow(n, size, &bytes)))
769 return NULL;
770
771 return kvmalloc(bytes, flags);
772 }
773
774 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
775 {
776 return kvmalloc_array(n, size, flags | __GFP_ZERO);
777 }
778
779 extern void kvfree(const void *addr);
780 extern void kvfree_sensitive(const void *addr, size_t len);
781
782 static inline int head_mapcount(struct page *head)
783 {
784 return atomic_read(compound_mapcount_ptr(head)) + 1;
785 }
786
787 /*
788 * Mapcount of compound page as a whole, does not include mapped sub-pages.
789 *
790 * Must be called only for compound pages or any their tail sub-pages.
791 */
792 static inline int compound_mapcount(struct page *page)
793 {
794 VM_BUG_ON_PAGE(!PageCompound(page), page);
795 page = compound_head(page);
796 return head_mapcount(page);
797 }
798
799 /*
800 * The atomic page->_mapcount, starts from -1: so that transitions
801 * both from it and to it can be tracked, using atomic_inc_and_test
802 * and atomic_add_negative(-1).
803 */
804 static inline void page_mapcount_reset(struct page *page)
805 {
806 atomic_set(&(page)->_mapcount, -1);
807 }
808
809 int __page_mapcount(struct page *page);
810
811 /*
812 * Mapcount of 0-order page; when compound sub-page, includes
813 * compound_mapcount().
814 *
815 * Result is undefined for pages which cannot be mapped into userspace.
816 * For example SLAB or special types of pages. See function page_has_type().
817 * They use this place in struct page differently.
818 */
819 static inline int page_mapcount(struct page *page)
820 {
821 if (unlikely(PageCompound(page)))
822 return __page_mapcount(page);
823 return atomic_read(&page->_mapcount) + 1;
824 }
825
826 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
827 int total_mapcount(struct page *page);
828 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
829 #else
830 static inline int total_mapcount(struct page *page)
831 {
832 return page_mapcount(page);
833 }
834 static inline int page_trans_huge_mapcount(struct page *page,
835 int *total_mapcount)
836 {
837 int mapcount = page_mapcount(page);
838 if (total_mapcount)
839 *total_mapcount = mapcount;
840 return mapcount;
841 }
842 #endif
843
844 static inline struct page *virt_to_head_page(const void *x)
845 {
846 struct page *page = virt_to_page(x);
847
848 return compound_head(page);
849 }
850
851 void __put_page(struct page *page);
852
853 void put_pages_list(struct list_head *pages);
854
855 void split_page(struct page *page, unsigned int order);
856
857 /*
858 * Compound pages have a destructor function. Provide a
859 * prototype for that function and accessor functions.
860 * These are _only_ valid on the head of a compound page.
861 */
862 typedef void compound_page_dtor(struct page *);
863
864 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
865 enum compound_dtor_id {
866 NULL_COMPOUND_DTOR,
867 COMPOUND_PAGE_DTOR,
868 #ifdef CONFIG_HUGETLB_PAGE
869 HUGETLB_PAGE_DTOR,
870 #endif
871 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
872 TRANSHUGE_PAGE_DTOR,
873 #endif
874 NR_COMPOUND_DTORS,
875 };
876 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
877
878 static inline void set_compound_page_dtor(struct page *page,
879 enum compound_dtor_id compound_dtor)
880 {
881 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
882 page[1].compound_dtor = compound_dtor;
883 }
884
885 static inline void destroy_compound_page(struct page *page)
886 {
887 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
888 compound_page_dtors[page[1].compound_dtor](page);
889 }
890
891 static inline unsigned int compound_order(struct page *page)
892 {
893 if (!PageHead(page))
894 return 0;
895 return page[1].compound_order;
896 }
897
898 static inline bool hpage_pincount_available(struct page *page)
899 {
900 /*
901 * Can the page->hpage_pinned_refcount field be used? That field is in
902 * the 3rd page of the compound page, so the smallest (2-page) compound
903 * pages cannot support it.
904 */
905 page = compound_head(page);
906 return PageCompound(page) && compound_order(page) > 1;
907 }
908
909 static inline int head_pincount(struct page *head)
910 {
911 return atomic_read(compound_pincount_ptr(head));
912 }
913
914 static inline int compound_pincount(struct page *page)
915 {
916 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
917 page = compound_head(page);
918 return head_pincount(page);
919 }
920
921 static inline void set_compound_order(struct page *page, unsigned int order)
922 {
923 page[1].compound_order = order;
924 page[1].compound_nr = 1U << order;
925 }
926
927 /* Returns the number of pages in this potentially compound page. */
928 static inline unsigned long compound_nr(struct page *page)
929 {
930 if (!PageHead(page))
931 return 1;
932 return page[1].compound_nr;
933 }
934
935 /* Returns the number of bytes in this potentially compound page. */
936 static inline unsigned long page_size(struct page *page)
937 {
938 return PAGE_SIZE << compound_order(page);
939 }
940
941 /* Returns the number of bits needed for the number of bytes in a page */
942 static inline unsigned int page_shift(struct page *page)
943 {
944 return PAGE_SHIFT + compound_order(page);
945 }
946
947 void free_compound_page(struct page *page);
948
949 #ifdef CONFIG_MMU
950 /*
951 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
952 * servicing faults for write access. In the normal case, do always want
953 * pte_mkwrite. But get_user_pages can cause write faults for mappings
954 * that do not have writing enabled, when used by access_process_vm.
955 */
956 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
957 {
958 if (likely(vma->vm_flags & VM_WRITE))
959 pte = pte_mkwrite(pte);
960 return pte;
961 }
962
963 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
964 vm_fault_t finish_fault(struct vm_fault *vmf);
965 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
966 #endif
967
968 /*
969 * Multiple processes may "see" the same page. E.g. for untouched
970 * mappings of /dev/null, all processes see the same page full of
971 * zeroes, and text pages of executables and shared libraries have
972 * only one copy in memory, at most, normally.
973 *
974 * For the non-reserved pages, page_count(page) denotes a reference count.
975 * page_count() == 0 means the page is free. page->lru is then used for
976 * freelist management in the buddy allocator.
977 * page_count() > 0 means the page has been allocated.
978 *
979 * Pages are allocated by the slab allocator in order to provide memory
980 * to kmalloc and kmem_cache_alloc. In this case, the management of the
981 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
982 * unless a particular usage is carefully commented. (the responsibility of
983 * freeing the kmalloc memory is the caller's, of course).
984 *
985 * A page may be used by anyone else who does a __get_free_page().
986 * In this case, page_count still tracks the references, and should only
987 * be used through the normal accessor functions. The top bits of page->flags
988 * and page->virtual store page management information, but all other fields
989 * are unused and could be used privately, carefully. The management of this
990 * page is the responsibility of the one who allocated it, and those who have
991 * subsequently been given references to it.
992 *
993 * The other pages (we may call them "pagecache pages") are completely
994 * managed by the Linux memory manager: I/O, buffers, swapping etc.
995 * The following discussion applies only to them.
996 *
997 * A pagecache page contains an opaque `private' member, which belongs to the
998 * page's address_space. Usually, this is the address of a circular list of
999 * the page's disk buffers. PG_private must be set to tell the VM to call
1000 * into the filesystem to release these pages.
1001 *
1002 * A page may belong to an inode's memory mapping. In this case, page->mapping
1003 * is the pointer to the inode, and page->index is the file offset of the page,
1004 * in units of PAGE_SIZE.
1005 *
1006 * If pagecache pages are not associated with an inode, they are said to be
1007 * anonymous pages. These may become associated with the swapcache, and in that
1008 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1009 *
1010 * In either case (swapcache or inode backed), the pagecache itself holds one
1011 * reference to the page. Setting PG_private should also increment the
1012 * refcount. The each user mapping also has a reference to the page.
1013 *
1014 * The pagecache pages are stored in a per-mapping radix tree, which is
1015 * rooted at mapping->i_pages, and indexed by offset.
1016 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1017 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1018 *
1019 * All pagecache pages may be subject to I/O:
1020 * - inode pages may need to be read from disk,
1021 * - inode pages which have been modified and are MAP_SHARED may need
1022 * to be written back to the inode on disk,
1023 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1024 * modified may need to be swapped out to swap space and (later) to be read
1025 * back into memory.
1026 */
1027
1028 /*
1029 * The zone field is never updated after free_area_init_core()
1030 * sets it, so none of the operations on it need to be atomic.
1031 */
1032
1033 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1034 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1035 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1036 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1037 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1038 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1039
1040 /*
1041 * Define the bit shifts to access each section. For non-existent
1042 * sections we define the shift as 0; that plus a 0 mask ensures
1043 * the compiler will optimise away reference to them.
1044 */
1045 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1046 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1047 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1048 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1049 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1050
1051 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1052 #ifdef NODE_NOT_IN_PAGE_FLAGS
1053 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1054 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1055 SECTIONS_PGOFF : ZONES_PGOFF)
1056 #else
1057 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1058 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1059 NODES_PGOFF : ZONES_PGOFF)
1060 #endif
1061
1062 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1063
1064 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1065 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1066 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1067 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1068 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1069 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1070
1071 static inline enum zone_type page_zonenum(const struct page *page)
1072 {
1073 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1074 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1075 }
1076
1077 #ifdef CONFIG_ZONE_DEVICE
1078 static inline bool is_zone_device_page(const struct page *page)
1079 {
1080 return page_zonenum(page) == ZONE_DEVICE;
1081 }
1082 extern void memmap_init_zone_device(struct zone *, unsigned long,
1083 unsigned long, struct dev_pagemap *);
1084 #else
1085 static inline bool is_zone_device_page(const struct page *page)
1086 {
1087 return false;
1088 }
1089 #endif
1090
1091 #ifdef CONFIG_DEV_PAGEMAP_OPS
1092 void free_devmap_managed_page(struct page *page);
1093 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1094
1095 static inline bool page_is_devmap_managed(struct page *page)
1096 {
1097 if (!static_branch_unlikely(&devmap_managed_key))
1098 return false;
1099 if (!is_zone_device_page(page))
1100 return false;
1101 switch (page->pgmap->type) {
1102 case MEMORY_DEVICE_PRIVATE:
1103 case MEMORY_DEVICE_FS_DAX:
1104 return true;
1105 default:
1106 break;
1107 }
1108 return false;
1109 }
1110
1111 void put_devmap_managed_page(struct page *page);
1112
1113 #else /* CONFIG_DEV_PAGEMAP_OPS */
1114 static inline bool page_is_devmap_managed(struct page *page)
1115 {
1116 return false;
1117 }
1118
1119 static inline void put_devmap_managed_page(struct page *page)
1120 {
1121 }
1122 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1123
1124 static inline bool is_device_private_page(const struct page *page)
1125 {
1126 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1127 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1128 is_zone_device_page(page) &&
1129 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1130 }
1131
1132 static inline bool is_pci_p2pdma_page(const struct page *page)
1133 {
1134 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1135 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1136 is_zone_device_page(page) &&
1137 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1138 }
1139
1140 /* 127: arbitrary random number, small enough to assemble well */
1141 #define page_ref_zero_or_close_to_overflow(page) \
1142 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1143
1144 static inline void get_page(struct page *page)
1145 {
1146 page = compound_head(page);
1147 /*
1148 * Getting a normal page or the head of a compound page
1149 * requires to already have an elevated page->_refcount.
1150 */
1151 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1152 page_ref_inc(page);
1153 }
1154
1155 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1156
1157 static inline __must_check bool try_get_page(struct page *page)
1158 {
1159 page = compound_head(page);
1160 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1161 return false;
1162 page_ref_inc(page);
1163 return true;
1164 }
1165
1166 static inline void put_page(struct page *page)
1167 {
1168 page = compound_head(page);
1169
1170 /*
1171 * For devmap managed pages we need to catch refcount transition from
1172 * 2 to 1, when refcount reach one it means the page is free and we
1173 * need to inform the device driver through callback. See
1174 * include/linux/memremap.h and HMM for details.
1175 */
1176 if (page_is_devmap_managed(page)) {
1177 put_devmap_managed_page(page);
1178 return;
1179 }
1180
1181 if (put_page_testzero(page))
1182 __put_page(page);
1183 }
1184
1185 /*
1186 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1187 * the page's refcount so that two separate items are tracked: the original page
1188 * reference count, and also a new count of how many pin_user_pages() calls were
1189 * made against the page. ("gup-pinned" is another term for the latter).
1190 *
1191 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1192 * distinct from normal pages. As such, the unpin_user_page() call (and its
1193 * variants) must be used in order to release gup-pinned pages.
1194 *
1195 * Choice of value:
1196 *
1197 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1198 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1199 * simpler, due to the fact that adding an even power of two to the page
1200 * refcount has the effect of using only the upper N bits, for the code that
1201 * counts up using the bias value. This means that the lower bits are left for
1202 * the exclusive use of the original code that increments and decrements by one
1203 * (or at least, by much smaller values than the bias value).
1204 *
1205 * Of course, once the lower bits overflow into the upper bits (and this is
1206 * OK, because subtraction recovers the original values), then visual inspection
1207 * no longer suffices to directly view the separate counts. However, for normal
1208 * applications that don't have huge page reference counts, this won't be an
1209 * issue.
1210 *
1211 * Locking: the lockless algorithm described in page_cache_get_speculative()
1212 * and page_cache_gup_pin_speculative() provides safe operation for
1213 * get_user_pages and page_mkclean and other calls that race to set up page
1214 * table entries.
1215 */
1216 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1217
1218 void unpin_user_page(struct page *page);
1219 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1220 bool make_dirty);
1221 void unpin_user_pages(struct page **pages, unsigned long npages);
1222
1223 /**
1224 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1225 *
1226 * This function checks if a page has been pinned via a call to
1227 * pin_user_pages*().
1228 *
1229 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1230 * because it means "definitely not pinned for DMA", but true means "probably
1231 * pinned for DMA, but possibly a false positive due to having at least
1232 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1233 *
1234 * False positives are OK, because: a) it's unlikely for a page to get that many
1235 * refcounts, and b) all the callers of this routine are expected to be able to
1236 * deal gracefully with a false positive.
1237 *
1238 * For huge pages, the result will be exactly correct. That's because we have
1239 * more tracking data available: the 3rd struct page in the compound page is
1240 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1241 * scheme).
1242 *
1243 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1244 *
1245 * @page: pointer to page to be queried.
1246 * @Return: True, if it is likely that the page has been "dma-pinned".
1247 * False, if the page is definitely not dma-pinned.
1248 */
1249 static inline bool page_maybe_dma_pinned(struct page *page)
1250 {
1251 if (hpage_pincount_available(page))
1252 return compound_pincount(page) > 0;
1253
1254 /*
1255 * page_ref_count() is signed. If that refcount overflows, then
1256 * page_ref_count() returns a negative value, and callers will avoid
1257 * further incrementing the refcount.
1258 *
1259 * Here, for that overflow case, use the signed bit to count a little
1260 * bit higher via unsigned math, and thus still get an accurate result.
1261 */
1262 return ((unsigned int)page_ref_count(compound_head(page))) >=
1263 GUP_PIN_COUNTING_BIAS;
1264 }
1265
1266 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1267 #define SECTION_IN_PAGE_FLAGS
1268 #endif
1269
1270 /*
1271 * The identification function is mainly used by the buddy allocator for
1272 * determining if two pages could be buddies. We are not really identifying
1273 * the zone since we could be using the section number id if we do not have
1274 * node id available in page flags.
1275 * We only guarantee that it will return the same value for two combinable
1276 * pages in a zone.
1277 */
1278 static inline int page_zone_id(struct page *page)
1279 {
1280 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1281 }
1282
1283 #ifdef NODE_NOT_IN_PAGE_FLAGS
1284 extern int page_to_nid(const struct page *page);
1285 #else
1286 static inline int page_to_nid(const struct page *page)
1287 {
1288 struct page *p = (struct page *)page;
1289
1290 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1291 }
1292 #endif
1293
1294 #ifdef CONFIG_NUMA_BALANCING
1295 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1296 {
1297 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1298 }
1299
1300 static inline int cpupid_to_pid(int cpupid)
1301 {
1302 return cpupid & LAST__PID_MASK;
1303 }
1304
1305 static inline int cpupid_to_cpu(int cpupid)
1306 {
1307 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1308 }
1309
1310 static inline int cpupid_to_nid(int cpupid)
1311 {
1312 return cpu_to_node(cpupid_to_cpu(cpupid));
1313 }
1314
1315 static inline bool cpupid_pid_unset(int cpupid)
1316 {
1317 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1318 }
1319
1320 static inline bool cpupid_cpu_unset(int cpupid)
1321 {
1322 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1323 }
1324
1325 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1326 {
1327 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1328 }
1329
1330 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1331 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1332 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1333 {
1334 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1335 }
1336
1337 static inline int page_cpupid_last(struct page *page)
1338 {
1339 return page->_last_cpupid;
1340 }
1341 static inline void page_cpupid_reset_last(struct page *page)
1342 {
1343 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1344 }
1345 #else
1346 static inline int page_cpupid_last(struct page *page)
1347 {
1348 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1349 }
1350
1351 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1352
1353 static inline void page_cpupid_reset_last(struct page *page)
1354 {
1355 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1356 }
1357 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1358 #else /* !CONFIG_NUMA_BALANCING */
1359 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1360 {
1361 return page_to_nid(page); /* XXX */
1362 }
1363
1364 static inline int page_cpupid_last(struct page *page)
1365 {
1366 return page_to_nid(page); /* XXX */
1367 }
1368
1369 static inline int cpupid_to_nid(int cpupid)
1370 {
1371 return -1;
1372 }
1373
1374 static inline int cpupid_to_pid(int cpupid)
1375 {
1376 return -1;
1377 }
1378
1379 static inline int cpupid_to_cpu(int cpupid)
1380 {
1381 return -1;
1382 }
1383
1384 static inline int cpu_pid_to_cpupid(int nid, int pid)
1385 {
1386 return -1;
1387 }
1388
1389 static inline bool cpupid_pid_unset(int cpupid)
1390 {
1391 return true;
1392 }
1393
1394 static inline void page_cpupid_reset_last(struct page *page)
1395 {
1396 }
1397
1398 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1399 {
1400 return false;
1401 }
1402 #endif /* CONFIG_NUMA_BALANCING */
1403
1404 #ifdef CONFIG_KASAN_SW_TAGS
1405 static inline u8 page_kasan_tag(const struct page *page)
1406 {
1407 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1408 }
1409
1410 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1411 {
1412 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1413 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1414 }
1415
1416 static inline void page_kasan_tag_reset(struct page *page)
1417 {
1418 page_kasan_tag_set(page, 0xff);
1419 }
1420 #else
1421 static inline u8 page_kasan_tag(const struct page *page)
1422 {
1423 return 0xff;
1424 }
1425
1426 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1427 static inline void page_kasan_tag_reset(struct page *page) { }
1428 #endif
1429
1430 static inline struct zone *page_zone(const struct page *page)
1431 {
1432 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1433 }
1434
1435 static inline pg_data_t *page_pgdat(const struct page *page)
1436 {
1437 return NODE_DATA(page_to_nid(page));
1438 }
1439
1440 #ifdef SECTION_IN_PAGE_FLAGS
1441 static inline void set_page_section(struct page *page, unsigned long section)
1442 {
1443 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1444 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1445 }
1446
1447 static inline unsigned long page_to_section(const struct page *page)
1448 {
1449 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1450 }
1451 #endif
1452
1453 static inline void set_page_zone(struct page *page, enum zone_type zone)
1454 {
1455 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1456 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1457 }
1458
1459 static inline void set_page_node(struct page *page, unsigned long node)
1460 {
1461 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1462 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1463 }
1464
1465 static inline void set_page_links(struct page *page, enum zone_type zone,
1466 unsigned long node, unsigned long pfn)
1467 {
1468 set_page_zone(page, zone);
1469 set_page_node(page, node);
1470 #ifdef SECTION_IN_PAGE_FLAGS
1471 set_page_section(page, pfn_to_section_nr(pfn));
1472 #endif
1473 }
1474
1475 #ifdef CONFIG_MEMCG
1476 static inline struct mem_cgroup *page_memcg(struct page *page)
1477 {
1478 return page->mem_cgroup;
1479 }
1480 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1481 {
1482 WARN_ON_ONCE(!rcu_read_lock_held());
1483 return READ_ONCE(page->mem_cgroup);
1484 }
1485 #else
1486 static inline struct mem_cgroup *page_memcg(struct page *page)
1487 {
1488 return NULL;
1489 }
1490 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1491 {
1492 WARN_ON_ONCE(!rcu_read_lock_held());
1493 return NULL;
1494 }
1495 #endif
1496
1497 /*
1498 * Some inline functions in vmstat.h depend on page_zone()
1499 */
1500 #include <linux/vmstat.h>
1501
1502 static __always_inline void *lowmem_page_address(const struct page *page)
1503 {
1504 return page_to_virt(page);
1505 }
1506
1507 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1508 #define HASHED_PAGE_VIRTUAL
1509 #endif
1510
1511 #if defined(WANT_PAGE_VIRTUAL)
1512 static inline void *page_address(const struct page *page)
1513 {
1514 return page->virtual;
1515 }
1516 static inline void set_page_address(struct page *page, void *address)
1517 {
1518 page->virtual = address;
1519 }
1520 #define page_address_init() do { } while(0)
1521 #endif
1522
1523 #if defined(HASHED_PAGE_VIRTUAL)
1524 void *page_address(const struct page *page);
1525 void set_page_address(struct page *page, void *virtual);
1526 void page_address_init(void);
1527 #endif
1528
1529 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1530 #define page_address(page) lowmem_page_address(page)
1531 #define set_page_address(page, address) do { } while(0)
1532 #define page_address_init() do { } while(0)
1533 #endif
1534
1535 extern void *page_rmapping(struct page *page);
1536 extern struct anon_vma *page_anon_vma(struct page *page);
1537 extern struct address_space *page_mapping(struct page *page);
1538
1539 extern struct address_space *__page_file_mapping(struct page *);
1540
1541 static inline
1542 struct address_space *page_file_mapping(struct page *page)
1543 {
1544 if (unlikely(PageSwapCache(page)))
1545 return __page_file_mapping(page);
1546
1547 return page->mapping;
1548 }
1549
1550 extern pgoff_t __page_file_index(struct page *page);
1551
1552 /*
1553 * Return the pagecache index of the passed page. Regular pagecache pages
1554 * use ->index whereas swapcache pages use swp_offset(->private)
1555 */
1556 static inline pgoff_t page_index(struct page *page)
1557 {
1558 if (unlikely(PageSwapCache(page)))
1559 return __page_file_index(page);
1560 return page->index;
1561 }
1562
1563 bool page_mapped(struct page *page);
1564 struct address_space *page_mapping(struct page *page);
1565 struct address_space *page_mapping_file(struct page *page);
1566
1567 /*
1568 * Return true only if the page has been allocated with
1569 * ALLOC_NO_WATERMARKS and the low watermark was not
1570 * met implying that the system is under some pressure.
1571 */
1572 static inline bool page_is_pfmemalloc(struct page *page)
1573 {
1574 /*
1575 * Page index cannot be this large so this must be
1576 * a pfmemalloc page.
1577 */
1578 return page->index == -1UL;
1579 }
1580
1581 /*
1582 * Only to be called by the page allocator on a freshly allocated
1583 * page.
1584 */
1585 static inline void set_page_pfmemalloc(struct page *page)
1586 {
1587 page->index = -1UL;
1588 }
1589
1590 static inline void clear_page_pfmemalloc(struct page *page)
1591 {
1592 page->index = 0;
1593 }
1594
1595 /*
1596 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1597 */
1598 extern void pagefault_out_of_memory(void);
1599
1600 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1601 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1602
1603 /*
1604 * Flags passed to show_mem() and show_free_areas() to suppress output in
1605 * various contexts.
1606 */
1607 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1608
1609 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1610
1611 #ifdef CONFIG_MMU
1612 extern bool can_do_mlock(void);
1613 #else
1614 static inline bool can_do_mlock(void) { return false; }
1615 #endif
1616 extern int user_shm_lock(size_t, struct user_struct *);
1617 extern void user_shm_unlock(size_t, struct user_struct *);
1618
1619 /*
1620 * Parameter block passed down to zap_pte_range in exceptional cases.
1621 */
1622 struct zap_details {
1623 struct address_space *check_mapping; /* Check page->mapping if set */
1624 pgoff_t first_index; /* Lowest page->index to unmap */
1625 pgoff_t last_index; /* Highest page->index to unmap */
1626 };
1627
1628 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1629 pte_t pte);
1630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1631 pmd_t pmd);
1632
1633 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1634 unsigned long size);
1635 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1636 unsigned long size);
1637 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1638 unsigned long start, unsigned long end);
1639
1640 struct mmu_notifier_range;
1641
1642 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1643 unsigned long end, unsigned long floor, unsigned long ceiling);
1644 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1645 struct vm_area_struct *vma);
1646 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1647 struct mmu_notifier_range *range,
1648 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1649 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1650 unsigned long *pfn);
1651 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1652 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1653 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1654 void *buf, int len, int write);
1655
1656 extern void truncate_pagecache(struct inode *inode, loff_t new);
1657 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1658 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1659 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1660 int truncate_inode_page(struct address_space *mapping, struct page *page);
1661 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1662 int invalidate_inode_page(struct page *page);
1663
1664 #ifdef CONFIG_MMU
1665 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1666 unsigned long address, unsigned int flags,
1667 struct pt_regs *regs);
1668 extern int fixup_user_fault(struct mm_struct *mm,
1669 unsigned long address, unsigned int fault_flags,
1670 bool *unlocked);
1671 void unmap_mapping_pages(struct address_space *mapping,
1672 pgoff_t start, pgoff_t nr, bool even_cows);
1673 void unmap_mapping_range(struct address_space *mapping,
1674 loff_t const holebegin, loff_t const holelen, int even_cows);
1675 #else
1676 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1677 unsigned long address, unsigned int flags,
1678 struct pt_regs *regs)
1679 {
1680 /* should never happen if there's no MMU */
1681 BUG();
1682 return VM_FAULT_SIGBUS;
1683 }
1684 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1685 unsigned int fault_flags, bool *unlocked)
1686 {
1687 /* should never happen if there's no MMU */
1688 BUG();
1689 return -EFAULT;
1690 }
1691 static inline void unmap_mapping_pages(struct address_space *mapping,
1692 pgoff_t start, pgoff_t nr, bool even_cows) { }
1693 static inline void unmap_mapping_range(struct address_space *mapping,
1694 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1695 #endif
1696
1697 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1698 loff_t const holebegin, loff_t const holelen)
1699 {
1700 unmap_mapping_range(mapping, holebegin, holelen, 0);
1701 }
1702
1703 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1704 void *buf, int len, unsigned int gup_flags);
1705 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1706 void *buf, int len, unsigned int gup_flags);
1707 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1708 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1709
1710 long get_user_pages_remote(struct mm_struct *mm,
1711 unsigned long start, unsigned long nr_pages,
1712 unsigned int gup_flags, struct page **pages,
1713 struct vm_area_struct **vmas, int *locked);
1714 long pin_user_pages_remote(struct mm_struct *mm,
1715 unsigned long start, unsigned long nr_pages,
1716 unsigned int gup_flags, struct page **pages,
1717 struct vm_area_struct **vmas, int *locked);
1718 long get_user_pages(unsigned long start, unsigned long nr_pages,
1719 unsigned int gup_flags, struct page **pages,
1720 struct vm_area_struct **vmas);
1721 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1722 unsigned int gup_flags, struct page **pages,
1723 struct vm_area_struct **vmas);
1724 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1725 unsigned int gup_flags, struct page **pages, int *locked);
1726 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1727 unsigned int gup_flags, struct page **pages, int *locked);
1728 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1729 struct page **pages, unsigned int gup_flags);
1730 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1731 struct page **pages, unsigned int gup_flags);
1732
1733 int get_user_pages_fast(unsigned long start, int nr_pages,
1734 unsigned int gup_flags, struct page **pages);
1735 int pin_user_pages_fast(unsigned long start, int nr_pages,
1736 unsigned int gup_flags, struct page **pages);
1737
1738 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1739 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1740 struct task_struct *task, bool bypass_rlim);
1741
1742 /* Container for pinned pfns / pages */
1743 struct frame_vector {
1744 unsigned int nr_allocated; /* Number of frames we have space for */
1745 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1746 bool got_ref; /* Did we pin pages by getting page ref? */
1747 bool is_pfns; /* Does array contain pages or pfns? */
1748 void *ptrs[]; /* Array of pinned pfns / pages. Use
1749 * pfns_vector_pages() or pfns_vector_pfns()
1750 * for access */
1751 };
1752
1753 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1754 void frame_vector_destroy(struct frame_vector *vec);
1755 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1756 unsigned int gup_flags, struct frame_vector *vec);
1757 void put_vaddr_frames(struct frame_vector *vec);
1758 int frame_vector_to_pages(struct frame_vector *vec);
1759 void frame_vector_to_pfns(struct frame_vector *vec);
1760
1761 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1762 {
1763 return vec->nr_frames;
1764 }
1765
1766 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1767 {
1768 if (vec->is_pfns) {
1769 int err = frame_vector_to_pages(vec);
1770
1771 if (err)
1772 return ERR_PTR(err);
1773 }
1774 return (struct page **)(vec->ptrs);
1775 }
1776
1777 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1778 {
1779 if (!vec->is_pfns)
1780 frame_vector_to_pfns(vec);
1781 return (unsigned long *)(vec->ptrs);
1782 }
1783
1784 struct kvec;
1785 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1786 struct page **pages);
1787 int get_kernel_page(unsigned long start, int write, struct page **pages);
1788 struct page *get_dump_page(unsigned long addr);
1789
1790 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1791 extern void do_invalidatepage(struct page *page, unsigned int offset,
1792 unsigned int length);
1793
1794 void __set_page_dirty(struct page *, struct address_space *, int warn);
1795 int __set_page_dirty_nobuffers(struct page *page);
1796 int __set_page_dirty_no_writeback(struct page *page);
1797 int redirty_page_for_writepage(struct writeback_control *wbc,
1798 struct page *page);
1799 void account_page_dirtied(struct page *page, struct address_space *mapping);
1800 void account_page_cleaned(struct page *page, struct address_space *mapping,
1801 struct bdi_writeback *wb);
1802 int set_page_dirty(struct page *page);
1803 int set_page_dirty_lock(struct page *page);
1804 void __cancel_dirty_page(struct page *page);
1805 static inline void cancel_dirty_page(struct page *page)
1806 {
1807 /* Avoid atomic ops, locking, etc. when not actually needed. */
1808 if (PageDirty(page))
1809 __cancel_dirty_page(page);
1810 }
1811 int clear_page_dirty_for_io(struct page *page);
1812
1813 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1814
1815 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1816 unsigned long old_addr, struct vm_area_struct *new_vma,
1817 unsigned long new_addr, unsigned long len,
1818 bool need_rmap_locks);
1819
1820 /*
1821 * Flags used by change_protection(). For now we make it a bitmap so
1822 * that we can pass in multiple flags just like parameters. However
1823 * for now all the callers are only use one of the flags at the same
1824 * time.
1825 */
1826 /* Whether we should allow dirty bit accounting */
1827 #define MM_CP_DIRTY_ACCT (1UL << 0)
1828 /* Whether this protection change is for NUMA hints */
1829 #define MM_CP_PROT_NUMA (1UL << 1)
1830 /* Whether this change is for write protecting */
1831 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1832 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1833 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1834 MM_CP_UFFD_WP_RESOLVE)
1835
1836 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1837 unsigned long end, pgprot_t newprot,
1838 unsigned long cp_flags);
1839 extern int mprotect_fixup(struct vm_area_struct *vma,
1840 struct vm_area_struct **pprev, unsigned long start,
1841 unsigned long end, unsigned long newflags);
1842
1843 /*
1844 * doesn't attempt to fault and will return short.
1845 */
1846 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1847 unsigned int gup_flags, struct page **pages);
1848 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1849 unsigned int gup_flags, struct page **pages);
1850
1851 static inline bool get_user_page_fast_only(unsigned long addr,
1852 unsigned int gup_flags, struct page **pagep)
1853 {
1854 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1855 }
1856 /*
1857 * per-process(per-mm_struct) statistics.
1858 */
1859 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1860 {
1861 long val = atomic_long_read(&mm->rss_stat.count[member]);
1862
1863 #ifdef SPLIT_RSS_COUNTING
1864 /*
1865 * counter is updated in asynchronous manner and may go to minus.
1866 * But it's never be expected number for users.
1867 */
1868 if (val < 0)
1869 val = 0;
1870 #endif
1871 return (unsigned long)val;
1872 }
1873
1874 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1875
1876 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1877 {
1878 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1879
1880 mm_trace_rss_stat(mm, member, count);
1881 }
1882
1883 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1884 {
1885 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1886
1887 mm_trace_rss_stat(mm, member, count);
1888 }
1889
1890 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1891 {
1892 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1893
1894 mm_trace_rss_stat(mm, member, count);
1895 }
1896
1897 /* Optimized variant when page is already known not to be PageAnon */
1898 static inline int mm_counter_file(struct page *page)
1899 {
1900 if (PageSwapBacked(page))
1901 return MM_SHMEMPAGES;
1902 return MM_FILEPAGES;
1903 }
1904
1905 static inline int mm_counter(struct page *page)
1906 {
1907 if (PageAnon(page))
1908 return MM_ANONPAGES;
1909 return mm_counter_file(page);
1910 }
1911
1912 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1913 {
1914 return get_mm_counter(mm, MM_FILEPAGES) +
1915 get_mm_counter(mm, MM_ANONPAGES) +
1916 get_mm_counter(mm, MM_SHMEMPAGES);
1917 }
1918
1919 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1920 {
1921 return max(mm->hiwater_rss, get_mm_rss(mm));
1922 }
1923
1924 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1925 {
1926 return max(mm->hiwater_vm, mm->total_vm);
1927 }
1928
1929 static inline void update_hiwater_rss(struct mm_struct *mm)
1930 {
1931 unsigned long _rss = get_mm_rss(mm);
1932
1933 if ((mm)->hiwater_rss < _rss)
1934 (mm)->hiwater_rss = _rss;
1935 }
1936
1937 static inline void update_hiwater_vm(struct mm_struct *mm)
1938 {
1939 if (mm->hiwater_vm < mm->total_vm)
1940 mm->hiwater_vm = mm->total_vm;
1941 }
1942
1943 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1944 {
1945 mm->hiwater_rss = get_mm_rss(mm);
1946 }
1947
1948 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1949 struct mm_struct *mm)
1950 {
1951 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1952
1953 if (*maxrss < hiwater_rss)
1954 *maxrss = hiwater_rss;
1955 }
1956
1957 #if defined(SPLIT_RSS_COUNTING)
1958 void sync_mm_rss(struct mm_struct *mm);
1959 #else
1960 static inline void sync_mm_rss(struct mm_struct *mm)
1961 {
1962 }
1963 #endif
1964
1965 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1966 static inline int pte_special(pte_t pte)
1967 {
1968 return 0;
1969 }
1970
1971 static inline pte_t pte_mkspecial(pte_t pte)
1972 {
1973 return pte;
1974 }
1975 #endif
1976
1977 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1978 static inline int pte_devmap(pte_t pte)
1979 {
1980 return 0;
1981 }
1982 #endif
1983
1984 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1985
1986 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1987 spinlock_t **ptl);
1988 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1989 spinlock_t **ptl)
1990 {
1991 pte_t *ptep;
1992 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1993 return ptep;
1994 }
1995
1996 #ifdef __PAGETABLE_P4D_FOLDED
1997 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1998 unsigned long address)
1999 {
2000 return 0;
2001 }
2002 #else
2003 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2004 #endif
2005
2006 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2007 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2008 unsigned long address)
2009 {
2010 return 0;
2011 }
2012 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2013 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2014
2015 #else
2016 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2017
2018 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2019 {
2020 if (mm_pud_folded(mm))
2021 return;
2022 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2023 }
2024
2025 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2026 {
2027 if (mm_pud_folded(mm))
2028 return;
2029 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2030 }
2031 #endif
2032
2033 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2034 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2035 unsigned long address)
2036 {
2037 return 0;
2038 }
2039
2040 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2041 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2042
2043 #else
2044 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2045
2046 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2047 {
2048 if (mm_pmd_folded(mm))
2049 return;
2050 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2051 }
2052
2053 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2054 {
2055 if (mm_pmd_folded(mm))
2056 return;
2057 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2058 }
2059 #endif
2060
2061 #ifdef CONFIG_MMU
2062 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2063 {
2064 atomic_long_set(&mm->pgtables_bytes, 0);
2065 }
2066
2067 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2068 {
2069 return atomic_long_read(&mm->pgtables_bytes);
2070 }
2071
2072 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2073 {
2074 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2075 }
2076
2077 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2078 {
2079 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2080 }
2081 #else
2082
2083 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2084 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2085 {
2086 return 0;
2087 }
2088
2089 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2090 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2091 #endif
2092
2093 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2094 int __pte_alloc_kernel(pmd_t *pmd);
2095
2096 #if defined(CONFIG_MMU)
2097
2098 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2099 unsigned long address)
2100 {
2101 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2102 NULL : p4d_offset(pgd, address);
2103 }
2104
2105 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2106 unsigned long address)
2107 {
2108 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2109 NULL : pud_offset(p4d, address);
2110 }
2111
2112 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2113 {
2114 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2115 NULL: pmd_offset(pud, address);
2116 }
2117 #endif /* CONFIG_MMU */
2118
2119 #if USE_SPLIT_PTE_PTLOCKS
2120 #if ALLOC_SPLIT_PTLOCKS
2121 void __init ptlock_cache_init(void);
2122 extern bool ptlock_alloc(struct page *page);
2123 extern void ptlock_free(struct page *page);
2124
2125 static inline spinlock_t *ptlock_ptr(struct page *page)
2126 {
2127 return page->ptl;
2128 }
2129 #else /* ALLOC_SPLIT_PTLOCKS */
2130 static inline void ptlock_cache_init(void)
2131 {
2132 }
2133
2134 static inline bool ptlock_alloc(struct page *page)
2135 {
2136 return true;
2137 }
2138
2139 static inline void ptlock_free(struct page *page)
2140 {
2141 }
2142
2143 static inline spinlock_t *ptlock_ptr(struct page *page)
2144 {
2145 return &page->ptl;
2146 }
2147 #endif /* ALLOC_SPLIT_PTLOCKS */
2148
2149 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2150 {
2151 return ptlock_ptr(pmd_page(*pmd));
2152 }
2153
2154 static inline bool ptlock_init(struct page *page)
2155 {
2156 /*
2157 * prep_new_page() initialize page->private (and therefore page->ptl)
2158 * with 0. Make sure nobody took it in use in between.
2159 *
2160 * It can happen if arch try to use slab for page table allocation:
2161 * slab code uses page->slab_cache, which share storage with page->ptl.
2162 */
2163 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2164 if (!ptlock_alloc(page))
2165 return false;
2166 spin_lock_init(ptlock_ptr(page));
2167 return true;
2168 }
2169
2170 #else /* !USE_SPLIT_PTE_PTLOCKS */
2171 /*
2172 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2173 */
2174 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2175 {
2176 return &mm->page_table_lock;
2177 }
2178 static inline void ptlock_cache_init(void) {}
2179 static inline bool ptlock_init(struct page *page) { return true; }
2180 static inline void ptlock_free(struct page *page) {}
2181 #endif /* USE_SPLIT_PTE_PTLOCKS */
2182
2183 static inline void pgtable_init(void)
2184 {
2185 ptlock_cache_init();
2186 pgtable_cache_init();
2187 }
2188
2189 static inline bool pgtable_pte_page_ctor(struct page *page)
2190 {
2191 if (!ptlock_init(page))
2192 return false;
2193 __SetPageTable(page);
2194 inc_zone_page_state(page, NR_PAGETABLE);
2195 return true;
2196 }
2197
2198 static inline void pgtable_pte_page_dtor(struct page *page)
2199 {
2200 ptlock_free(page);
2201 __ClearPageTable(page);
2202 dec_zone_page_state(page, NR_PAGETABLE);
2203 }
2204
2205 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2206 ({ \
2207 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2208 pte_t *__pte = pte_offset_map(pmd, address); \
2209 *(ptlp) = __ptl; \
2210 spin_lock(__ptl); \
2211 __pte; \
2212 })
2213
2214 #define pte_unmap_unlock(pte, ptl) do { \
2215 spin_unlock(ptl); \
2216 pte_unmap(pte); \
2217 } while (0)
2218
2219 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2220
2221 #define pte_alloc_map(mm, pmd, address) \
2222 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2223
2224 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2225 (pte_alloc(mm, pmd) ? \
2226 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2227
2228 #define pte_alloc_kernel(pmd, address) \
2229 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2230 NULL: pte_offset_kernel(pmd, address))
2231
2232 #if USE_SPLIT_PMD_PTLOCKS
2233
2234 static struct page *pmd_to_page(pmd_t *pmd)
2235 {
2236 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2237 return virt_to_page((void *)((unsigned long) pmd & mask));
2238 }
2239
2240 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2241 {
2242 return ptlock_ptr(pmd_to_page(pmd));
2243 }
2244
2245 static inline bool pgtable_pmd_page_ctor(struct page *page)
2246 {
2247 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2248 page->pmd_huge_pte = NULL;
2249 #endif
2250 return ptlock_init(page);
2251 }
2252
2253 static inline void pgtable_pmd_page_dtor(struct page *page)
2254 {
2255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2256 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2257 #endif
2258 ptlock_free(page);
2259 }
2260
2261 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2262
2263 #else
2264
2265 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2266 {
2267 return &mm->page_table_lock;
2268 }
2269
2270 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2271 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2272
2273 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2274
2275 #endif
2276
2277 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2278 {
2279 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2280 spin_lock(ptl);
2281 return ptl;
2282 }
2283
2284 /*
2285 * No scalability reason to split PUD locks yet, but follow the same pattern
2286 * as the PMD locks to make it easier if we decide to. The VM should not be
2287 * considered ready to switch to split PUD locks yet; there may be places
2288 * which need to be converted from page_table_lock.
2289 */
2290 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2291 {
2292 return &mm->page_table_lock;
2293 }
2294
2295 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2296 {
2297 spinlock_t *ptl = pud_lockptr(mm, pud);
2298
2299 spin_lock(ptl);
2300 return ptl;
2301 }
2302
2303 extern void __init pagecache_init(void);
2304 extern void __init free_area_init_memoryless_node(int nid);
2305 extern void free_initmem(void);
2306
2307 /*
2308 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2309 * into the buddy system. The freed pages will be poisoned with pattern
2310 * "poison" if it's within range [0, UCHAR_MAX].
2311 * Return pages freed into the buddy system.
2312 */
2313 extern unsigned long free_reserved_area(void *start, void *end,
2314 int poison, const char *s);
2315
2316 #ifdef CONFIG_HIGHMEM
2317 /*
2318 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2319 * and totalram_pages.
2320 */
2321 extern void free_highmem_page(struct page *page);
2322 #endif
2323
2324 extern void adjust_managed_page_count(struct page *page, long count);
2325 extern void mem_init_print_info(const char *str);
2326
2327 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2328
2329 /* Free the reserved page into the buddy system, so it gets managed. */
2330 static inline void __free_reserved_page(struct page *page)
2331 {
2332 ClearPageReserved(page);
2333 init_page_count(page);
2334 __free_page(page);
2335 }
2336
2337 static inline void free_reserved_page(struct page *page)
2338 {
2339 __free_reserved_page(page);
2340 adjust_managed_page_count(page, 1);
2341 }
2342
2343 static inline void mark_page_reserved(struct page *page)
2344 {
2345 SetPageReserved(page);
2346 adjust_managed_page_count(page, -1);
2347 }
2348
2349 /*
2350 * Default method to free all the __init memory into the buddy system.
2351 * The freed pages will be poisoned with pattern "poison" if it's within
2352 * range [0, UCHAR_MAX].
2353 * Return pages freed into the buddy system.
2354 */
2355 static inline unsigned long free_initmem_default(int poison)
2356 {
2357 extern char __init_begin[], __init_end[];
2358
2359 return free_reserved_area(&__init_begin, &__init_end,
2360 poison, "unused kernel");
2361 }
2362
2363 static inline unsigned long get_num_physpages(void)
2364 {
2365 int nid;
2366 unsigned long phys_pages = 0;
2367
2368 for_each_online_node(nid)
2369 phys_pages += node_present_pages(nid);
2370
2371 return phys_pages;
2372 }
2373
2374 /*
2375 * Using memblock node mappings, an architecture may initialise its
2376 * zones, allocate the backing mem_map and account for memory holes in an
2377 * architecture independent manner.
2378 *
2379 * An architecture is expected to register range of page frames backed by
2380 * physical memory with memblock_add[_node]() before calling
2381 * free_area_init() passing in the PFN each zone ends at. At a basic
2382 * usage, an architecture is expected to do something like
2383 *
2384 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2385 * max_highmem_pfn};
2386 * for_each_valid_physical_page_range()
2387 * memblock_add_node(base, size, nid)
2388 * free_area_init(max_zone_pfns);
2389 */
2390 void free_area_init(unsigned long *max_zone_pfn);
2391 unsigned long node_map_pfn_alignment(void);
2392 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2393 unsigned long end_pfn);
2394 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2395 unsigned long end_pfn);
2396 extern void get_pfn_range_for_nid(unsigned int nid,
2397 unsigned long *start_pfn, unsigned long *end_pfn);
2398 extern unsigned long find_min_pfn_with_active_regions(void);
2399
2400 #ifndef CONFIG_NEED_MULTIPLE_NODES
2401 static inline int early_pfn_to_nid(unsigned long pfn)
2402 {
2403 return 0;
2404 }
2405 #else
2406 /* please see mm/page_alloc.c */
2407 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2408 /* there is a per-arch backend function. */
2409 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2410 struct mminit_pfnnid_cache *state);
2411 #endif
2412
2413 extern void set_dma_reserve(unsigned long new_dma_reserve);
2414 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2415 enum memmap_context, struct vmem_altmap *);
2416 extern void setup_per_zone_wmarks(void);
2417 extern int __meminit init_per_zone_wmark_min(void);
2418 extern void mem_init(void);
2419 extern void __init mmap_init(void);
2420 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2421 extern long si_mem_available(void);
2422 extern void si_meminfo(struct sysinfo * val);
2423 extern void si_meminfo_node(struct sysinfo *val, int nid);
2424 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2425 extern unsigned long arch_reserved_kernel_pages(void);
2426 #endif
2427
2428 extern __printf(3, 4)
2429 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2430
2431 extern void setup_per_cpu_pageset(void);
2432
2433 /* page_alloc.c */
2434 extern int min_free_kbytes;
2435 extern int watermark_boost_factor;
2436 extern int watermark_scale_factor;
2437 extern bool arch_has_descending_max_zone_pfns(void);
2438
2439 /* nommu.c */
2440 extern atomic_long_t mmap_pages_allocated;
2441 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2442
2443 /* interval_tree.c */
2444 void vma_interval_tree_insert(struct vm_area_struct *node,
2445 struct rb_root_cached *root);
2446 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2447 struct vm_area_struct *prev,
2448 struct rb_root_cached *root);
2449 void vma_interval_tree_remove(struct vm_area_struct *node,
2450 struct rb_root_cached *root);
2451 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2452 unsigned long start, unsigned long last);
2453 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2454 unsigned long start, unsigned long last);
2455
2456 #define vma_interval_tree_foreach(vma, root, start, last) \
2457 for (vma = vma_interval_tree_iter_first(root, start, last); \
2458 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2459
2460 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2461 struct rb_root_cached *root);
2462 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2463 struct rb_root_cached *root);
2464 struct anon_vma_chain *
2465 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2466 unsigned long start, unsigned long last);
2467 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2468 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2469 #ifdef CONFIG_DEBUG_VM_RB
2470 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2471 #endif
2472
2473 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2474 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2475 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2476
2477 /* mmap.c */
2478 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2479 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2480 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2481 struct vm_area_struct *expand);
2482 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2483 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2484 {
2485 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2486 }
2487 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2488 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2489 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2490 struct mempolicy *, struct vm_userfaultfd_ctx);
2491 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2492 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2493 unsigned long addr, int new_below);
2494 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2495 unsigned long addr, int new_below);
2496 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2497 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2498 struct rb_node **, struct rb_node *);
2499 extern void unlink_file_vma(struct vm_area_struct *);
2500 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2501 unsigned long addr, unsigned long len, pgoff_t pgoff,
2502 bool *need_rmap_locks);
2503 extern void exit_mmap(struct mm_struct *);
2504
2505 static inline int check_data_rlimit(unsigned long rlim,
2506 unsigned long new,
2507 unsigned long start,
2508 unsigned long end_data,
2509 unsigned long start_data)
2510 {
2511 if (rlim < RLIM_INFINITY) {
2512 if (((new - start) + (end_data - start_data)) > rlim)
2513 return -ENOSPC;
2514 }
2515
2516 return 0;
2517 }
2518
2519 extern int mm_take_all_locks(struct mm_struct *mm);
2520 extern void mm_drop_all_locks(struct mm_struct *mm);
2521
2522 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2523 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2524 extern struct file *get_task_exe_file(struct task_struct *task);
2525
2526 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2527 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2528
2529 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2530 const struct vm_special_mapping *sm);
2531 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2532 unsigned long addr, unsigned long len,
2533 unsigned long flags,
2534 const struct vm_special_mapping *spec);
2535 /* This is an obsolete alternative to _install_special_mapping. */
2536 extern int install_special_mapping(struct mm_struct *mm,
2537 unsigned long addr, unsigned long len,
2538 unsigned long flags, struct page **pages);
2539
2540 unsigned long randomize_stack_top(unsigned long stack_top);
2541
2542 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2543
2544 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2545 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2546 struct list_head *uf);
2547 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2548 unsigned long len, unsigned long prot, unsigned long flags,
2549 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2550 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2551 struct list_head *uf, bool downgrade);
2552 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2553 struct list_head *uf);
2554 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2555
2556 #ifdef CONFIG_MMU
2557 extern int __mm_populate(unsigned long addr, unsigned long len,
2558 int ignore_errors);
2559 static inline void mm_populate(unsigned long addr, unsigned long len)
2560 {
2561 /* Ignore errors */
2562 (void) __mm_populate(addr, len, 1);
2563 }
2564 #else
2565 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2566 #endif
2567
2568 /* These take the mm semaphore themselves */
2569 extern int __must_check vm_brk(unsigned long, unsigned long);
2570 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2571 extern int vm_munmap(unsigned long, size_t);
2572 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2573 unsigned long, unsigned long,
2574 unsigned long, unsigned long);
2575
2576 struct vm_unmapped_area_info {
2577 #define VM_UNMAPPED_AREA_TOPDOWN 1
2578 unsigned long flags;
2579 unsigned long length;
2580 unsigned long low_limit;
2581 unsigned long high_limit;
2582 unsigned long align_mask;
2583 unsigned long align_offset;
2584 };
2585
2586 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2587
2588 /* truncate.c */
2589 extern void truncate_inode_pages(struct address_space *, loff_t);
2590 extern void truncate_inode_pages_range(struct address_space *,
2591 loff_t lstart, loff_t lend);
2592 extern void truncate_inode_pages_final(struct address_space *);
2593
2594 /* generic vm_area_ops exported for stackable file systems */
2595 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2596 extern void filemap_map_pages(struct vm_fault *vmf,
2597 pgoff_t start_pgoff, pgoff_t end_pgoff);
2598 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2599
2600 /* mm/page-writeback.c */
2601 int __must_check write_one_page(struct page *page);
2602 void task_dirty_inc(struct task_struct *tsk);
2603
2604 extern unsigned long stack_guard_gap;
2605 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2606 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2607
2608 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2609 extern int expand_downwards(struct vm_area_struct *vma,
2610 unsigned long address);
2611 #if VM_GROWSUP
2612 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2613 #else
2614 #define expand_upwards(vma, address) (0)
2615 #endif
2616
2617 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2618 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2619 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2620 struct vm_area_struct **pprev);
2621
2622 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2623 NULL if none. Assume start_addr < end_addr. */
2624 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2625 {
2626 struct vm_area_struct * vma = find_vma(mm,start_addr);
2627
2628 if (vma && end_addr <= vma->vm_start)
2629 vma = NULL;
2630 return vma;
2631 }
2632
2633 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2634 {
2635 unsigned long vm_start = vma->vm_start;
2636
2637 if (vma->vm_flags & VM_GROWSDOWN) {
2638 vm_start -= stack_guard_gap;
2639 if (vm_start > vma->vm_start)
2640 vm_start = 0;
2641 }
2642 return vm_start;
2643 }
2644
2645 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2646 {
2647 unsigned long vm_end = vma->vm_end;
2648
2649 if (vma->vm_flags & VM_GROWSUP) {
2650 vm_end += stack_guard_gap;
2651 if (vm_end < vma->vm_end)
2652 vm_end = -PAGE_SIZE;
2653 }
2654 return vm_end;
2655 }
2656
2657 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2658 {
2659 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2660 }
2661
2662 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2663 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2664 unsigned long vm_start, unsigned long vm_end)
2665 {
2666 struct vm_area_struct *vma = find_vma(mm, vm_start);
2667
2668 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2669 vma = NULL;
2670
2671 return vma;
2672 }
2673
2674 static inline bool range_in_vma(struct vm_area_struct *vma,
2675 unsigned long start, unsigned long end)
2676 {
2677 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2678 }
2679
2680 #ifdef CONFIG_MMU
2681 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2682 void vma_set_page_prot(struct vm_area_struct *vma);
2683 #else
2684 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2685 {
2686 return __pgprot(0);
2687 }
2688 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2689 {
2690 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2691 }
2692 #endif
2693
2694 #ifdef CONFIG_NUMA_BALANCING
2695 unsigned long change_prot_numa(struct vm_area_struct *vma,
2696 unsigned long start, unsigned long end);
2697 #endif
2698
2699 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2700 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2701 unsigned long pfn, unsigned long size, pgprot_t);
2702 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2703 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2704 struct page **pages, unsigned long *num);
2705 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2706 unsigned long num);
2707 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2708 unsigned long num);
2709 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2710 unsigned long pfn);
2711 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2712 unsigned long pfn, pgprot_t pgprot);
2713 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2714 pfn_t pfn);
2715 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2716 pfn_t pfn, pgprot_t pgprot);
2717 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2718 unsigned long addr, pfn_t pfn);
2719 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2720
2721 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2722 unsigned long addr, struct page *page)
2723 {
2724 int err = vm_insert_page(vma, addr, page);
2725
2726 if (err == -ENOMEM)
2727 return VM_FAULT_OOM;
2728 if (err < 0 && err != -EBUSY)
2729 return VM_FAULT_SIGBUS;
2730
2731 return VM_FAULT_NOPAGE;
2732 }
2733
2734 static inline vm_fault_t vmf_error(int err)
2735 {
2736 if (err == -ENOMEM)
2737 return VM_FAULT_OOM;
2738 return VM_FAULT_SIGBUS;
2739 }
2740
2741 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2742 unsigned int foll_flags);
2743
2744 #define FOLL_WRITE 0x01 /* check pte is writable */
2745 #define FOLL_TOUCH 0x02 /* mark page accessed */
2746 #define FOLL_GET 0x04 /* do get_page on page */
2747 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2748 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2749 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2750 * and return without waiting upon it */
2751 #define FOLL_POPULATE 0x40 /* fault in page */
2752 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2753 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2754 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2755 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2756 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2757 #define FOLL_MLOCK 0x1000 /* lock present pages */
2758 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2759 #define FOLL_COW 0x4000 /* internal GUP flag */
2760 #define FOLL_ANON 0x8000 /* don't do file mappings */
2761 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2762 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2763 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2764 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2765
2766 /*
2767 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2768 * other. Here is what they mean, and how to use them:
2769 *
2770 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2771 * period _often_ under userspace control. This is in contrast to
2772 * iov_iter_get_pages(), whose usages are transient.
2773 *
2774 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2775 * lifetime enforced by the filesystem and we need guarantees that longterm
2776 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2777 * the filesystem. Ideas for this coordination include revoking the longterm
2778 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2779 * added after the problem with filesystems was found FS DAX VMAs are
2780 * specifically failed. Filesystem pages are still subject to bugs and use of
2781 * FOLL_LONGTERM should be avoided on those pages.
2782 *
2783 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2784 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2785 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2786 * is due to an incompatibility with the FS DAX check and
2787 * FAULT_FLAG_ALLOW_RETRY.
2788 *
2789 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2790 * that region. And so, CMA attempts to migrate the page before pinning, when
2791 * FOLL_LONGTERM is specified.
2792 *
2793 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2794 * but an additional pin counting system) will be invoked. This is intended for
2795 * anything that gets a page reference and then touches page data (for example,
2796 * Direct IO). This lets the filesystem know that some non-file-system entity is
2797 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2798 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2799 * a call to unpin_user_page().
2800 *
2801 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2802 * and separate refcounting mechanisms, however, and that means that each has
2803 * its own acquire and release mechanisms:
2804 *
2805 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2806 *
2807 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2808 *
2809 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2810 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2811 * calls applied to them, and that's perfectly OK. This is a constraint on the
2812 * callers, not on the pages.)
2813 *
2814 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2815 * directly by the caller. That's in order to help avoid mismatches when
2816 * releasing pages: get_user_pages*() pages must be released via put_page(),
2817 * while pin_user_pages*() pages must be released via unpin_user_page().
2818 *
2819 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2820 */
2821
2822 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2823 {
2824 if (vm_fault & VM_FAULT_OOM)
2825 return -ENOMEM;
2826 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2827 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2828 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2829 return -EFAULT;
2830 return 0;
2831 }
2832
2833 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2834 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2835 unsigned long size, pte_fn_t fn, void *data);
2836 extern int apply_to_existing_page_range(struct mm_struct *mm,
2837 unsigned long address, unsigned long size,
2838 pte_fn_t fn, void *data);
2839
2840 #ifdef CONFIG_PAGE_POISONING
2841 extern bool page_poisoning_enabled(void);
2842 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2843 #else
2844 static inline bool page_poisoning_enabled(void) { return false; }
2845 static inline void kernel_poison_pages(struct page *page, int numpages,
2846 int enable) { }
2847 #endif
2848
2849 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2850 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2851 #else
2852 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2853 #endif
2854 static inline bool want_init_on_alloc(gfp_t flags)
2855 {
2856 if (static_branch_unlikely(&init_on_alloc) &&
2857 !page_poisoning_enabled())
2858 return true;
2859 return flags & __GFP_ZERO;
2860 }
2861
2862 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2863 DECLARE_STATIC_KEY_TRUE(init_on_free);
2864 #else
2865 DECLARE_STATIC_KEY_FALSE(init_on_free);
2866 #endif
2867 static inline bool want_init_on_free(void)
2868 {
2869 return static_branch_unlikely(&init_on_free) &&
2870 !page_poisoning_enabled();
2871 }
2872
2873 #ifdef CONFIG_DEBUG_PAGEALLOC
2874 extern void init_debug_pagealloc(void);
2875 #else
2876 static inline void init_debug_pagealloc(void) {}
2877 #endif
2878 extern bool _debug_pagealloc_enabled_early;
2879 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2880
2881 static inline bool debug_pagealloc_enabled(void)
2882 {
2883 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2884 _debug_pagealloc_enabled_early;
2885 }
2886
2887 /*
2888 * For use in fast paths after init_debug_pagealloc() has run, or when a
2889 * false negative result is not harmful when called too early.
2890 */
2891 static inline bool debug_pagealloc_enabled_static(void)
2892 {
2893 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2894 return false;
2895
2896 return static_branch_unlikely(&_debug_pagealloc_enabled);
2897 }
2898
2899 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2900 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2901
2902 /*
2903 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2904 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2905 */
2906 static inline void
2907 kernel_map_pages(struct page *page, int numpages, int enable)
2908 {
2909 __kernel_map_pages(page, numpages, enable);
2910 }
2911 #ifdef CONFIG_HIBERNATION
2912 extern bool kernel_page_present(struct page *page);
2913 #endif /* CONFIG_HIBERNATION */
2914 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2915 static inline void
2916 kernel_map_pages(struct page *page, int numpages, int enable) {}
2917 #ifdef CONFIG_HIBERNATION
2918 static inline bool kernel_page_present(struct page *page) { return true; }
2919 #endif /* CONFIG_HIBERNATION */
2920 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2921
2922 #ifdef __HAVE_ARCH_GATE_AREA
2923 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2924 extern int in_gate_area_no_mm(unsigned long addr);
2925 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2926 #else
2927 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2928 {
2929 return NULL;
2930 }
2931 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2932 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2933 {
2934 return 0;
2935 }
2936 #endif /* __HAVE_ARCH_GATE_AREA */
2937
2938 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2939
2940 #ifdef CONFIG_SYSCTL
2941 extern int sysctl_drop_caches;
2942 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2943 loff_t *);
2944 #endif
2945
2946 void drop_slab(void);
2947 void drop_slab_node(int nid);
2948
2949 #ifndef CONFIG_MMU
2950 #define randomize_va_space 0
2951 #else
2952 extern int randomize_va_space;
2953 #endif
2954
2955 const char * arch_vma_name(struct vm_area_struct *vma);
2956 #ifdef CONFIG_MMU
2957 void print_vma_addr(char *prefix, unsigned long rip);
2958 #else
2959 static inline void print_vma_addr(char *prefix, unsigned long rip)
2960 {
2961 }
2962 #endif
2963
2964 void *sparse_buffer_alloc(unsigned long size);
2965 struct page * __populate_section_memmap(unsigned long pfn,
2966 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2967 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2968 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2969 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2970 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2971 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2972 struct vmem_altmap *altmap);
2973 void *vmemmap_alloc_block(unsigned long size, int node);
2974 struct vmem_altmap;
2975 void *vmemmap_alloc_block_buf(unsigned long size, int node,
2976 struct vmem_altmap *altmap);
2977 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2978 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2979 int node, struct vmem_altmap *altmap);
2980 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2981 struct vmem_altmap *altmap);
2982 void vmemmap_populate_print_last(void);
2983 #ifdef CONFIG_MEMORY_HOTPLUG
2984 void vmemmap_free(unsigned long start, unsigned long end,
2985 struct vmem_altmap *altmap);
2986 #endif
2987 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2988 unsigned long nr_pages);
2989
2990 enum mf_flags {
2991 MF_COUNT_INCREASED = 1 << 0,
2992 MF_ACTION_REQUIRED = 1 << 1,
2993 MF_MUST_KILL = 1 << 2,
2994 MF_SOFT_OFFLINE = 1 << 3,
2995 };
2996 extern int memory_failure(unsigned long pfn, int flags);
2997 extern void memory_failure_queue(unsigned long pfn, int flags);
2998 extern void memory_failure_queue_kick(int cpu);
2999 extern int unpoison_memory(unsigned long pfn);
3000 extern int get_hwpoison_page(struct page *page);
3001 #define put_hwpoison_page(page) put_page(page)
3002 extern int sysctl_memory_failure_early_kill;
3003 extern int sysctl_memory_failure_recovery;
3004 extern void shake_page(struct page *p, int access);
3005 extern atomic_long_t num_poisoned_pages __read_mostly;
3006 extern int soft_offline_page(unsigned long pfn, int flags);
3007
3008
3009 /*
3010 * Error handlers for various types of pages.
3011 */
3012 enum mf_result {
3013 MF_IGNORED, /* Error: cannot be handled */
3014 MF_FAILED, /* Error: handling failed */
3015 MF_DELAYED, /* Will be handled later */
3016 MF_RECOVERED, /* Successfully recovered */
3017 };
3018
3019 enum mf_action_page_type {
3020 MF_MSG_KERNEL,
3021 MF_MSG_KERNEL_HIGH_ORDER,
3022 MF_MSG_SLAB,
3023 MF_MSG_DIFFERENT_COMPOUND,
3024 MF_MSG_POISONED_HUGE,
3025 MF_MSG_HUGE,
3026 MF_MSG_FREE_HUGE,
3027 MF_MSG_NON_PMD_HUGE,
3028 MF_MSG_UNMAP_FAILED,
3029 MF_MSG_DIRTY_SWAPCACHE,
3030 MF_MSG_CLEAN_SWAPCACHE,
3031 MF_MSG_DIRTY_MLOCKED_LRU,
3032 MF_MSG_CLEAN_MLOCKED_LRU,
3033 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3034 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3035 MF_MSG_DIRTY_LRU,
3036 MF_MSG_CLEAN_LRU,
3037 MF_MSG_TRUNCATED_LRU,
3038 MF_MSG_BUDDY,
3039 MF_MSG_BUDDY_2ND,
3040 MF_MSG_DAX,
3041 MF_MSG_UNKNOWN,
3042 };
3043
3044 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3045 extern void clear_huge_page(struct page *page,
3046 unsigned long addr_hint,
3047 unsigned int pages_per_huge_page);
3048 extern void copy_user_huge_page(struct page *dst, struct page *src,
3049 unsigned long addr_hint,
3050 struct vm_area_struct *vma,
3051 unsigned int pages_per_huge_page);
3052 extern long copy_huge_page_from_user(struct page *dst_page,
3053 const void __user *usr_src,
3054 unsigned int pages_per_huge_page,
3055 bool allow_pagefault);
3056
3057 /**
3058 * vma_is_special_huge - Are transhuge page-table entries considered special?
3059 * @vma: Pointer to the struct vm_area_struct to consider
3060 *
3061 * Whether transhuge page-table entries are considered "special" following
3062 * the definition in vm_normal_page().
3063 *
3064 * Return: true if transhuge page-table entries should be considered special,
3065 * false otherwise.
3066 */
3067 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3068 {
3069 return vma_is_dax(vma) || (vma->vm_file &&
3070 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3071 }
3072
3073 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3074
3075 #ifdef CONFIG_DEBUG_PAGEALLOC
3076 extern unsigned int _debug_guardpage_minorder;
3077 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3078
3079 static inline unsigned int debug_guardpage_minorder(void)
3080 {
3081 return _debug_guardpage_minorder;
3082 }
3083
3084 static inline bool debug_guardpage_enabled(void)
3085 {
3086 return static_branch_unlikely(&_debug_guardpage_enabled);
3087 }
3088
3089 static inline bool page_is_guard(struct page *page)
3090 {
3091 if (!debug_guardpage_enabled())
3092 return false;
3093
3094 return PageGuard(page);
3095 }
3096 #else
3097 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3098 static inline bool debug_guardpage_enabled(void) { return false; }
3099 static inline bool page_is_guard(struct page *page) { return false; }
3100 #endif /* CONFIG_DEBUG_PAGEALLOC */
3101
3102 #if MAX_NUMNODES > 1
3103 void __init setup_nr_node_ids(void);
3104 #else
3105 static inline void setup_nr_node_ids(void) {}
3106 #endif
3107
3108 extern int memcmp_pages(struct page *page1, struct page *page2);
3109
3110 static inline int pages_identical(struct page *page1, struct page *page2)
3111 {
3112 return !memcmp_pages(page1, page2);
3113 }
3114
3115 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3116 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3117 pgoff_t first_index, pgoff_t nr,
3118 pgoff_t bitmap_pgoff,
3119 unsigned long *bitmap,
3120 pgoff_t *start,
3121 pgoff_t *end);
3122
3123 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3124 pgoff_t first_index, pgoff_t nr);
3125 #endif
3126
3127 extern int sysctl_nr_trim_pages;
3128
3129 #endif /* __KERNEL__ */
3130 #endif /* _LINUX_MM_H */