]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/mm.h
Merge tag 'usercopy-v4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-eoan-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 void init_mm_internals(void);
36
37 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
38 extern unsigned long max_mapnr;
39
40 static inline void set_max_mapnr(unsigned long limit)
41 {
42 max_mapnr = limit;
43 }
44 #else
45 static inline void set_max_mapnr(unsigned long limit) { }
46 #endif
47
48 extern unsigned long totalram_pages;
49 extern void * high_memory;
50 extern int page_cluster;
51
52 #ifdef CONFIG_SYSCTL
53 extern int sysctl_legacy_va_layout;
54 #else
55 #define sysctl_legacy_va_layout 0
56 #endif
57
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 extern const int mmap_rnd_bits_min;
60 extern const int mmap_rnd_bits_max;
61 extern int mmap_rnd_bits __read_mostly;
62 #endif
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 extern const int mmap_rnd_compat_bits_min;
65 extern const int mmap_rnd_compat_bits_max;
66 extern int mmap_rnd_compat_bits __read_mostly;
67 #endif
68
69 #include <asm/page.h>
70 #include <asm/pgtable.h>
71 #include <asm/processor.h>
72
73 #ifndef __pa_symbol
74 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
75 #endif
76
77 #ifndef page_to_virt
78 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
79 #endif
80
81 #ifndef lm_alias
82 #define lm_alias(x) __va(__pa_symbol(x))
83 #endif
84
85 /*
86 * To prevent common memory management code establishing
87 * a zero page mapping on a read fault.
88 * This macro should be defined within <asm/pgtable.h>.
89 * s390 does this to prevent multiplexing of hardware bits
90 * related to the physical page in case of virtualization.
91 */
92 #ifndef mm_forbids_zeropage
93 #define mm_forbids_zeropage(X) (0)
94 #endif
95
96 /*
97 * Default maximum number of active map areas, this limits the number of vmas
98 * per mm struct. Users can overwrite this number by sysctl but there is a
99 * problem.
100 *
101 * When a program's coredump is generated as ELF format, a section is created
102 * per a vma. In ELF, the number of sections is represented in unsigned short.
103 * This means the number of sections should be smaller than 65535 at coredump.
104 * Because the kernel adds some informative sections to a image of program at
105 * generating coredump, we need some margin. The number of extra sections is
106 * 1-3 now and depends on arch. We use "5" as safe margin, here.
107 *
108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
109 * not a hard limit any more. Although some userspace tools can be surprised by
110 * that.
111 */
112 #define MAPCOUNT_ELF_CORE_MARGIN (5)
113 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
114
115 extern int sysctl_max_map_count;
116
117 extern unsigned long sysctl_user_reserve_kbytes;
118 extern unsigned long sysctl_admin_reserve_kbytes;
119
120 extern int sysctl_overcommit_memory;
121 extern int sysctl_overcommit_ratio;
122 extern unsigned long sysctl_overcommit_kbytes;
123
124 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
127 size_t *, loff_t *);
128
129 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
130
131 /* to align the pointer to the (next) page boundary */
132 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
133
134 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
135 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
136
137 /*
138 * Linux kernel virtual memory manager primitives.
139 * The idea being to have a "virtual" mm in the same way
140 * we have a virtual fs - giving a cleaner interface to the
141 * mm details, and allowing different kinds of memory mappings
142 * (from shared memory to executable loading to arbitrary
143 * mmap() functions).
144 */
145
146 extern struct kmem_cache *vm_area_cachep;
147
148 #ifndef CONFIG_MMU
149 extern struct rb_root nommu_region_tree;
150 extern struct rw_semaphore nommu_region_sem;
151
152 extern unsigned int kobjsize(const void *objp);
153 #endif
154
155 /*
156 * vm_flags in vm_area_struct, see mm_types.h.
157 * When changing, update also include/trace/events/mmflags.h
158 */
159 #define VM_NONE 0x00000000
160
161 #define VM_READ 0x00000001 /* currently active flags */
162 #define VM_WRITE 0x00000002
163 #define VM_EXEC 0x00000004
164 #define VM_SHARED 0x00000008
165
166 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
167 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
168 #define VM_MAYWRITE 0x00000020
169 #define VM_MAYEXEC 0x00000040
170 #define VM_MAYSHARE 0x00000080
171
172 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
173 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
174 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
175 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
176 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
177
178 #define VM_LOCKED 0x00002000
179 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
180
181 /* Used by sys_madvise() */
182 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
183 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
184
185 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
186 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
187 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
188 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
189 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
190 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
191 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
192 #define VM_ARCH_2 0x02000000
193 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
194
195 #ifdef CONFIG_MEM_SOFT_DIRTY
196 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
197 #else
198 # define VM_SOFTDIRTY 0
199 #endif
200
201 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
202 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
203 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
204 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
205
206 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
207 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
210 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
211 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
212 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
213 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
214 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
215 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
216
217 #if defined(CONFIG_X86)
218 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
219 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
220 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
221 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
222 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
223 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
224 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
225 #endif
226 #elif defined(CONFIG_PPC)
227 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
228 #elif defined(CONFIG_PARISC)
229 # define VM_GROWSUP VM_ARCH_1
230 #elif defined(CONFIG_METAG)
231 # define VM_GROWSUP VM_ARCH_1
232 #elif defined(CONFIG_IA64)
233 # define VM_GROWSUP VM_ARCH_1
234 #elif !defined(CONFIG_MMU)
235 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
236 #endif
237
238 #if defined(CONFIG_X86)
239 /* MPX specific bounds table or bounds directory */
240 # define VM_MPX VM_ARCH_2
241 #endif
242
243 #ifndef VM_GROWSUP
244 # define VM_GROWSUP VM_NONE
245 #endif
246
247 /* Bits set in the VMA until the stack is in its final location */
248 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
249
250 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
251 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
252 #endif
253
254 #ifdef CONFIG_STACK_GROWSUP
255 #define VM_STACK VM_GROWSUP
256 #else
257 #define VM_STACK VM_GROWSDOWN
258 #endif
259
260 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
261
262 /*
263 * Special vmas that are non-mergable, non-mlock()able.
264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
265 */
266 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
267
268 /* This mask defines which mm->def_flags a process can inherit its parent */
269 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
270
271 /* This mask is used to clear all the VMA flags used by mlock */
272 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
273
274 /*
275 * mapping from the currently active vm_flags protection bits (the
276 * low four bits) to a page protection mask..
277 */
278 extern pgprot_t protection_map[16];
279
280 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
281 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
282 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
283 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
284 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
285 #define FAULT_FLAG_TRIED 0x20 /* Second try */
286 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
287 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
288 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
289
290 #define FAULT_FLAG_TRACE \
291 { FAULT_FLAG_WRITE, "WRITE" }, \
292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
296 { FAULT_FLAG_TRIED, "TRIED" }, \
297 { FAULT_FLAG_USER, "USER" }, \
298 { FAULT_FLAG_REMOTE, "REMOTE" }, \
299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
300
301 /*
302 * vm_fault is filled by the the pagefault handler and passed to the vma's
303 * ->fault function. The vma's ->fault is responsible for returning a bitmask
304 * of VM_FAULT_xxx flags that give details about how the fault was handled.
305 *
306 * MM layer fills up gfp_mask for page allocations but fault handler might
307 * alter it if its implementation requires a different allocation context.
308 *
309 * pgoff should be used in favour of virtual_address, if possible.
310 */
311 struct vm_fault {
312 struct vm_area_struct *vma; /* Target VMA */
313 unsigned int flags; /* FAULT_FLAG_xxx flags */
314 gfp_t gfp_mask; /* gfp mask to be used for allocations */
315 pgoff_t pgoff; /* Logical page offset based on vma */
316 unsigned long address; /* Faulting virtual address */
317 pmd_t *pmd; /* Pointer to pmd entry matching
318 * the 'address' */
319 pud_t *pud; /* Pointer to pud entry matching
320 * the 'address'
321 */
322 pte_t orig_pte; /* Value of PTE at the time of fault */
323
324 struct page *cow_page; /* Page handler may use for COW fault */
325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
326 struct page *page; /* ->fault handlers should return a
327 * page here, unless VM_FAULT_NOPAGE
328 * is set (which is also implied by
329 * VM_FAULT_ERROR).
330 */
331 /* These three entries are valid only while holding ptl lock */
332 pte_t *pte; /* Pointer to pte entry matching
333 * the 'address'. NULL if the page
334 * table hasn't been allocated.
335 */
336 spinlock_t *ptl; /* Page table lock.
337 * Protects pte page table if 'pte'
338 * is not NULL, otherwise pmd.
339 */
340 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
341 * vm_ops->map_pages() calls
342 * alloc_set_pte() from atomic context.
343 * do_fault_around() pre-allocates
344 * page table to avoid allocation from
345 * atomic context.
346 */
347 };
348
349 /* page entry size for vm->huge_fault() */
350 enum page_entry_size {
351 PE_SIZE_PTE = 0,
352 PE_SIZE_PMD,
353 PE_SIZE_PUD,
354 };
355
356 /*
357 * These are the virtual MM functions - opening of an area, closing and
358 * unmapping it (needed to keep files on disk up-to-date etc), pointer
359 * to the functions called when a no-page or a wp-page exception occurs.
360 */
361 struct vm_operations_struct {
362 void (*open)(struct vm_area_struct * area);
363 void (*close)(struct vm_area_struct * area);
364 int (*mremap)(struct vm_area_struct * area);
365 int (*fault)(struct vm_fault *vmf);
366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
367 void (*map_pages)(struct vm_fault *vmf,
368 pgoff_t start_pgoff, pgoff_t end_pgoff);
369
370 /* notification that a previously read-only page is about to become
371 * writable, if an error is returned it will cause a SIGBUS */
372 int (*page_mkwrite)(struct vm_fault *vmf);
373
374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
375 int (*pfn_mkwrite)(struct vm_fault *vmf);
376
377 /* called by access_process_vm when get_user_pages() fails, typically
378 * for use by special VMAs that can switch between memory and hardware
379 */
380 int (*access)(struct vm_area_struct *vma, unsigned long addr,
381 void *buf, int len, int write);
382
383 /* Called by the /proc/PID/maps code to ask the vma whether it
384 * has a special name. Returning non-NULL will also cause this
385 * vma to be dumped unconditionally. */
386 const char *(*name)(struct vm_area_struct *vma);
387
388 #ifdef CONFIG_NUMA
389 /*
390 * set_policy() op must add a reference to any non-NULL @new mempolicy
391 * to hold the policy upon return. Caller should pass NULL @new to
392 * remove a policy and fall back to surrounding context--i.e. do not
393 * install a MPOL_DEFAULT policy, nor the task or system default
394 * mempolicy.
395 */
396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
397
398 /*
399 * get_policy() op must add reference [mpol_get()] to any policy at
400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
401 * in mm/mempolicy.c will do this automatically.
402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
405 * must return NULL--i.e., do not "fallback" to task or system default
406 * policy.
407 */
408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
409 unsigned long addr);
410 #endif
411 /*
412 * Called by vm_normal_page() for special PTEs to find the
413 * page for @addr. This is useful if the default behavior
414 * (using pte_page()) would not find the correct page.
415 */
416 struct page *(*find_special_page)(struct vm_area_struct *vma,
417 unsigned long addr);
418 };
419
420 struct mmu_gather;
421 struct inode;
422
423 #define page_private(page) ((page)->private)
424 #define set_page_private(page, v) ((page)->private = (v))
425
426 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
427 static inline int pmd_devmap(pmd_t pmd)
428 {
429 return 0;
430 }
431 static inline int pud_devmap(pud_t pud)
432 {
433 return 0;
434 }
435 static inline int pgd_devmap(pgd_t pgd)
436 {
437 return 0;
438 }
439 #endif
440
441 /*
442 * FIXME: take this include out, include page-flags.h in
443 * files which need it (119 of them)
444 */
445 #include <linux/page-flags.h>
446 #include <linux/huge_mm.h>
447
448 /*
449 * Methods to modify the page usage count.
450 *
451 * What counts for a page usage:
452 * - cache mapping (page->mapping)
453 * - private data (page->private)
454 * - page mapped in a task's page tables, each mapping
455 * is counted separately
456 *
457 * Also, many kernel routines increase the page count before a critical
458 * routine so they can be sure the page doesn't go away from under them.
459 */
460
461 /*
462 * Drop a ref, return true if the refcount fell to zero (the page has no users)
463 */
464 static inline int put_page_testzero(struct page *page)
465 {
466 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
467 return page_ref_dec_and_test(page);
468 }
469
470 /*
471 * Try to grab a ref unless the page has a refcount of zero, return false if
472 * that is the case.
473 * This can be called when MMU is off so it must not access
474 * any of the virtual mappings.
475 */
476 static inline int get_page_unless_zero(struct page *page)
477 {
478 return page_ref_add_unless(page, 1, 0);
479 }
480
481 extern int page_is_ram(unsigned long pfn);
482
483 enum {
484 REGION_INTERSECTS,
485 REGION_DISJOINT,
486 REGION_MIXED,
487 };
488
489 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
490 unsigned long desc);
491
492 /* Support for virtually mapped pages */
493 struct page *vmalloc_to_page(const void *addr);
494 unsigned long vmalloc_to_pfn(const void *addr);
495
496 /*
497 * Determine if an address is within the vmalloc range
498 *
499 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
500 * is no special casing required.
501 */
502 static inline bool is_vmalloc_addr(const void *x)
503 {
504 #ifdef CONFIG_MMU
505 unsigned long addr = (unsigned long)x;
506
507 return addr >= VMALLOC_START && addr < VMALLOC_END;
508 #else
509 return false;
510 #endif
511 }
512 #ifdef CONFIG_MMU
513 extern int is_vmalloc_or_module_addr(const void *x);
514 #else
515 static inline int is_vmalloc_or_module_addr(const void *x)
516 {
517 return 0;
518 }
519 #endif
520
521 extern void kvfree(const void *addr);
522
523 static inline atomic_t *compound_mapcount_ptr(struct page *page)
524 {
525 return &page[1].compound_mapcount;
526 }
527
528 static inline int compound_mapcount(struct page *page)
529 {
530 VM_BUG_ON_PAGE(!PageCompound(page), page);
531 page = compound_head(page);
532 return atomic_read(compound_mapcount_ptr(page)) + 1;
533 }
534
535 /*
536 * The atomic page->_mapcount, starts from -1: so that transitions
537 * both from it and to it can be tracked, using atomic_inc_and_test
538 * and atomic_add_negative(-1).
539 */
540 static inline void page_mapcount_reset(struct page *page)
541 {
542 atomic_set(&(page)->_mapcount, -1);
543 }
544
545 int __page_mapcount(struct page *page);
546
547 static inline int page_mapcount(struct page *page)
548 {
549 VM_BUG_ON_PAGE(PageSlab(page), page);
550
551 if (unlikely(PageCompound(page)))
552 return __page_mapcount(page);
553 return atomic_read(&page->_mapcount) + 1;
554 }
555
556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
557 int total_mapcount(struct page *page);
558 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
559 #else
560 static inline int total_mapcount(struct page *page)
561 {
562 return page_mapcount(page);
563 }
564 static inline int page_trans_huge_mapcount(struct page *page,
565 int *total_mapcount)
566 {
567 int mapcount = page_mapcount(page);
568 if (total_mapcount)
569 *total_mapcount = mapcount;
570 return mapcount;
571 }
572 #endif
573
574 static inline struct page *virt_to_head_page(const void *x)
575 {
576 struct page *page = virt_to_page(x);
577
578 return compound_head(page);
579 }
580
581 void __put_page(struct page *page);
582
583 void put_pages_list(struct list_head *pages);
584
585 void split_page(struct page *page, unsigned int order);
586
587 /*
588 * Compound pages have a destructor function. Provide a
589 * prototype for that function and accessor functions.
590 * These are _only_ valid on the head of a compound page.
591 */
592 typedef void compound_page_dtor(struct page *);
593
594 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
595 enum compound_dtor_id {
596 NULL_COMPOUND_DTOR,
597 COMPOUND_PAGE_DTOR,
598 #ifdef CONFIG_HUGETLB_PAGE
599 HUGETLB_PAGE_DTOR,
600 #endif
601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
602 TRANSHUGE_PAGE_DTOR,
603 #endif
604 NR_COMPOUND_DTORS,
605 };
606 extern compound_page_dtor * const compound_page_dtors[];
607
608 static inline void set_compound_page_dtor(struct page *page,
609 enum compound_dtor_id compound_dtor)
610 {
611 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
612 page[1].compound_dtor = compound_dtor;
613 }
614
615 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
616 {
617 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
618 return compound_page_dtors[page[1].compound_dtor];
619 }
620
621 static inline unsigned int compound_order(struct page *page)
622 {
623 if (!PageHead(page))
624 return 0;
625 return page[1].compound_order;
626 }
627
628 static inline void set_compound_order(struct page *page, unsigned int order)
629 {
630 page[1].compound_order = order;
631 }
632
633 void free_compound_page(struct page *page);
634
635 #ifdef CONFIG_MMU
636 /*
637 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
638 * servicing faults for write access. In the normal case, do always want
639 * pte_mkwrite. But get_user_pages can cause write faults for mappings
640 * that do not have writing enabled, when used by access_process_vm.
641 */
642 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
643 {
644 if (likely(vma->vm_flags & VM_WRITE))
645 pte = pte_mkwrite(pte);
646 return pte;
647 }
648
649 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
650 struct page *page);
651 int finish_fault(struct vm_fault *vmf);
652 int finish_mkwrite_fault(struct vm_fault *vmf);
653 #endif
654
655 /*
656 * Multiple processes may "see" the same page. E.g. for untouched
657 * mappings of /dev/null, all processes see the same page full of
658 * zeroes, and text pages of executables and shared libraries have
659 * only one copy in memory, at most, normally.
660 *
661 * For the non-reserved pages, page_count(page) denotes a reference count.
662 * page_count() == 0 means the page is free. page->lru is then used for
663 * freelist management in the buddy allocator.
664 * page_count() > 0 means the page has been allocated.
665 *
666 * Pages are allocated by the slab allocator in order to provide memory
667 * to kmalloc and kmem_cache_alloc. In this case, the management of the
668 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
669 * unless a particular usage is carefully commented. (the responsibility of
670 * freeing the kmalloc memory is the caller's, of course).
671 *
672 * A page may be used by anyone else who does a __get_free_page().
673 * In this case, page_count still tracks the references, and should only
674 * be used through the normal accessor functions. The top bits of page->flags
675 * and page->virtual store page management information, but all other fields
676 * are unused and could be used privately, carefully. The management of this
677 * page is the responsibility of the one who allocated it, and those who have
678 * subsequently been given references to it.
679 *
680 * The other pages (we may call them "pagecache pages") are completely
681 * managed by the Linux memory manager: I/O, buffers, swapping etc.
682 * The following discussion applies only to them.
683 *
684 * A pagecache page contains an opaque `private' member, which belongs to the
685 * page's address_space. Usually, this is the address of a circular list of
686 * the page's disk buffers. PG_private must be set to tell the VM to call
687 * into the filesystem to release these pages.
688 *
689 * A page may belong to an inode's memory mapping. In this case, page->mapping
690 * is the pointer to the inode, and page->index is the file offset of the page,
691 * in units of PAGE_SIZE.
692 *
693 * If pagecache pages are not associated with an inode, they are said to be
694 * anonymous pages. These may become associated with the swapcache, and in that
695 * case PG_swapcache is set, and page->private is an offset into the swapcache.
696 *
697 * In either case (swapcache or inode backed), the pagecache itself holds one
698 * reference to the page. Setting PG_private should also increment the
699 * refcount. The each user mapping also has a reference to the page.
700 *
701 * The pagecache pages are stored in a per-mapping radix tree, which is
702 * rooted at mapping->page_tree, and indexed by offset.
703 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
704 * lists, we instead now tag pages as dirty/writeback in the radix tree.
705 *
706 * All pagecache pages may be subject to I/O:
707 * - inode pages may need to be read from disk,
708 * - inode pages which have been modified and are MAP_SHARED may need
709 * to be written back to the inode on disk,
710 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
711 * modified may need to be swapped out to swap space and (later) to be read
712 * back into memory.
713 */
714
715 /*
716 * The zone field is never updated after free_area_init_core()
717 * sets it, so none of the operations on it need to be atomic.
718 */
719
720 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
721 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
722 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
723 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
724 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
725
726 /*
727 * Define the bit shifts to access each section. For non-existent
728 * sections we define the shift as 0; that plus a 0 mask ensures
729 * the compiler will optimise away reference to them.
730 */
731 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
732 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
733 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
734 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
735
736 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
737 #ifdef NODE_NOT_IN_PAGE_FLAGS
738 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
739 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
740 SECTIONS_PGOFF : ZONES_PGOFF)
741 #else
742 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
743 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
744 NODES_PGOFF : ZONES_PGOFF)
745 #endif
746
747 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
748
749 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
750 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
751 #endif
752
753 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
754 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
755 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
756 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
757 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
758
759 static inline enum zone_type page_zonenum(const struct page *page)
760 {
761 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
762 }
763
764 #ifdef CONFIG_ZONE_DEVICE
765 static inline bool is_zone_device_page(const struct page *page)
766 {
767 return page_zonenum(page) == ZONE_DEVICE;
768 }
769 #else
770 static inline bool is_zone_device_page(const struct page *page)
771 {
772 return false;
773 }
774 #endif
775
776 static inline void get_page(struct page *page)
777 {
778 page = compound_head(page);
779 /*
780 * Getting a normal page or the head of a compound page
781 * requires to already have an elevated page->_refcount.
782 */
783 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
784 page_ref_inc(page);
785 }
786
787 static inline void put_page(struct page *page)
788 {
789 page = compound_head(page);
790
791 if (put_page_testzero(page))
792 __put_page(page);
793 }
794
795 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
796 #define SECTION_IN_PAGE_FLAGS
797 #endif
798
799 /*
800 * The identification function is mainly used by the buddy allocator for
801 * determining if two pages could be buddies. We are not really identifying
802 * the zone since we could be using the section number id if we do not have
803 * node id available in page flags.
804 * We only guarantee that it will return the same value for two combinable
805 * pages in a zone.
806 */
807 static inline int page_zone_id(struct page *page)
808 {
809 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
810 }
811
812 static inline int zone_to_nid(struct zone *zone)
813 {
814 #ifdef CONFIG_NUMA
815 return zone->node;
816 #else
817 return 0;
818 #endif
819 }
820
821 #ifdef NODE_NOT_IN_PAGE_FLAGS
822 extern int page_to_nid(const struct page *page);
823 #else
824 static inline int page_to_nid(const struct page *page)
825 {
826 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
827 }
828 #endif
829
830 #ifdef CONFIG_NUMA_BALANCING
831 static inline int cpu_pid_to_cpupid(int cpu, int pid)
832 {
833 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
834 }
835
836 static inline int cpupid_to_pid(int cpupid)
837 {
838 return cpupid & LAST__PID_MASK;
839 }
840
841 static inline int cpupid_to_cpu(int cpupid)
842 {
843 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
844 }
845
846 static inline int cpupid_to_nid(int cpupid)
847 {
848 return cpu_to_node(cpupid_to_cpu(cpupid));
849 }
850
851 static inline bool cpupid_pid_unset(int cpupid)
852 {
853 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
854 }
855
856 static inline bool cpupid_cpu_unset(int cpupid)
857 {
858 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
859 }
860
861 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
862 {
863 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
864 }
865
866 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
867 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
868 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
869 {
870 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
871 }
872
873 static inline int page_cpupid_last(struct page *page)
874 {
875 return page->_last_cpupid;
876 }
877 static inline void page_cpupid_reset_last(struct page *page)
878 {
879 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
880 }
881 #else
882 static inline int page_cpupid_last(struct page *page)
883 {
884 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
885 }
886
887 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
888
889 static inline void page_cpupid_reset_last(struct page *page)
890 {
891 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
892 }
893 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
894 #else /* !CONFIG_NUMA_BALANCING */
895 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
896 {
897 return page_to_nid(page); /* XXX */
898 }
899
900 static inline int page_cpupid_last(struct page *page)
901 {
902 return page_to_nid(page); /* XXX */
903 }
904
905 static inline int cpupid_to_nid(int cpupid)
906 {
907 return -1;
908 }
909
910 static inline int cpupid_to_pid(int cpupid)
911 {
912 return -1;
913 }
914
915 static inline int cpupid_to_cpu(int cpupid)
916 {
917 return -1;
918 }
919
920 static inline int cpu_pid_to_cpupid(int nid, int pid)
921 {
922 return -1;
923 }
924
925 static inline bool cpupid_pid_unset(int cpupid)
926 {
927 return 1;
928 }
929
930 static inline void page_cpupid_reset_last(struct page *page)
931 {
932 }
933
934 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
935 {
936 return false;
937 }
938 #endif /* CONFIG_NUMA_BALANCING */
939
940 static inline struct zone *page_zone(const struct page *page)
941 {
942 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
943 }
944
945 static inline pg_data_t *page_pgdat(const struct page *page)
946 {
947 return NODE_DATA(page_to_nid(page));
948 }
949
950 #ifdef SECTION_IN_PAGE_FLAGS
951 static inline void set_page_section(struct page *page, unsigned long section)
952 {
953 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
954 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
955 }
956
957 static inline unsigned long page_to_section(const struct page *page)
958 {
959 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
960 }
961 #endif
962
963 static inline void set_page_zone(struct page *page, enum zone_type zone)
964 {
965 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
966 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
967 }
968
969 static inline void set_page_node(struct page *page, unsigned long node)
970 {
971 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
972 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
973 }
974
975 static inline void set_page_links(struct page *page, enum zone_type zone,
976 unsigned long node, unsigned long pfn)
977 {
978 set_page_zone(page, zone);
979 set_page_node(page, node);
980 #ifdef SECTION_IN_PAGE_FLAGS
981 set_page_section(page, pfn_to_section_nr(pfn));
982 #endif
983 }
984
985 #ifdef CONFIG_MEMCG
986 static inline struct mem_cgroup *page_memcg(struct page *page)
987 {
988 return page->mem_cgroup;
989 }
990 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
991 {
992 WARN_ON_ONCE(!rcu_read_lock_held());
993 return READ_ONCE(page->mem_cgroup);
994 }
995 #else
996 static inline struct mem_cgroup *page_memcg(struct page *page)
997 {
998 return NULL;
999 }
1000 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1001 {
1002 WARN_ON_ONCE(!rcu_read_lock_held());
1003 return NULL;
1004 }
1005 #endif
1006
1007 /*
1008 * Some inline functions in vmstat.h depend on page_zone()
1009 */
1010 #include <linux/vmstat.h>
1011
1012 static __always_inline void *lowmem_page_address(const struct page *page)
1013 {
1014 return page_to_virt(page);
1015 }
1016
1017 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1018 #define HASHED_PAGE_VIRTUAL
1019 #endif
1020
1021 #if defined(WANT_PAGE_VIRTUAL)
1022 static inline void *page_address(const struct page *page)
1023 {
1024 return page->virtual;
1025 }
1026 static inline void set_page_address(struct page *page, void *address)
1027 {
1028 page->virtual = address;
1029 }
1030 #define page_address_init() do { } while(0)
1031 #endif
1032
1033 #if defined(HASHED_PAGE_VIRTUAL)
1034 void *page_address(const struct page *page);
1035 void set_page_address(struct page *page, void *virtual);
1036 void page_address_init(void);
1037 #endif
1038
1039 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1040 #define page_address(page) lowmem_page_address(page)
1041 #define set_page_address(page, address) do { } while(0)
1042 #define page_address_init() do { } while(0)
1043 #endif
1044
1045 extern void *page_rmapping(struct page *page);
1046 extern struct anon_vma *page_anon_vma(struct page *page);
1047 extern struct address_space *page_mapping(struct page *page);
1048
1049 extern struct address_space *__page_file_mapping(struct page *);
1050
1051 static inline
1052 struct address_space *page_file_mapping(struct page *page)
1053 {
1054 if (unlikely(PageSwapCache(page)))
1055 return __page_file_mapping(page);
1056
1057 return page->mapping;
1058 }
1059
1060 extern pgoff_t __page_file_index(struct page *page);
1061
1062 /*
1063 * Return the pagecache index of the passed page. Regular pagecache pages
1064 * use ->index whereas swapcache pages use swp_offset(->private)
1065 */
1066 static inline pgoff_t page_index(struct page *page)
1067 {
1068 if (unlikely(PageSwapCache(page)))
1069 return __page_file_index(page);
1070 return page->index;
1071 }
1072
1073 bool page_mapped(struct page *page);
1074 struct address_space *page_mapping(struct page *page);
1075
1076 /*
1077 * Return true only if the page has been allocated with
1078 * ALLOC_NO_WATERMARKS and the low watermark was not
1079 * met implying that the system is under some pressure.
1080 */
1081 static inline bool page_is_pfmemalloc(struct page *page)
1082 {
1083 /*
1084 * Page index cannot be this large so this must be
1085 * a pfmemalloc page.
1086 */
1087 return page->index == -1UL;
1088 }
1089
1090 /*
1091 * Only to be called by the page allocator on a freshly allocated
1092 * page.
1093 */
1094 static inline void set_page_pfmemalloc(struct page *page)
1095 {
1096 page->index = -1UL;
1097 }
1098
1099 static inline void clear_page_pfmemalloc(struct page *page)
1100 {
1101 page->index = 0;
1102 }
1103
1104 /*
1105 * Different kinds of faults, as returned by handle_mm_fault().
1106 * Used to decide whether a process gets delivered SIGBUS or
1107 * just gets major/minor fault counters bumped up.
1108 */
1109
1110 #define VM_FAULT_OOM 0x0001
1111 #define VM_FAULT_SIGBUS 0x0002
1112 #define VM_FAULT_MAJOR 0x0004
1113 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1114 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1115 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1116 #define VM_FAULT_SIGSEGV 0x0040
1117
1118 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1119 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1120 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1121 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1122 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1123
1124 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1125
1126 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1127 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1128 VM_FAULT_FALLBACK)
1129
1130 #define VM_FAULT_RESULT_TRACE \
1131 { VM_FAULT_OOM, "OOM" }, \
1132 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1133 { VM_FAULT_MAJOR, "MAJOR" }, \
1134 { VM_FAULT_WRITE, "WRITE" }, \
1135 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1136 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1137 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1138 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1139 { VM_FAULT_LOCKED, "LOCKED" }, \
1140 { VM_FAULT_RETRY, "RETRY" }, \
1141 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1142 { VM_FAULT_DONE_COW, "DONE_COW" }
1143
1144 /* Encode hstate index for a hwpoisoned large page */
1145 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1146 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1147
1148 /*
1149 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1150 */
1151 extern void pagefault_out_of_memory(void);
1152
1153 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1154
1155 /*
1156 * Flags passed to show_mem() and show_free_areas() to suppress output in
1157 * various contexts.
1158 */
1159 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1160
1161 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1162
1163 extern bool can_do_mlock(void);
1164 extern int user_shm_lock(size_t, struct user_struct *);
1165 extern void user_shm_unlock(size_t, struct user_struct *);
1166
1167 /*
1168 * Parameter block passed down to zap_pte_range in exceptional cases.
1169 */
1170 struct zap_details {
1171 struct address_space *check_mapping; /* Check page->mapping if set */
1172 pgoff_t first_index; /* Lowest page->index to unmap */
1173 pgoff_t last_index; /* Highest page->index to unmap */
1174 };
1175
1176 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1177 pte_t pte);
1178 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1179 pmd_t pmd);
1180
1181 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1182 unsigned long size);
1183 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1184 unsigned long size);
1185 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1186 unsigned long start, unsigned long end);
1187
1188 /**
1189 * mm_walk - callbacks for walk_page_range
1190 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1191 * this handler should only handle pud_trans_huge() puds.
1192 * the pmd_entry or pte_entry callbacks will be used for
1193 * regular PUDs.
1194 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1195 * this handler is required to be able to handle
1196 * pmd_trans_huge() pmds. They may simply choose to
1197 * split_huge_page() instead of handling it explicitly.
1198 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1199 * @pte_hole: if set, called for each hole at all levels
1200 * @hugetlb_entry: if set, called for each hugetlb entry
1201 * @test_walk: caller specific callback function to determine whether
1202 * we walk over the current vma or not. Returning 0
1203 * value means "do page table walk over the current vma,"
1204 * and a negative one means "abort current page table walk
1205 * right now." 1 means "skip the current vma."
1206 * @mm: mm_struct representing the target process of page table walk
1207 * @vma: vma currently walked (NULL if walking outside vmas)
1208 * @private: private data for callbacks' usage
1209 *
1210 * (see the comment on walk_page_range() for more details)
1211 */
1212 struct mm_walk {
1213 int (*pud_entry)(pud_t *pud, unsigned long addr,
1214 unsigned long next, struct mm_walk *walk);
1215 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1216 unsigned long next, struct mm_walk *walk);
1217 int (*pte_entry)(pte_t *pte, unsigned long addr,
1218 unsigned long next, struct mm_walk *walk);
1219 int (*pte_hole)(unsigned long addr, unsigned long next,
1220 struct mm_walk *walk);
1221 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1222 unsigned long addr, unsigned long next,
1223 struct mm_walk *walk);
1224 int (*test_walk)(unsigned long addr, unsigned long next,
1225 struct mm_walk *walk);
1226 struct mm_struct *mm;
1227 struct vm_area_struct *vma;
1228 void *private;
1229 };
1230
1231 int walk_page_range(unsigned long addr, unsigned long end,
1232 struct mm_walk *walk);
1233 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1234 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1235 unsigned long end, unsigned long floor, unsigned long ceiling);
1236 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1237 struct vm_area_struct *vma);
1238 void unmap_mapping_range(struct address_space *mapping,
1239 loff_t const holebegin, loff_t const holelen, int even_cows);
1240 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1241 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1242 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1243 unsigned long *pfn);
1244 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1245 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1246 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1247 void *buf, int len, int write);
1248
1249 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1250 loff_t const holebegin, loff_t const holelen)
1251 {
1252 unmap_mapping_range(mapping, holebegin, holelen, 0);
1253 }
1254
1255 extern void truncate_pagecache(struct inode *inode, loff_t new);
1256 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1257 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1258 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1259 int truncate_inode_page(struct address_space *mapping, struct page *page);
1260 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1261 int invalidate_inode_page(struct page *page);
1262
1263 #ifdef CONFIG_MMU
1264 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1265 unsigned int flags);
1266 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1267 unsigned long address, unsigned int fault_flags,
1268 bool *unlocked);
1269 #else
1270 static inline int handle_mm_fault(struct vm_area_struct *vma,
1271 unsigned long address, unsigned int flags)
1272 {
1273 /* should never happen if there's no MMU */
1274 BUG();
1275 return VM_FAULT_SIGBUS;
1276 }
1277 static inline int fixup_user_fault(struct task_struct *tsk,
1278 struct mm_struct *mm, unsigned long address,
1279 unsigned int fault_flags, bool *unlocked)
1280 {
1281 /* should never happen if there's no MMU */
1282 BUG();
1283 return -EFAULT;
1284 }
1285 #endif
1286
1287 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1288 unsigned int gup_flags);
1289 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1290 void *buf, int len, unsigned int gup_flags);
1291 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1292 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1293
1294 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1295 unsigned long start, unsigned long nr_pages,
1296 unsigned int gup_flags, struct page **pages,
1297 struct vm_area_struct **vmas, int *locked);
1298 long get_user_pages(unsigned long start, unsigned long nr_pages,
1299 unsigned int gup_flags, struct page **pages,
1300 struct vm_area_struct **vmas);
1301 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1302 unsigned int gup_flags, struct page **pages, int *locked);
1303 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1304 struct page **pages, unsigned int gup_flags);
1305 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1306 struct page **pages);
1307
1308 /* Container for pinned pfns / pages */
1309 struct frame_vector {
1310 unsigned int nr_allocated; /* Number of frames we have space for */
1311 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1312 bool got_ref; /* Did we pin pages by getting page ref? */
1313 bool is_pfns; /* Does array contain pages or pfns? */
1314 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1315 * pfns_vector_pages() or pfns_vector_pfns()
1316 * for access */
1317 };
1318
1319 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1320 void frame_vector_destroy(struct frame_vector *vec);
1321 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1322 unsigned int gup_flags, struct frame_vector *vec);
1323 void put_vaddr_frames(struct frame_vector *vec);
1324 int frame_vector_to_pages(struct frame_vector *vec);
1325 void frame_vector_to_pfns(struct frame_vector *vec);
1326
1327 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1328 {
1329 return vec->nr_frames;
1330 }
1331
1332 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1333 {
1334 if (vec->is_pfns) {
1335 int err = frame_vector_to_pages(vec);
1336
1337 if (err)
1338 return ERR_PTR(err);
1339 }
1340 return (struct page **)(vec->ptrs);
1341 }
1342
1343 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1344 {
1345 if (!vec->is_pfns)
1346 frame_vector_to_pfns(vec);
1347 return (unsigned long *)(vec->ptrs);
1348 }
1349
1350 struct kvec;
1351 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1352 struct page **pages);
1353 int get_kernel_page(unsigned long start, int write, struct page **pages);
1354 struct page *get_dump_page(unsigned long addr);
1355
1356 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1357 extern void do_invalidatepage(struct page *page, unsigned int offset,
1358 unsigned int length);
1359
1360 int __set_page_dirty_nobuffers(struct page *page);
1361 int __set_page_dirty_no_writeback(struct page *page);
1362 int redirty_page_for_writepage(struct writeback_control *wbc,
1363 struct page *page);
1364 void account_page_dirtied(struct page *page, struct address_space *mapping);
1365 void account_page_cleaned(struct page *page, struct address_space *mapping,
1366 struct bdi_writeback *wb);
1367 int set_page_dirty(struct page *page);
1368 int set_page_dirty_lock(struct page *page);
1369 void cancel_dirty_page(struct page *page);
1370 int clear_page_dirty_for_io(struct page *page);
1371
1372 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1373
1374 /* Is the vma a continuation of the stack vma above it? */
1375 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1376 {
1377 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1378 }
1379
1380 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1381 {
1382 return !vma->vm_ops;
1383 }
1384
1385 #ifdef CONFIG_SHMEM
1386 /*
1387 * The vma_is_shmem is not inline because it is used only by slow
1388 * paths in userfault.
1389 */
1390 bool vma_is_shmem(struct vm_area_struct *vma);
1391 #else
1392 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1393 #endif
1394
1395 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1396 unsigned long addr)
1397 {
1398 return (vma->vm_flags & VM_GROWSDOWN) &&
1399 (vma->vm_start == addr) &&
1400 !vma_growsdown(vma->vm_prev, addr);
1401 }
1402
1403 /* Is the vma a continuation of the stack vma below it? */
1404 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1405 {
1406 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1407 }
1408
1409 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1410 unsigned long addr)
1411 {
1412 return (vma->vm_flags & VM_GROWSUP) &&
1413 (vma->vm_end == addr) &&
1414 !vma_growsup(vma->vm_next, addr);
1415 }
1416
1417 int vma_is_stack_for_current(struct vm_area_struct *vma);
1418
1419 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1420 unsigned long old_addr, struct vm_area_struct *new_vma,
1421 unsigned long new_addr, unsigned long len,
1422 bool need_rmap_locks);
1423 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1424 unsigned long end, pgprot_t newprot,
1425 int dirty_accountable, int prot_numa);
1426 extern int mprotect_fixup(struct vm_area_struct *vma,
1427 struct vm_area_struct **pprev, unsigned long start,
1428 unsigned long end, unsigned long newflags);
1429
1430 /*
1431 * doesn't attempt to fault and will return short.
1432 */
1433 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1434 struct page **pages);
1435 /*
1436 * per-process(per-mm_struct) statistics.
1437 */
1438 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1439 {
1440 long val = atomic_long_read(&mm->rss_stat.count[member]);
1441
1442 #ifdef SPLIT_RSS_COUNTING
1443 /*
1444 * counter is updated in asynchronous manner and may go to minus.
1445 * But it's never be expected number for users.
1446 */
1447 if (val < 0)
1448 val = 0;
1449 #endif
1450 return (unsigned long)val;
1451 }
1452
1453 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1454 {
1455 atomic_long_add(value, &mm->rss_stat.count[member]);
1456 }
1457
1458 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1459 {
1460 atomic_long_inc(&mm->rss_stat.count[member]);
1461 }
1462
1463 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1464 {
1465 atomic_long_dec(&mm->rss_stat.count[member]);
1466 }
1467
1468 /* Optimized variant when page is already known not to be PageAnon */
1469 static inline int mm_counter_file(struct page *page)
1470 {
1471 if (PageSwapBacked(page))
1472 return MM_SHMEMPAGES;
1473 return MM_FILEPAGES;
1474 }
1475
1476 static inline int mm_counter(struct page *page)
1477 {
1478 if (PageAnon(page))
1479 return MM_ANONPAGES;
1480 return mm_counter_file(page);
1481 }
1482
1483 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1484 {
1485 return get_mm_counter(mm, MM_FILEPAGES) +
1486 get_mm_counter(mm, MM_ANONPAGES) +
1487 get_mm_counter(mm, MM_SHMEMPAGES);
1488 }
1489
1490 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1491 {
1492 return max(mm->hiwater_rss, get_mm_rss(mm));
1493 }
1494
1495 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1496 {
1497 return max(mm->hiwater_vm, mm->total_vm);
1498 }
1499
1500 static inline void update_hiwater_rss(struct mm_struct *mm)
1501 {
1502 unsigned long _rss = get_mm_rss(mm);
1503
1504 if ((mm)->hiwater_rss < _rss)
1505 (mm)->hiwater_rss = _rss;
1506 }
1507
1508 static inline void update_hiwater_vm(struct mm_struct *mm)
1509 {
1510 if (mm->hiwater_vm < mm->total_vm)
1511 mm->hiwater_vm = mm->total_vm;
1512 }
1513
1514 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1515 {
1516 mm->hiwater_rss = get_mm_rss(mm);
1517 }
1518
1519 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1520 struct mm_struct *mm)
1521 {
1522 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1523
1524 if (*maxrss < hiwater_rss)
1525 *maxrss = hiwater_rss;
1526 }
1527
1528 #if defined(SPLIT_RSS_COUNTING)
1529 void sync_mm_rss(struct mm_struct *mm);
1530 #else
1531 static inline void sync_mm_rss(struct mm_struct *mm)
1532 {
1533 }
1534 #endif
1535
1536 #ifndef __HAVE_ARCH_PTE_DEVMAP
1537 static inline int pte_devmap(pte_t pte)
1538 {
1539 return 0;
1540 }
1541 #endif
1542
1543 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1544
1545 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1546 spinlock_t **ptl);
1547 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1548 spinlock_t **ptl)
1549 {
1550 pte_t *ptep;
1551 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1552 return ptep;
1553 }
1554
1555 #ifdef __PAGETABLE_P4D_FOLDED
1556 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1557 unsigned long address)
1558 {
1559 return 0;
1560 }
1561 #else
1562 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1563 #endif
1564
1565 #ifdef __PAGETABLE_PUD_FOLDED
1566 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1567 unsigned long address)
1568 {
1569 return 0;
1570 }
1571 #else
1572 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1573 #endif
1574
1575 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1576 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1577 unsigned long address)
1578 {
1579 return 0;
1580 }
1581
1582 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1583
1584 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1585 {
1586 return 0;
1587 }
1588
1589 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1590 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1591
1592 #else
1593 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1594
1595 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1596 {
1597 atomic_long_set(&mm->nr_pmds, 0);
1598 }
1599
1600 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1601 {
1602 return atomic_long_read(&mm->nr_pmds);
1603 }
1604
1605 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1606 {
1607 atomic_long_inc(&mm->nr_pmds);
1608 }
1609
1610 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1611 {
1612 atomic_long_dec(&mm->nr_pmds);
1613 }
1614 #endif
1615
1616 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1617 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1618
1619 /*
1620 * The following ifdef needed to get the 4level-fixup.h header to work.
1621 * Remove it when 4level-fixup.h has been removed.
1622 */
1623 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1624
1625 #ifndef __ARCH_HAS_5LEVEL_HACK
1626 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1627 unsigned long address)
1628 {
1629 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1630 NULL : p4d_offset(pgd, address);
1631 }
1632
1633 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1634 unsigned long address)
1635 {
1636 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1637 NULL : pud_offset(p4d, address);
1638 }
1639 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1640
1641 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1642 {
1643 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1644 NULL: pmd_offset(pud, address);
1645 }
1646 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1647
1648 #if USE_SPLIT_PTE_PTLOCKS
1649 #if ALLOC_SPLIT_PTLOCKS
1650 void __init ptlock_cache_init(void);
1651 extern bool ptlock_alloc(struct page *page);
1652 extern void ptlock_free(struct page *page);
1653
1654 static inline spinlock_t *ptlock_ptr(struct page *page)
1655 {
1656 return page->ptl;
1657 }
1658 #else /* ALLOC_SPLIT_PTLOCKS */
1659 static inline void ptlock_cache_init(void)
1660 {
1661 }
1662
1663 static inline bool ptlock_alloc(struct page *page)
1664 {
1665 return true;
1666 }
1667
1668 static inline void ptlock_free(struct page *page)
1669 {
1670 }
1671
1672 static inline spinlock_t *ptlock_ptr(struct page *page)
1673 {
1674 return &page->ptl;
1675 }
1676 #endif /* ALLOC_SPLIT_PTLOCKS */
1677
1678 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1679 {
1680 return ptlock_ptr(pmd_page(*pmd));
1681 }
1682
1683 static inline bool ptlock_init(struct page *page)
1684 {
1685 /*
1686 * prep_new_page() initialize page->private (and therefore page->ptl)
1687 * with 0. Make sure nobody took it in use in between.
1688 *
1689 * It can happen if arch try to use slab for page table allocation:
1690 * slab code uses page->slab_cache, which share storage with page->ptl.
1691 */
1692 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1693 if (!ptlock_alloc(page))
1694 return false;
1695 spin_lock_init(ptlock_ptr(page));
1696 return true;
1697 }
1698
1699 /* Reset page->mapping so free_pages_check won't complain. */
1700 static inline void pte_lock_deinit(struct page *page)
1701 {
1702 page->mapping = NULL;
1703 ptlock_free(page);
1704 }
1705
1706 #else /* !USE_SPLIT_PTE_PTLOCKS */
1707 /*
1708 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1709 */
1710 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1711 {
1712 return &mm->page_table_lock;
1713 }
1714 static inline void ptlock_cache_init(void) {}
1715 static inline bool ptlock_init(struct page *page) { return true; }
1716 static inline void pte_lock_deinit(struct page *page) {}
1717 #endif /* USE_SPLIT_PTE_PTLOCKS */
1718
1719 static inline void pgtable_init(void)
1720 {
1721 ptlock_cache_init();
1722 pgtable_cache_init();
1723 }
1724
1725 static inline bool pgtable_page_ctor(struct page *page)
1726 {
1727 if (!ptlock_init(page))
1728 return false;
1729 inc_zone_page_state(page, NR_PAGETABLE);
1730 return true;
1731 }
1732
1733 static inline void pgtable_page_dtor(struct page *page)
1734 {
1735 pte_lock_deinit(page);
1736 dec_zone_page_state(page, NR_PAGETABLE);
1737 }
1738
1739 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1740 ({ \
1741 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1742 pte_t *__pte = pte_offset_map(pmd, address); \
1743 *(ptlp) = __ptl; \
1744 spin_lock(__ptl); \
1745 __pte; \
1746 })
1747
1748 #define pte_unmap_unlock(pte, ptl) do { \
1749 spin_unlock(ptl); \
1750 pte_unmap(pte); \
1751 } while (0)
1752
1753 #define pte_alloc(mm, pmd, address) \
1754 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1755
1756 #define pte_alloc_map(mm, pmd, address) \
1757 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1758
1759 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1760 (pte_alloc(mm, pmd, address) ? \
1761 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1762
1763 #define pte_alloc_kernel(pmd, address) \
1764 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1765 NULL: pte_offset_kernel(pmd, address))
1766
1767 #if USE_SPLIT_PMD_PTLOCKS
1768
1769 static struct page *pmd_to_page(pmd_t *pmd)
1770 {
1771 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1772 return virt_to_page((void *)((unsigned long) pmd & mask));
1773 }
1774
1775 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1776 {
1777 return ptlock_ptr(pmd_to_page(pmd));
1778 }
1779
1780 static inline bool pgtable_pmd_page_ctor(struct page *page)
1781 {
1782 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1783 page->pmd_huge_pte = NULL;
1784 #endif
1785 return ptlock_init(page);
1786 }
1787
1788 static inline void pgtable_pmd_page_dtor(struct page *page)
1789 {
1790 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1791 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1792 #endif
1793 ptlock_free(page);
1794 }
1795
1796 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1797
1798 #else
1799
1800 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1801 {
1802 return &mm->page_table_lock;
1803 }
1804
1805 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1806 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1807
1808 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1809
1810 #endif
1811
1812 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1813 {
1814 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1815 spin_lock(ptl);
1816 return ptl;
1817 }
1818
1819 /*
1820 * No scalability reason to split PUD locks yet, but follow the same pattern
1821 * as the PMD locks to make it easier if we decide to. The VM should not be
1822 * considered ready to switch to split PUD locks yet; there may be places
1823 * which need to be converted from page_table_lock.
1824 */
1825 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1826 {
1827 return &mm->page_table_lock;
1828 }
1829
1830 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1831 {
1832 spinlock_t *ptl = pud_lockptr(mm, pud);
1833
1834 spin_lock(ptl);
1835 return ptl;
1836 }
1837
1838 extern void __init pagecache_init(void);
1839 extern void free_area_init(unsigned long * zones_size);
1840 extern void free_area_init_node(int nid, unsigned long * zones_size,
1841 unsigned long zone_start_pfn, unsigned long *zholes_size);
1842 extern void free_initmem(void);
1843
1844 /*
1845 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1846 * into the buddy system. The freed pages will be poisoned with pattern
1847 * "poison" if it's within range [0, UCHAR_MAX].
1848 * Return pages freed into the buddy system.
1849 */
1850 extern unsigned long free_reserved_area(void *start, void *end,
1851 int poison, char *s);
1852
1853 #ifdef CONFIG_HIGHMEM
1854 /*
1855 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1856 * and totalram_pages.
1857 */
1858 extern void free_highmem_page(struct page *page);
1859 #endif
1860
1861 extern void adjust_managed_page_count(struct page *page, long count);
1862 extern void mem_init_print_info(const char *str);
1863
1864 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1865
1866 /* Free the reserved page into the buddy system, so it gets managed. */
1867 static inline void __free_reserved_page(struct page *page)
1868 {
1869 ClearPageReserved(page);
1870 init_page_count(page);
1871 __free_page(page);
1872 }
1873
1874 static inline void free_reserved_page(struct page *page)
1875 {
1876 __free_reserved_page(page);
1877 adjust_managed_page_count(page, 1);
1878 }
1879
1880 static inline void mark_page_reserved(struct page *page)
1881 {
1882 SetPageReserved(page);
1883 adjust_managed_page_count(page, -1);
1884 }
1885
1886 /*
1887 * Default method to free all the __init memory into the buddy system.
1888 * The freed pages will be poisoned with pattern "poison" if it's within
1889 * range [0, UCHAR_MAX].
1890 * Return pages freed into the buddy system.
1891 */
1892 static inline unsigned long free_initmem_default(int poison)
1893 {
1894 extern char __init_begin[], __init_end[];
1895
1896 return free_reserved_area(&__init_begin, &__init_end,
1897 poison, "unused kernel");
1898 }
1899
1900 static inline unsigned long get_num_physpages(void)
1901 {
1902 int nid;
1903 unsigned long phys_pages = 0;
1904
1905 for_each_online_node(nid)
1906 phys_pages += node_present_pages(nid);
1907
1908 return phys_pages;
1909 }
1910
1911 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1912 /*
1913 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1914 * zones, allocate the backing mem_map and account for memory holes in a more
1915 * architecture independent manner. This is a substitute for creating the
1916 * zone_sizes[] and zholes_size[] arrays and passing them to
1917 * free_area_init_node()
1918 *
1919 * An architecture is expected to register range of page frames backed by
1920 * physical memory with memblock_add[_node]() before calling
1921 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1922 * usage, an architecture is expected to do something like
1923 *
1924 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1925 * max_highmem_pfn};
1926 * for_each_valid_physical_page_range()
1927 * memblock_add_node(base, size, nid)
1928 * free_area_init_nodes(max_zone_pfns);
1929 *
1930 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1931 * registered physical page range. Similarly
1932 * sparse_memory_present_with_active_regions() calls memory_present() for
1933 * each range when SPARSEMEM is enabled.
1934 *
1935 * See mm/page_alloc.c for more information on each function exposed by
1936 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1937 */
1938 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1939 unsigned long node_map_pfn_alignment(void);
1940 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1941 unsigned long end_pfn);
1942 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1943 unsigned long end_pfn);
1944 extern void get_pfn_range_for_nid(unsigned int nid,
1945 unsigned long *start_pfn, unsigned long *end_pfn);
1946 extern unsigned long find_min_pfn_with_active_regions(void);
1947 extern void free_bootmem_with_active_regions(int nid,
1948 unsigned long max_low_pfn);
1949 extern void sparse_memory_present_with_active_regions(int nid);
1950
1951 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1952
1953 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1954 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1955 static inline int __early_pfn_to_nid(unsigned long pfn,
1956 struct mminit_pfnnid_cache *state)
1957 {
1958 return 0;
1959 }
1960 #else
1961 /* please see mm/page_alloc.c */
1962 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1963 /* there is a per-arch backend function. */
1964 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1965 struct mminit_pfnnid_cache *state);
1966 #endif
1967
1968 extern void set_dma_reserve(unsigned long new_dma_reserve);
1969 extern void memmap_init_zone(unsigned long, int, unsigned long,
1970 unsigned long, enum memmap_context);
1971 extern void setup_per_zone_wmarks(void);
1972 extern int __meminit init_per_zone_wmark_min(void);
1973 extern void mem_init(void);
1974 extern void __init mmap_init(void);
1975 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
1976 extern long si_mem_available(void);
1977 extern void si_meminfo(struct sysinfo * val);
1978 extern void si_meminfo_node(struct sysinfo *val, int nid);
1979 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1980 extern unsigned long arch_reserved_kernel_pages(void);
1981 #endif
1982
1983 extern __printf(3, 4)
1984 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
1985
1986 extern void setup_per_cpu_pageset(void);
1987
1988 extern void zone_pcp_update(struct zone *zone);
1989 extern void zone_pcp_reset(struct zone *zone);
1990
1991 /* page_alloc.c */
1992 extern int min_free_kbytes;
1993 extern int watermark_scale_factor;
1994
1995 /* nommu.c */
1996 extern atomic_long_t mmap_pages_allocated;
1997 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1998
1999 /* interval_tree.c */
2000 void vma_interval_tree_insert(struct vm_area_struct *node,
2001 struct rb_root *root);
2002 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2003 struct vm_area_struct *prev,
2004 struct rb_root *root);
2005 void vma_interval_tree_remove(struct vm_area_struct *node,
2006 struct rb_root *root);
2007 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2008 unsigned long start, unsigned long last);
2009 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2010 unsigned long start, unsigned long last);
2011
2012 #define vma_interval_tree_foreach(vma, root, start, last) \
2013 for (vma = vma_interval_tree_iter_first(root, start, last); \
2014 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2015
2016 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2017 struct rb_root *root);
2018 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2019 struct rb_root *root);
2020 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2021 struct rb_root *root, unsigned long start, unsigned long last);
2022 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2023 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2024 #ifdef CONFIG_DEBUG_VM_RB
2025 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2026 #endif
2027
2028 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2029 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2030 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2031
2032 /* mmap.c */
2033 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2034 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2035 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2036 struct vm_area_struct *expand);
2037 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2038 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2039 {
2040 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2041 }
2042 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2043 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2044 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2045 struct mempolicy *, struct vm_userfaultfd_ctx);
2046 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2047 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2048 unsigned long addr, int new_below);
2049 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2050 unsigned long addr, int new_below);
2051 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2052 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2053 struct rb_node **, struct rb_node *);
2054 extern void unlink_file_vma(struct vm_area_struct *);
2055 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2056 unsigned long addr, unsigned long len, pgoff_t pgoff,
2057 bool *need_rmap_locks);
2058 extern void exit_mmap(struct mm_struct *);
2059
2060 static inline int check_data_rlimit(unsigned long rlim,
2061 unsigned long new,
2062 unsigned long start,
2063 unsigned long end_data,
2064 unsigned long start_data)
2065 {
2066 if (rlim < RLIM_INFINITY) {
2067 if (((new - start) + (end_data - start_data)) > rlim)
2068 return -ENOSPC;
2069 }
2070
2071 return 0;
2072 }
2073
2074 extern int mm_take_all_locks(struct mm_struct *mm);
2075 extern void mm_drop_all_locks(struct mm_struct *mm);
2076
2077 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2078 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2079 extern struct file *get_task_exe_file(struct task_struct *task);
2080
2081 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2082 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2083
2084 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2085 const struct vm_special_mapping *sm);
2086 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2087 unsigned long addr, unsigned long len,
2088 unsigned long flags,
2089 const struct vm_special_mapping *spec);
2090 /* This is an obsolete alternative to _install_special_mapping. */
2091 extern int install_special_mapping(struct mm_struct *mm,
2092 unsigned long addr, unsigned long len,
2093 unsigned long flags, struct page **pages);
2094
2095 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2096
2097 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2098 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2099 struct list_head *uf);
2100 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2101 unsigned long len, unsigned long prot, unsigned long flags,
2102 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2103 struct list_head *uf);
2104 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2105 struct list_head *uf);
2106
2107 static inline unsigned long
2108 do_mmap_pgoff(struct file *file, unsigned long addr,
2109 unsigned long len, unsigned long prot, unsigned long flags,
2110 unsigned long pgoff, unsigned long *populate,
2111 struct list_head *uf)
2112 {
2113 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2114 }
2115
2116 #ifdef CONFIG_MMU
2117 extern int __mm_populate(unsigned long addr, unsigned long len,
2118 int ignore_errors);
2119 static inline void mm_populate(unsigned long addr, unsigned long len)
2120 {
2121 /* Ignore errors */
2122 (void) __mm_populate(addr, len, 1);
2123 }
2124 #else
2125 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2126 #endif
2127
2128 /* These take the mm semaphore themselves */
2129 extern int __must_check vm_brk(unsigned long, unsigned long);
2130 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2131 extern int vm_munmap(unsigned long, size_t);
2132 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2133 unsigned long, unsigned long,
2134 unsigned long, unsigned long);
2135
2136 struct vm_unmapped_area_info {
2137 #define VM_UNMAPPED_AREA_TOPDOWN 1
2138 unsigned long flags;
2139 unsigned long length;
2140 unsigned long low_limit;
2141 unsigned long high_limit;
2142 unsigned long align_mask;
2143 unsigned long align_offset;
2144 };
2145
2146 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2147 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2148
2149 /*
2150 * Search for an unmapped address range.
2151 *
2152 * We are looking for a range that:
2153 * - does not intersect with any VMA;
2154 * - is contained within the [low_limit, high_limit) interval;
2155 * - is at least the desired size.
2156 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2157 */
2158 static inline unsigned long
2159 vm_unmapped_area(struct vm_unmapped_area_info *info)
2160 {
2161 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2162 return unmapped_area_topdown(info);
2163 else
2164 return unmapped_area(info);
2165 }
2166
2167 /* truncate.c */
2168 extern void truncate_inode_pages(struct address_space *, loff_t);
2169 extern void truncate_inode_pages_range(struct address_space *,
2170 loff_t lstart, loff_t lend);
2171 extern void truncate_inode_pages_final(struct address_space *);
2172
2173 /* generic vm_area_ops exported for stackable file systems */
2174 extern int filemap_fault(struct vm_fault *vmf);
2175 extern void filemap_map_pages(struct vm_fault *vmf,
2176 pgoff_t start_pgoff, pgoff_t end_pgoff);
2177 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2178
2179 /* mm/page-writeback.c */
2180 int write_one_page(struct page *page, int wait);
2181 void task_dirty_inc(struct task_struct *tsk);
2182
2183 /* readahead.c */
2184 #define VM_MAX_READAHEAD 128 /* kbytes */
2185 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2186
2187 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2188 pgoff_t offset, unsigned long nr_to_read);
2189
2190 void page_cache_sync_readahead(struct address_space *mapping,
2191 struct file_ra_state *ra,
2192 struct file *filp,
2193 pgoff_t offset,
2194 unsigned long size);
2195
2196 void page_cache_async_readahead(struct address_space *mapping,
2197 struct file_ra_state *ra,
2198 struct file *filp,
2199 struct page *pg,
2200 pgoff_t offset,
2201 unsigned long size);
2202
2203 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2204 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2205
2206 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2207 extern int expand_downwards(struct vm_area_struct *vma,
2208 unsigned long address);
2209 #if VM_GROWSUP
2210 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2211 #else
2212 #define expand_upwards(vma, address) (0)
2213 #endif
2214
2215 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2216 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2217 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2218 struct vm_area_struct **pprev);
2219
2220 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2221 NULL if none. Assume start_addr < end_addr. */
2222 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2223 {
2224 struct vm_area_struct * vma = find_vma(mm,start_addr);
2225
2226 if (vma && end_addr <= vma->vm_start)
2227 vma = NULL;
2228 return vma;
2229 }
2230
2231 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2232 {
2233 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2234 }
2235
2236 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2237 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2238 unsigned long vm_start, unsigned long vm_end)
2239 {
2240 struct vm_area_struct *vma = find_vma(mm, vm_start);
2241
2242 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2243 vma = NULL;
2244
2245 return vma;
2246 }
2247
2248 #ifdef CONFIG_MMU
2249 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2250 void vma_set_page_prot(struct vm_area_struct *vma);
2251 #else
2252 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2253 {
2254 return __pgprot(0);
2255 }
2256 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2257 {
2258 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2259 }
2260 #endif
2261
2262 #ifdef CONFIG_NUMA_BALANCING
2263 unsigned long change_prot_numa(struct vm_area_struct *vma,
2264 unsigned long start, unsigned long end);
2265 #endif
2266
2267 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2268 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2269 unsigned long pfn, unsigned long size, pgprot_t);
2270 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2271 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2272 unsigned long pfn);
2273 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2274 unsigned long pfn, pgprot_t pgprot);
2275 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2276 pfn_t pfn);
2277 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2278
2279
2280 struct page *follow_page_mask(struct vm_area_struct *vma,
2281 unsigned long address, unsigned int foll_flags,
2282 unsigned int *page_mask);
2283
2284 static inline struct page *follow_page(struct vm_area_struct *vma,
2285 unsigned long address, unsigned int foll_flags)
2286 {
2287 unsigned int unused_page_mask;
2288 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2289 }
2290
2291 #define FOLL_WRITE 0x01 /* check pte is writable */
2292 #define FOLL_TOUCH 0x02 /* mark page accessed */
2293 #define FOLL_GET 0x04 /* do get_page on page */
2294 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2295 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2296 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2297 * and return without waiting upon it */
2298 #define FOLL_POPULATE 0x40 /* fault in page */
2299 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2300 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2301 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2302 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2303 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2304 #define FOLL_MLOCK 0x1000 /* lock present pages */
2305 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2306 #define FOLL_COW 0x4000 /* internal GUP flag */
2307
2308 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2309 void *data);
2310 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2311 unsigned long size, pte_fn_t fn, void *data);
2312
2313
2314 #ifdef CONFIG_PAGE_POISONING
2315 extern bool page_poisoning_enabled(void);
2316 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2317 extern bool page_is_poisoned(struct page *page);
2318 #else
2319 static inline bool page_poisoning_enabled(void) { return false; }
2320 static inline void kernel_poison_pages(struct page *page, int numpages,
2321 int enable) { }
2322 static inline bool page_is_poisoned(struct page *page) { return false; }
2323 #endif
2324
2325 #ifdef CONFIG_DEBUG_PAGEALLOC
2326 extern bool _debug_pagealloc_enabled;
2327 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2328
2329 static inline bool debug_pagealloc_enabled(void)
2330 {
2331 return _debug_pagealloc_enabled;
2332 }
2333
2334 static inline void
2335 kernel_map_pages(struct page *page, int numpages, int enable)
2336 {
2337 if (!debug_pagealloc_enabled())
2338 return;
2339
2340 __kernel_map_pages(page, numpages, enable);
2341 }
2342 #ifdef CONFIG_HIBERNATION
2343 extern bool kernel_page_present(struct page *page);
2344 #endif /* CONFIG_HIBERNATION */
2345 #else /* CONFIG_DEBUG_PAGEALLOC */
2346 static inline void
2347 kernel_map_pages(struct page *page, int numpages, int enable) {}
2348 #ifdef CONFIG_HIBERNATION
2349 static inline bool kernel_page_present(struct page *page) { return true; }
2350 #endif /* CONFIG_HIBERNATION */
2351 static inline bool debug_pagealloc_enabled(void)
2352 {
2353 return false;
2354 }
2355 #endif /* CONFIG_DEBUG_PAGEALLOC */
2356
2357 #ifdef __HAVE_ARCH_GATE_AREA
2358 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2359 extern int in_gate_area_no_mm(unsigned long addr);
2360 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2361 #else
2362 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2363 {
2364 return NULL;
2365 }
2366 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2367 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2368 {
2369 return 0;
2370 }
2371 #endif /* __HAVE_ARCH_GATE_AREA */
2372
2373 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2374
2375 #ifdef CONFIG_SYSCTL
2376 extern int sysctl_drop_caches;
2377 int drop_caches_sysctl_handler(struct ctl_table *, int,
2378 void __user *, size_t *, loff_t *);
2379 #endif
2380
2381 void drop_slab(void);
2382 void drop_slab_node(int nid);
2383
2384 #ifndef CONFIG_MMU
2385 #define randomize_va_space 0
2386 #else
2387 extern int randomize_va_space;
2388 #endif
2389
2390 const char * arch_vma_name(struct vm_area_struct *vma);
2391 void print_vma_addr(char *prefix, unsigned long rip);
2392
2393 void sparse_mem_maps_populate_node(struct page **map_map,
2394 unsigned long pnum_begin,
2395 unsigned long pnum_end,
2396 unsigned long map_count,
2397 int nodeid);
2398
2399 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2400 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2401 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2402 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2403 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2404 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2405 void *vmemmap_alloc_block(unsigned long size, int node);
2406 struct vmem_altmap;
2407 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2408 struct vmem_altmap *altmap);
2409 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2410 {
2411 return __vmemmap_alloc_block_buf(size, node, NULL);
2412 }
2413
2414 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2415 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2416 int node);
2417 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2418 void vmemmap_populate_print_last(void);
2419 #ifdef CONFIG_MEMORY_HOTPLUG
2420 void vmemmap_free(unsigned long start, unsigned long end);
2421 #endif
2422 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2423 unsigned long size);
2424
2425 enum mf_flags {
2426 MF_COUNT_INCREASED = 1 << 0,
2427 MF_ACTION_REQUIRED = 1 << 1,
2428 MF_MUST_KILL = 1 << 2,
2429 MF_SOFT_OFFLINE = 1 << 3,
2430 };
2431 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2432 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2433 extern int unpoison_memory(unsigned long pfn);
2434 extern int get_hwpoison_page(struct page *page);
2435 #define put_hwpoison_page(page) put_page(page)
2436 extern int sysctl_memory_failure_early_kill;
2437 extern int sysctl_memory_failure_recovery;
2438 extern void shake_page(struct page *p, int access);
2439 extern atomic_long_t num_poisoned_pages;
2440 extern int soft_offline_page(struct page *page, int flags);
2441
2442
2443 /*
2444 * Error handlers for various types of pages.
2445 */
2446 enum mf_result {
2447 MF_IGNORED, /* Error: cannot be handled */
2448 MF_FAILED, /* Error: handling failed */
2449 MF_DELAYED, /* Will be handled later */
2450 MF_RECOVERED, /* Successfully recovered */
2451 };
2452
2453 enum mf_action_page_type {
2454 MF_MSG_KERNEL,
2455 MF_MSG_KERNEL_HIGH_ORDER,
2456 MF_MSG_SLAB,
2457 MF_MSG_DIFFERENT_COMPOUND,
2458 MF_MSG_POISONED_HUGE,
2459 MF_MSG_HUGE,
2460 MF_MSG_FREE_HUGE,
2461 MF_MSG_UNMAP_FAILED,
2462 MF_MSG_DIRTY_SWAPCACHE,
2463 MF_MSG_CLEAN_SWAPCACHE,
2464 MF_MSG_DIRTY_MLOCKED_LRU,
2465 MF_MSG_CLEAN_MLOCKED_LRU,
2466 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2467 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2468 MF_MSG_DIRTY_LRU,
2469 MF_MSG_CLEAN_LRU,
2470 MF_MSG_TRUNCATED_LRU,
2471 MF_MSG_BUDDY,
2472 MF_MSG_BUDDY_2ND,
2473 MF_MSG_UNKNOWN,
2474 };
2475
2476 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2477 extern void clear_huge_page(struct page *page,
2478 unsigned long addr,
2479 unsigned int pages_per_huge_page);
2480 extern void copy_user_huge_page(struct page *dst, struct page *src,
2481 unsigned long addr, struct vm_area_struct *vma,
2482 unsigned int pages_per_huge_page);
2483 extern long copy_huge_page_from_user(struct page *dst_page,
2484 const void __user *usr_src,
2485 unsigned int pages_per_huge_page,
2486 bool allow_pagefault);
2487 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2488
2489 extern struct page_ext_operations debug_guardpage_ops;
2490 extern struct page_ext_operations page_poisoning_ops;
2491
2492 #ifdef CONFIG_DEBUG_PAGEALLOC
2493 extern unsigned int _debug_guardpage_minorder;
2494 extern bool _debug_guardpage_enabled;
2495
2496 static inline unsigned int debug_guardpage_minorder(void)
2497 {
2498 return _debug_guardpage_minorder;
2499 }
2500
2501 static inline bool debug_guardpage_enabled(void)
2502 {
2503 return _debug_guardpage_enabled;
2504 }
2505
2506 static inline bool page_is_guard(struct page *page)
2507 {
2508 struct page_ext *page_ext;
2509
2510 if (!debug_guardpage_enabled())
2511 return false;
2512
2513 page_ext = lookup_page_ext(page);
2514 if (unlikely(!page_ext))
2515 return false;
2516
2517 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2518 }
2519 #else
2520 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2521 static inline bool debug_guardpage_enabled(void) { return false; }
2522 static inline bool page_is_guard(struct page *page) { return false; }
2523 #endif /* CONFIG_DEBUG_PAGEALLOC */
2524
2525 #if MAX_NUMNODES > 1
2526 void __init setup_nr_node_ids(void);
2527 #else
2528 static inline void setup_nr_node_ids(void) {}
2529 #endif
2530
2531 #endif /* __KERNEL__ */
2532 #endif /* _LINUX_MM_H */