]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mm.h
Merge branch 'x86-x32-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21
22 struct mempolicy;
23 struct anon_vma;
24 struct anon_vma_chain;
25 struct file_ra_state;
26 struct user_struct;
27 struct writeback_control;
28
29 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30 extern unsigned long max_mapnr;
31
32 static inline void set_max_mapnr(unsigned long limit)
33 {
34 max_mapnr = limit;
35 }
36 #else
37 static inline void set_max_mapnr(unsigned long limit) { }
38 #endif
39
40 extern unsigned long totalram_pages;
41 extern void * high_memory;
42 extern int page_cluster;
43
44 #ifdef CONFIG_SYSCTL
45 extern int sysctl_legacy_va_layout;
46 #else
47 #define sysctl_legacy_va_layout 0
48 #endif
49
50 #include <asm/page.h>
51 #include <asm/pgtable.h>
52 #include <asm/processor.h>
53
54 #ifndef __pa_symbol
55 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56 #endif
57
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60
61 extern int sysctl_overcommit_memory;
62 extern int sysctl_overcommit_ratio;
63 extern unsigned long sysctl_overcommit_kbytes;
64
65 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
70 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
72 /* to align the pointer to the (next) page boundary */
73 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
75 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
78 /*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
87 extern struct kmem_cache *vm_area_cachep;
88
89 #ifndef CONFIG_MMU
90 extern struct rb_root nommu_region_tree;
91 extern struct rw_semaphore nommu_region_sem;
92
93 extern unsigned int kobjsize(const void *objp);
94 #endif
95
96 /*
97 * vm_flags in vm_area_struct, see mm_types.h.
98 */
99 #define VM_NONE 0x00000000
100
101 #define VM_READ 0x00000001 /* currently active flags */
102 #define VM_WRITE 0x00000002
103 #define VM_EXEC 0x00000004
104 #define VM_SHARED 0x00000008
105
106 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108 #define VM_MAYWRITE 0x00000020
109 #define VM_MAYEXEC 0x00000040
110 #define VM_MAYSHARE 0x00000080
111
112 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
116 #define VM_LOCKED 0x00002000
117 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131
132 #ifdef CONFIG_MEM_SOFT_DIRTY
133 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134 #else
135 # define VM_SOFTDIRTY 0
136 #endif
137
138 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142
143 #if defined(CONFIG_X86)
144 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145 #elif defined(CONFIG_PPC)
146 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147 #elif defined(CONFIG_PARISC)
148 # define VM_GROWSUP VM_ARCH_1
149 #elif defined(CONFIG_METAG)
150 # define VM_GROWSUP VM_ARCH_1
151 #elif defined(CONFIG_IA64)
152 # define VM_GROWSUP VM_ARCH_1
153 #elif !defined(CONFIG_MMU)
154 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155 #endif
156
157 #ifndef VM_GROWSUP
158 # define VM_GROWSUP VM_NONE
159 #endif
160
161 /* Bits set in the VMA until the stack is in its final location */
162 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
164 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 #endif
167
168 #ifdef CONFIG_STACK_GROWSUP
169 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 #else
171 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 #endif
173
174 /*
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 */
178 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179
180 /* This mask defines which mm->def_flags a process can inherit its parent */
181 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182
183 /*
184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask..
186 */
187 extern pgprot_t protection_map[16];
188
189 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
191 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
192 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
193 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
194 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
195 #define FAULT_FLAG_TRIED 0x40 /* second try */
196 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
197
198 /*
199 * vm_fault is filled by the the pagefault handler and passed to the vma's
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
202 *
203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
205 */
206 struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */
210
211 struct page *page; /* ->fault handlers should return a
212 * page here, unless VM_FAULT_NOPAGE
213 * is set (which is also implied by
214 * VM_FAULT_ERROR).
215 */
216 /* for ->map_pages() only */
217 pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 * max_pgoff inclusive */
219 pte_t *pte; /* pte entry associated with ->pgoff */
220 };
221
222 /*
223 * These are the virtual MM functions - opening of an area, closing and
224 * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 * to the functions called when a no-page or a wp-page exception occurs.
226 */
227 struct vm_operations_struct {
228 void (*open)(struct vm_area_struct * area);
229 void (*close)(struct vm_area_struct * area);
230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
232
233 /* notification that a previously read-only page is about to become
234 * writable, if an error is returned it will cause a SIGBUS */
235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
236
237 /* called by access_process_vm when get_user_pages() fails, typically
238 * for use by special VMAs that can switch between memory and hardware
239 */
240 int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 void *buf, int len, int write);
242 #ifdef CONFIG_NUMA
243 /*
244 * set_policy() op must add a reference to any non-NULL @new mempolicy
245 * to hold the policy upon return. Caller should pass NULL @new to
246 * remove a policy and fall back to surrounding context--i.e. do not
247 * install a MPOL_DEFAULT policy, nor the task or system default
248 * mempolicy.
249 */
250 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
251
252 /*
253 * get_policy() op must add reference [mpol_get()] to any policy at
254 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
255 * in mm/mempolicy.c will do this automatically.
256 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
257 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
258 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
259 * must return NULL--i.e., do not "fallback" to task or system default
260 * policy.
261 */
262 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
263 unsigned long addr);
264 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
265 const nodemask_t *to, unsigned long flags);
266 #endif
267 /* called by sys_remap_file_pages() to populate non-linear mapping */
268 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
269 unsigned long size, pgoff_t pgoff);
270 };
271
272 struct mmu_gather;
273 struct inode;
274
275 #define page_private(page) ((page)->private)
276 #define set_page_private(page, v) ((page)->private = (v))
277
278 /* It's valid only if the page is free path or free_list */
279 static inline void set_freepage_migratetype(struct page *page, int migratetype)
280 {
281 page->index = migratetype;
282 }
283
284 /* It's valid only if the page is free path or free_list */
285 static inline int get_freepage_migratetype(struct page *page)
286 {
287 return page->index;
288 }
289
290 /*
291 * FIXME: take this include out, include page-flags.h in
292 * files which need it (119 of them)
293 */
294 #include <linux/page-flags.h>
295 #include <linux/huge_mm.h>
296
297 /*
298 * Methods to modify the page usage count.
299 *
300 * What counts for a page usage:
301 * - cache mapping (page->mapping)
302 * - private data (page->private)
303 * - page mapped in a task's page tables, each mapping
304 * is counted separately
305 *
306 * Also, many kernel routines increase the page count before a critical
307 * routine so they can be sure the page doesn't go away from under them.
308 */
309
310 /*
311 * Drop a ref, return true if the refcount fell to zero (the page has no users)
312 */
313 static inline int put_page_testzero(struct page *page)
314 {
315 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
316 return atomic_dec_and_test(&page->_count);
317 }
318
319 /*
320 * Try to grab a ref unless the page has a refcount of zero, return false if
321 * that is the case.
322 * This can be called when MMU is off so it must not access
323 * any of the virtual mappings.
324 */
325 static inline int get_page_unless_zero(struct page *page)
326 {
327 return atomic_inc_not_zero(&page->_count);
328 }
329
330 /*
331 * Try to drop a ref unless the page has a refcount of one, return false if
332 * that is the case.
333 * This is to make sure that the refcount won't become zero after this drop.
334 * This can be called when MMU is off so it must not access
335 * any of the virtual mappings.
336 */
337 static inline int put_page_unless_one(struct page *page)
338 {
339 return atomic_add_unless(&page->_count, -1, 1);
340 }
341
342 extern int page_is_ram(unsigned long pfn);
343
344 /* Support for virtually mapped pages */
345 struct page *vmalloc_to_page(const void *addr);
346 unsigned long vmalloc_to_pfn(const void *addr);
347
348 /*
349 * Determine if an address is within the vmalloc range
350 *
351 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
352 * is no special casing required.
353 */
354 static inline int is_vmalloc_addr(const void *x)
355 {
356 #ifdef CONFIG_MMU
357 unsigned long addr = (unsigned long)x;
358
359 return addr >= VMALLOC_START && addr < VMALLOC_END;
360 #else
361 return 0;
362 #endif
363 }
364 #ifdef CONFIG_MMU
365 extern int is_vmalloc_or_module_addr(const void *x);
366 #else
367 static inline int is_vmalloc_or_module_addr(const void *x)
368 {
369 return 0;
370 }
371 #endif
372
373 extern void kvfree(const void *addr);
374
375 static inline void compound_lock(struct page *page)
376 {
377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
378 VM_BUG_ON_PAGE(PageSlab(page), page);
379 bit_spin_lock(PG_compound_lock, &page->flags);
380 #endif
381 }
382
383 static inline void compound_unlock(struct page *page)
384 {
385 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
386 VM_BUG_ON_PAGE(PageSlab(page), page);
387 bit_spin_unlock(PG_compound_lock, &page->flags);
388 #endif
389 }
390
391 static inline unsigned long compound_lock_irqsave(struct page *page)
392 {
393 unsigned long uninitialized_var(flags);
394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
395 local_irq_save(flags);
396 compound_lock(page);
397 #endif
398 return flags;
399 }
400
401 static inline void compound_unlock_irqrestore(struct page *page,
402 unsigned long flags)
403 {
404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 compound_unlock(page);
406 local_irq_restore(flags);
407 #endif
408 }
409
410 static inline struct page *compound_head_by_tail(struct page *tail)
411 {
412 struct page *head = tail->first_page;
413
414 /*
415 * page->first_page may be a dangling pointer to an old
416 * compound page, so recheck that it is still a tail
417 * page before returning.
418 */
419 smp_rmb();
420 if (likely(PageTail(tail)))
421 return head;
422 return tail;
423 }
424
425 static inline struct page *compound_head(struct page *page)
426 {
427 if (unlikely(PageTail(page)))
428 return compound_head_by_tail(page);
429 return page;
430 }
431
432 /*
433 * The atomic page->_mapcount, starts from -1: so that transitions
434 * both from it and to it can be tracked, using atomic_inc_and_test
435 * and atomic_add_negative(-1).
436 */
437 static inline void page_mapcount_reset(struct page *page)
438 {
439 atomic_set(&(page)->_mapcount, -1);
440 }
441
442 static inline int page_mapcount(struct page *page)
443 {
444 return atomic_read(&(page)->_mapcount) + 1;
445 }
446
447 static inline int page_count(struct page *page)
448 {
449 return atomic_read(&compound_head(page)->_count);
450 }
451
452 #ifdef CONFIG_HUGETLB_PAGE
453 extern int PageHeadHuge(struct page *page_head);
454 #else /* CONFIG_HUGETLB_PAGE */
455 static inline int PageHeadHuge(struct page *page_head)
456 {
457 return 0;
458 }
459 #endif /* CONFIG_HUGETLB_PAGE */
460
461 static inline bool __compound_tail_refcounted(struct page *page)
462 {
463 return !PageSlab(page) && !PageHeadHuge(page);
464 }
465
466 /*
467 * This takes a head page as parameter and tells if the
468 * tail page reference counting can be skipped.
469 *
470 * For this to be safe, PageSlab and PageHeadHuge must remain true on
471 * any given page where they return true here, until all tail pins
472 * have been released.
473 */
474 static inline bool compound_tail_refcounted(struct page *page)
475 {
476 VM_BUG_ON_PAGE(!PageHead(page), page);
477 return __compound_tail_refcounted(page);
478 }
479
480 static inline void get_huge_page_tail(struct page *page)
481 {
482 /*
483 * __split_huge_page_refcount() cannot run from under us.
484 */
485 VM_BUG_ON_PAGE(!PageTail(page), page);
486 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
487 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
488 if (compound_tail_refcounted(page->first_page))
489 atomic_inc(&page->_mapcount);
490 }
491
492 extern bool __get_page_tail(struct page *page);
493
494 static inline void get_page(struct page *page)
495 {
496 if (unlikely(PageTail(page)))
497 if (likely(__get_page_tail(page)))
498 return;
499 /*
500 * Getting a normal page or the head of a compound page
501 * requires to already have an elevated page->_count.
502 */
503 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
504 atomic_inc(&page->_count);
505 }
506
507 static inline struct page *virt_to_head_page(const void *x)
508 {
509 struct page *page = virt_to_page(x);
510 return compound_head(page);
511 }
512
513 /*
514 * Setup the page count before being freed into the page allocator for
515 * the first time (boot or memory hotplug)
516 */
517 static inline void init_page_count(struct page *page)
518 {
519 atomic_set(&page->_count, 1);
520 }
521
522 /*
523 * PageBuddy() indicate that the page is free and in the buddy system
524 * (see mm/page_alloc.c).
525 *
526 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
527 * -2 so that an underflow of the page_mapcount() won't be mistaken
528 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
529 * efficiently by most CPU architectures.
530 */
531 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
532
533 static inline int PageBuddy(struct page *page)
534 {
535 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
536 }
537
538 static inline void __SetPageBuddy(struct page *page)
539 {
540 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
541 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
542 }
543
544 static inline void __ClearPageBuddy(struct page *page)
545 {
546 VM_BUG_ON_PAGE(!PageBuddy(page), page);
547 atomic_set(&page->_mapcount, -1);
548 }
549
550 void put_page(struct page *page);
551 void put_pages_list(struct list_head *pages);
552
553 void split_page(struct page *page, unsigned int order);
554 int split_free_page(struct page *page);
555
556 /*
557 * Compound pages have a destructor function. Provide a
558 * prototype for that function and accessor functions.
559 * These are _only_ valid on the head of a PG_compound page.
560 */
561 typedef void compound_page_dtor(struct page *);
562
563 static inline void set_compound_page_dtor(struct page *page,
564 compound_page_dtor *dtor)
565 {
566 page[1].lru.next = (void *)dtor;
567 }
568
569 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
570 {
571 return (compound_page_dtor *)page[1].lru.next;
572 }
573
574 static inline int compound_order(struct page *page)
575 {
576 if (!PageHead(page))
577 return 0;
578 return (unsigned long)page[1].lru.prev;
579 }
580
581 static inline void set_compound_order(struct page *page, unsigned long order)
582 {
583 page[1].lru.prev = (void *)order;
584 }
585
586 #ifdef CONFIG_MMU
587 /*
588 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
589 * servicing faults for write access. In the normal case, do always want
590 * pte_mkwrite. But get_user_pages can cause write faults for mappings
591 * that do not have writing enabled, when used by access_process_vm.
592 */
593 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
594 {
595 if (likely(vma->vm_flags & VM_WRITE))
596 pte = pte_mkwrite(pte);
597 return pte;
598 }
599
600 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
601 struct page *page, pte_t *pte, bool write, bool anon);
602 #endif
603
604 /*
605 * Multiple processes may "see" the same page. E.g. for untouched
606 * mappings of /dev/null, all processes see the same page full of
607 * zeroes, and text pages of executables and shared libraries have
608 * only one copy in memory, at most, normally.
609 *
610 * For the non-reserved pages, page_count(page) denotes a reference count.
611 * page_count() == 0 means the page is free. page->lru is then used for
612 * freelist management in the buddy allocator.
613 * page_count() > 0 means the page has been allocated.
614 *
615 * Pages are allocated by the slab allocator in order to provide memory
616 * to kmalloc and kmem_cache_alloc. In this case, the management of the
617 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
618 * unless a particular usage is carefully commented. (the responsibility of
619 * freeing the kmalloc memory is the caller's, of course).
620 *
621 * A page may be used by anyone else who does a __get_free_page().
622 * In this case, page_count still tracks the references, and should only
623 * be used through the normal accessor functions. The top bits of page->flags
624 * and page->virtual store page management information, but all other fields
625 * are unused and could be used privately, carefully. The management of this
626 * page is the responsibility of the one who allocated it, and those who have
627 * subsequently been given references to it.
628 *
629 * The other pages (we may call them "pagecache pages") are completely
630 * managed by the Linux memory manager: I/O, buffers, swapping etc.
631 * The following discussion applies only to them.
632 *
633 * A pagecache page contains an opaque `private' member, which belongs to the
634 * page's address_space. Usually, this is the address of a circular list of
635 * the page's disk buffers. PG_private must be set to tell the VM to call
636 * into the filesystem to release these pages.
637 *
638 * A page may belong to an inode's memory mapping. In this case, page->mapping
639 * is the pointer to the inode, and page->index is the file offset of the page,
640 * in units of PAGE_CACHE_SIZE.
641 *
642 * If pagecache pages are not associated with an inode, they are said to be
643 * anonymous pages. These may become associated with the swapcache, and in that
644 * case PG_swapcache is set, and page->private is an offset into the swapcache.
645 *
646 * In either case (swapcache or inode backed), the pagecache itself holds one
647 * reference to the page. Setting PG_private should also increment the
648 * refcount. The each user mapping also has a reference to the page.
649 *
650 * The pagecache pages are stored in a per-mapping radix tree, which is
651 * rooted at mapping->page_tree, and indexed by offset.
652 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
653 * lists, we instead now tag pages as dirty/writeback in the radix tree.
654 *
655 * All pagecache pages may be subject to I/O:
656 * - inode pages may need to be read from disk,
657 * - inode pages which have been modified and are MAP_SHARED may need
658 * to be written back to the inode on disk,
659 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
660 * modified may need to be swapped out to swap space and (later) to be read
661 * back into memory.
662 */
663
664 /*
665 * The zone field is never updated after free_area_init_core()
666 * sets it, so none of the operations on it need to be atomic.
667 */
668
669 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
670 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
671 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
672 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
673 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
674
675 /*
676 * Define the bit shifts to access each section. For non-existent
677 * sections we define the shift as 0; that plus a 0 mask ensures
678 * the compiler will optimise away reference to them.
679 */
680 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
681 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
682 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
683 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
684
685 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
686 #ifdef NODE_NOT_IN_PAGE_FLAGS
687 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
688 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
689 SECTIONS_PGOFF : ZONES_PGOFF)
690 #else
691 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
692 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
693 NODES_PGOFF : ZONES_PGOFF)
694 #endif
695
696 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
697
698 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
699 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
700 #endif
701
702 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
703 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
704 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
705 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
706 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
707
708 static inline enum zone_type page_zonenum(const struct page *page)
709 {
710 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
711 }
712
713 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
714 #define SECTION_IN_PAGE_FLAGS
715 #endif
716
717 /*
718 * The identification function is mainly used by the buddy allocator for
719 * determining if two pages could be buddies. We are not really identifying
720 * the zone since we could be using the section number id if we do not have
721 * node id available in page flags.
722 * We only guarantee that it will return the same value for two combinable
723 * pages in a zone.
724 */
725 static inline int page_zone_id(struct page *page)
726 {
727 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
728 }
729
730 static inline int zone_to_nid(struct zone *zone)
731 {
732 #ifdef CONFIG_NUMA
733 return zone->node;
734 #else
735 return 0;
736 #endif
737 }
738
739 #ifdef NODE_NOT_IN_PAGE_FLAGS
740 extern int page_to_nid(const struct page *page);
741 #else
742 static inline int page_to_nid(const struct page *page)
743 {
744 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
745 }
746 #endif
747
748 #ifdef CONFIG_NUMA_BALANCING
749 static inline int cpu_pid_to_cpupid(int cpu, int pid)
750 {
751 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
752 }
753
754 static inline int cpupid_to_pid(int cpupid)
755 {
756 return cpupid & LAST__PID_MASK;
757 }
758
759 static inline int cpupid_to_cpu(int cpupid)
760 {
761 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
762 }
763
764 static inline int cpupid_to_nid(int cpupid)
765 {
766 return cpu_to_node(cpupid_to_cpu(cpupid));
767 }
768
769 static inline bool cpupid_pid_unset(int cpupid)
770 {
771 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
772 }
773
774 static inline bool cpupid_cpu_unset(int cpupid)
775 {
776 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
777 }
778
779 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
780 {
781 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
782 }
783
784 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
785 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
786 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
787 {
788 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
789 }
790
791 static inline int page_cpupid_last(struct page *page)
792 {
793 return page->_last_cpupid;
794 }
795 static inline void page_cpupid_reset_last(struct page *page)
796 {
797 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
798 }
799 #else
800 static inline int page_cpupid_last(struct page *page)
801 {
802 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
803 }
804
805 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
806
807 static inline void page_cpupid_reset_last(struct page *page)
808 {
809 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
810
811 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
812 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
813 }
814 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
815 #else /* !CONFIG_NUMA_BALANCING */
816 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
817 {
818 return page_to_nid(page); /* XXX */
819 }
820
821 static inline int page_cpupid_last(struct page *page)
822 {
823 return page_to_nid(page); /* XXX */
824 }
825
826 static inline int cpupid_to_nid(int cpupid)
827 {
828 return -1;
829 }
830
831 static inline int cpupid_to_pid(int cpupid)
832 {
833 return -1;
834 }
835
836 static inline int cpupid_to_cpu(int cpupid)
837 {
838 return -1;
839 }
840
841 static inline int cpu_pid_to_cpupid(int nid, int pid)
842 {
843 return -1;
844 }
845
846 static inline bool cpupid_pid_unset(int cpupid)
847 {
848 return 1;
849 }
850
851 static inline void page_cpupid_reset_last(struct page *page)
852 {
853 }
854
855 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
856 {
857 return false;
858 }
859 #endif /* CONFIG_NUMA_BALANCING */
860
861 static inline struct zone *page_zone(const struct page *page)
862 {
863 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
864 }
865
866 #ifdef SECTION_IN_PAGE_FLAGS
867 static inline void set_page_section(struct page *page, unsigned long section)
868 {
869 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
870 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
871 }
872
873 static inline unsigned long page_to_section(const struct page *page)
874 {
875 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
876 }
877 #endif
878
879 static inline void set_page_zone(struct page *page, enum zone_type zone)
880 {
881 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
882 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
883 }
884
885 static inline void set_page_node(struct page *page, unsigned long node)
886 {
887 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
888 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
889 }
890
891 static inline void set_page_links(struct page *page, enum zone_type zone,
892 unsigned long node, unsigned long pfn)
893 {
894 set_page_zone(page, zone);
895 set_page_node(page, node);
896 #ifdef SECTION_IN_PAGE_FLAGS
897 set_page_section(page, pfn_to_section_nr(pfn));
898 #endif
899 }
900
901 /*
902 * Some inline functions in vmstat.h depend on page_zone()
903 */
904 #include <linux/vmstat.h>
905
906 static __always_inline void *lowmem_page_address(const struct page *page)
907 {
908 return __va(PFN_PHYS(page_to_pfn(page)));
909 }
910
911 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
912 #define HASHED_PAGE_VIRTUAL
913 #endif
914
915 #if defined(WANT_PAGE_VIRTUAL)
916 static inline void *page_address(const struct page *page)
917 {
918 return page->virtual;
919 }
920 static inline void set_page_address(struct page *page, void *address)
921 {
922 page->virtual = address;
923 }
924 #define page_address_init() do { } while(0)
925 #endif
926
927 #if defined(HASHED_PAGE_VIRTUAL)
928 void *page_address(const struct page *page);
929 void set_page_address(struct page *page, void *virtual);
930 void page_address_init(void);
931 #endif
932
933 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
934 #define page_address(page) lowmem_page_address(page)
935 #define set_page_address(page, address) do { } while(0)
936 #define page_address_init() do { } while(0)
937 #endif
938
939 /*
940 * On an anonymous page mapped into a user virtual memory area,
941 * page->mapping points to its anon_vma, not to a struct address_space;
942 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
943 *
944 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
945 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
946 * and then page->mapping points, not to an anon_vma, but to a private
947 * structure which KSM associates with that merged page. See ksm.h.
948 *
949 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
950 *
951 * Please note that, confusingly, "page_mapping" refers to the inode
952 * address_space which maps the page from disk; whereas "page_mapped"
953 * refers to user virtual address space into which the page is mapped.
954 */
955 #define PAGE_MAPPING_ANON 1
956 #define PAGE_MAPPING_KSM 2
957 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
958
959 extern struct address_space *page_mapping(struct page *page);
960
961 /* Neutral page->mapping pointer to address_space or anon_vma or other */
962 static inline void *page_rmapping(struct page *page)
963 {
964 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
965 }
966
967 extern struct address_space *__page_file_mapping(struct page *);
968
969 static inline
970 struct address_space *page_file_mapping(struct page *page)
971 {
972 if (unlikely(PageSwapCache(page)))
973 return __page_file_mapping(page);
974
975 return page->mapping;
976 }
977
978 static inline int PageAnon(struct page *page)
979 {
980 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
981 }
982
983 /*
984 * Return the pagecache index of the passed page. Regular pagecache pages
985 * use ->index whereas swapcache pages use ->private
986 */
987 static inline pgoff_t page_index(struct page *page)
988 {
989 if (unlikely(PageSwapCache(page)))
990 return page_private(page);
991 return page->index;
992 }
993
994 extern pgoff_t __page_file_index(struct page *page);
995
996 /*
997 * Return the file index of the page. Regular pagecache pages use ->index
998 * whereas swapcache pages use swp_offset(->private)
999 */
1000 static inline pgoff_t page_file_index(struct page *page)
1001 {
1002 if (unlikely(PageSwapCache(page)))
1003 return __page_file_index(page);
1004
1005 return page->index;
1006 }
1007
1008 /*
1009 * Return true if this page is mapped into pagetables.
1010 */
1011 static inline int page_mapped(struct page *page)
1012 {
1013 return atomic_read(&(page)->_mapcount) >= 0;
1014 }
1015
1016 /*
1017 * Different kinds of faults, as returned by handle_mm_fault().
1018 * Used to decide whether a process gets delivered SIGBUS or
1019 * just gets major/minor fault counters bumped up.
1020 */
1021
1022 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1023
1024 #define VM_FAULT_OOM 0x0001
1025 #define VM_FAULT_SIGBUS 0x0002
1026 #define VM_FAULT_MAJOR 0x0004
1027 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1028 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1029 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1030
1031 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1032 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1033 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1034 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1035
1036 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1037
1038 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1039 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1040
1041 /* Encode hstate index for a hwpoisoned large page */
1042 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1043 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1044
1045 /*
1046 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1047 */
1048 extern void pagefault_out_of_memory(void);
1049
1050 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1051
1052 /*
1053 * Flags passed to show_mem() and show_free_areas() to suppress output in
1054 * various contexts.
1055 */
1056 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1057
1058 extern void show_free_areas(unsigned int flags);
1059 extern bool skip_free_areas_node(unsigned int flags, int nid);
1060
1061 int shmem_zero_setup(struct vm_area_struct *);
1062 #ifdef CONFIG_SHMEM
1063 bool shmem_mapping(struct address_space *mapping);
1064 #else
1065 static inline bool shmem_mapping(struct address_space *mapping)
1066 {
1067 return false;
1068 }
1069 #endif
1070
1071 extern int can_do_mlock(void);
1072 extern int user_shm_lock(size_t, struct user_struct *);
1073 extern void user_shm_unlock(size_t, struct user_struct *);
1074
1075 /*
1076 * Parameter block passed down to zap_pte_range in exceptional cases.
1077 */
1078 struct zap_details {
1079 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1080 struct address_space *check_mapping; /* Check page->mapping if set */
1081 pgoff_t first_index; /* Lowest page->index to unmap */
1082 pgoff_t last_index; /* Highest page->index to unmap */
1083 };
1084
1085 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1086 pte_t pte);
1087
1088 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1089 unsigned long size);
1090 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1091 unsigned long size, struct zap_details *);
1092 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1093 unsigned long start, unsigned long end);
1094
1095 /**
1096 * mm_walk - callbacks for walk_page_range
1097 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1098 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1099 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1100 * this handler is required to be able to handle
1101 * pmd_trans_huge() pmds. They may simply choose to
1102 * split_huge_page() instead of handling it explicitly.
1103 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1104 * @pte_hole: if set, called for each hole at all levels
1105 * @hugetlb_entry: if set, called for each hugetlb entry
1106 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1107 * is used.
1108 *
1109 * (see walk_page_range for more details)
1110 */
1111 struct mm_walk {
1112 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1113 unsigned long next, struct mm_walk *walk);
1114 int (*pud_entry)(pud_t *pud, unsigned long addr,
1115 unsigned long next, struct mm_walk *walk);
1116 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1117 unsigned long next, struct mm_walk *walk);
1118 int (*pte_entry)(pte_t *pte, unsigned long addr,
1119 unsigned long next, struct mm_walk *walk);
1120 int (*pte_hole)(unsigned long addr, unsigned long next,
1121 struct mm_walk *walk);
1122 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1123 unsigned long addr, unsigned long next,
1124 struct mm_walk *walk);
1125 struct mm_struct *mm;
1126 void *private;
1127 };
1128
1129 int walk_page_range(unsigned long addr, unsigned long end,
1130 struct mm_walk *walk);
1131 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1132 unsigned long end, unsigned long floor, unsigned long ceiling);
1133 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1134 struct vm_area_struct *vma);
1135 void unmap_mapping_range(struct address_space *mapping,
1136 loff_t const holebegin, loff_t const holelen, int even_cows);
1137 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1138 unsigned long *pfn);
1139 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1140 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1141 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1142 void *buf, int len, int write);
1143
1144 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1145 loff_t const holebegin, loff_t const holelen)
1146 {
1147 unmap_mapping_range(mapping, holebegin, holelen, 0);
1148 }
1149
1150 extern void truncate_pagecache(struct inode *inode, loff_t new);
1151 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1152 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1153 int truncate_inode_page(struct address_space *mapping, struct page *page);
1154 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1155 int invalidate_inode_page(struct page *page);
1156
1157 #ifdef CONFIG_MMU
1158 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1159 unsigned long address, unsigned int flags);
1160 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1161 unsigned long address, unsigned int fault_flags);
1162 #else
1163 static inline int handle_mm_fault(struct mm_struct *mm,
1164 struct vm_area_struct *vma, unsigned long address,
1165 unsigned int flags)
1166 {
1167 /* should never happen if there's no MMU */
1168 BUG();
1169 return VM_FAULT_SIGBUS;
1170 }
1171 static inline int fixup_user_fault(struct task_struct *tsk,
1172 struct mm_struct *mm, unsigned long address,
1173 unsigned int fault_flags)
1174 {
1175 /* should never happen if there's no MMU */
1176 BUG();
1177 return -EFAULT;
1178 }
1179 #endif
1180
1181 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1182 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1183 void *buf, int len, int write);
1184
1185 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1186 unsigned long start, unsigned long nr_pages,
1187 unsigned int foll_flags, struct page **pages,
1188 struct vm_area_struct **vmas, int *nonblocking);
1189 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1190 unsigned long start, unsigned long nr_pages,
1191 int write, int force, struct page **pages,
1192 struct vm_area_struct **vmas);
1193 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1194 struct page **pages);
1195 struct kvec;
1196 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1197 struct page **pages);
1198 int get_kernel_page(unsigned long start, int write, struct page **pages);
1199 struct page *get_dump_page(unsigned long addr);
1200
1201 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1202 extern void do_invalidatepage(struct page *page, unsigned int offset,
1203 unsigned int length);
1204
1205 int __set_page_dirty_nobuffers(struct page *page);
1206 int __set_page_dirty_no_writeback(struct page *page);
1207 int redirty_page_for_writepage(struct writeback_control *wbc,
1208 struct page *page);
1209 void account_page_dirtied(struct page *page, struct address_space *mapping);
1210 void account_page_writeback(struct page *page);
1211 int set_page_dirty(struct page *page);
1212 int set_page_dirty_lock(struct page *page);
1213 int clear_page_dirty_for_io(struct page *page);
1214 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1215
1216 /* Is the vma a continuation of the stack vma above it? */
1217 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1218 {
1219 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1220 }
1221
1222 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1223 unsigned long addr)
1224 {
1225 return (vma->vm_flags & VM_GROWSDOWN) &&
1226 (vma->vm_start == addr) &&
1227 !vma_growsdown(vma->vm_prev, addr);
1228 }
1229
1230 /* Is the vma a continuation of the stack vma below it? */
1231 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1232 {
1233 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1234 }
1235
1236 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1237 unsigned long addr)
1238 {
1239 return (vma->vm_flags & VM_GROWSUP) &&
1240 (vma->vm_end == addr) &&
1241 !vma_growsup(vma->vm_next, addr);
1242 }
1243
1244 extern pid_t
1245 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1246
1247 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1248 unsigned long old_addr, struct vm_area_struct *new_vma,
1249 unsigned long new_addr, unsigned long len,
1250 bool need_rmap_locks);
1251 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1252 unsigned long end, pgprot_t newprot,
1253 int dirty_accountable, int prot_numa);
1254 extern int mprotect_fixup(struct vm_area_struct *vma,
1255 struct vm_area_struct **pprev, unsigned long start,
1256 unsigned long end, unsigned long newflags);
1257
1258 /*
1259 * doesn't attempt to fault and will return short.
1260 */
1261 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1262 struct page **pages);
1263 /*
1264 * per-process(per-mm_struct) statistics.
1265 */
1266 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1267 {
1268 long val = atomic_long_read(&mm->rss_stat.count[member]);
1269
1270 #ifdef SPLIT_RSS_COUNTING
1271 /*
1272 * counter is updated in asynchronous manner and may go to minus.
1273 * But it's never be expected number for users.
1274 */
1275 if (val < 0)
1276 val = 0;
1277 #endif
1278 return (unsigned long)val;
1279 }
1280
1281 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1282 {
1283 atomic_long_add(value, &mm->rss_stat.count[member]);
1284 }
1285
1286 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1287 {
1288 atomic_long_inc(&mm->rss_stat.count[member]);
1289 }
1290
1291 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1292 {
1293 atomic_long_dec(&mm->rss_stat.count[member]);
1294 }
1295
1296 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1297 {
1298 return get_mm_counter(mm, MM_FILEPAGES) +
1299 get_mm_counter(mm, MM_ANONPAGES);
1300 }
1301
1302 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1303 {
1304 return max(mm->hiwater_rss, get_mm_rss(mm));
1305 }
1306
1307 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1308 {
1309 return max(mm->hiwater_vm, mm->total_vm);
1310 }
1311
1312 static inline void update_hiwater_rss(struct mm_struct *mm)
1313 {
1314 unsigned long _rss = get_mm_rss(mm);
1315
1316 if ((mm)->hiwater_rss < _rss)
1317 (mm)->hiwater_rss = _rss;
1318 }
1319
1320 static inline void update_hiwater_vm(struct mm_struct *mm)
1321 {
1322 if (mm->hiwater_vm < mm->total_vm)
1323 mm->hiwater_vm = mm->total_vm;
1324 }
1325
1326 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1327 struct mm_struct *mm)
1328 {
1329 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1330
1331 if (*maxrss < hiwater_rss)
1332 *maxrss = hiwater_rss;
1333 }
1334
1335 #if defined(SPLIT_RSS_COUNTING)
1336 void sync_mm_rss(struct mm_struct *mm);
1337 #else
1338 static inline void sync_mm_rss(struct mm_struct *mm)
1339 {
1340 }
1341 #endif
1342
1343 int vma_wants_writenotify(struct vm_area_struct *vma);
1344
1345 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1346 spinlock_t **ptl);
1347 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1348 spinlock_t **ptl)
1349 {
1350 pte_t *ptep;
1351 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1352 return ptep;
1353 }
1354
1355 #ifdef __PAGETABLE_PUD_FOLDED
1356 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1357 unsigned long address)
1358 {
1359 return 0;
1360 }
1361 #else
1362 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1363 #endif
1364
1365 #ifdef __PAGETABLE_PMD_FOLDED
1366 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1367 unsigned long address)
1368 {
1369 return 0;
1370 }
1371 #else
1372 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1373 #endif
1374
1375 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1376 pmd_t *pmd, unsigned long address);
1377 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1378
1379 /*
1380 * The following ifdef needed to get the 4level-fixup.h header to work.
1381 * Remove it when 4level-fixup.h has been removed.
1382 */
1383 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1384 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1385 {
1386 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1387 NULL: pud_offset(pgd, address);
1388 }
1389
1390 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1391 {
1392 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1393 NULL: pmd_offset(pud, address);
1394 }
1395 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1396
1397 #if USE_SPLIT_PTE_PTLOCKS
1398 #if ALLOC_SPLIT_PTLOCKS
1399 void __init ptlock_cache_init(void);
1400 extern bool ptlock_alloc(struct page *page);
1401 extern void ptlock_free(struct page *page);
1402
1403 static inline spinlock_t *ptlock_ptr(struct page *page)
1404 {
1405 return page->ptl;
1406 }
1407 #else /* ALLOC_SPLIT_PTLOCKS */
1408 static inline void ptlock_cache_init(void)
1409 {
1410 }
1411
1412 static inline bool ptlock_alloc(struct page *page)
1413 {
1414 return true;
1415 }
1416
1417 static inline void ptlock_free(struct page *page)
1418 {
1419 }
1420
1421 static inline spinlock_t *ptlock_ptr(struct page *page)
1422 {
1423 return &page->ptl;
1424 }
1425 #endif /* ALLOC_SPLIT_PTLOCKS */
1426
1427 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1428 {
1429 return ptlock_ptr(pmd_page(*pmd));
1430 }
1431
1432 static inline bool ptlock_init(struct page *page)
1433 {
1434 /*
1435 * prep_new_page() initialize page->private (and therefore page->ptl)
1436 * with 0. Make sure nobody took it in use in between.
1437 *
1438 * It can happen if arch try to use slab for page table allocation:
1439 * slab code uses page->slab_cache and page->first_page (for tail
1440 * pages), which share storage with page->ptl.
1441 */
1442 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1443 if (!ptlock_alloc(page))
1444 return false;
1445 spin_lock_init(ptlock_ptr(page));
1446 return true;
1447 }
1448
1449 /* Reset page->mapping so free_pages_check won't complain. */
1450 static inline void pte_lock_deinit(struct page *page)
1451 {
1452 page->mapping = NULL;
1453 ptlock_free(page);
1454 }
1455
1456 #else /* !USE_SPLIT_PTE_PTLOCKS */
1457 /*
1458 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1459 */
1460 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1461 {
1462 return &mm->page_table_lock;
1463 }
1464 static inline void ptlock_cache_init(void) {}
1465 static inline bool ptlock_init(struct page *page) { return true; }
1466 static inline void pte_lock_deinit(struct page *page) {}
1467 #endif /* USE_SPLIT_PTE_PTLOCKS */
1468
1469 static inline void pgtable_init(void)
1470 {
1471 ptlock_cache_init();
1472 pgtable_cache_init();
1473 }
1474
1475 static inline bool pgtable_page_ctor(struct page *page)
1476 {
1477 inc_zone_page_state(page, NR_PAGETABLE);
1478 return ptlock_init(page);
1479 }
1480
1481 static inline void pgtable_page_dtor(struct page *page)
1482 {
1483 pte_lock_deinit(page);
1484 dec_zone_page_state(page, NR_PAGETABLE);
1485 }
1486
1487 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1488 ({ \
1489 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1490 pte_t *__pte = pte_offset_map(pmd, address); \
1491 *(ptlp) = __ptl; \
1492 spin_lock(__ptl); \
1493 __pte; \
1494 })
1495
1496 #define pte_unmap_unlock(pte, ptl) do { \
1497 spin_unlock(ptl); \
1498 pte_unmap(pte); \
1499 } while (0)
1500
1501 #define pte_alloc_map(mm, vma, pmd, address) \
1502 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1503 pmd, address))? \
1504 NULL: pte_offset_map(pmd, address))
1505
1506 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1507 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1508 pmd, address))? \
1509 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1510
1511 #define pte_alloc_kernel(pmd, address) \
1512 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1513 NULL: pte_offset_kernel(pmd, address))
1514
1515 #if USE_SPLIT_PMD_PTLOCKS
1516
1517 static struct page *pmd_to_page(pmd_t *pmd)
1518 {
1519 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1520 return virt_to_page((void *)((unsigned long) pmd & mask));
1521 }
1522
1523 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1524 {
1525 return ptlock_ptr(pmd_to_page(pmd));
1526 }
1527
1528 static inline bool pgtable_pmd_page_ctor(struct page *page)
1529 {
1530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 page->pmd_huge_pte = NULL;
1532 #endif
1533 return ptlock_init(page);
1534 }
1535
1536 static inline void pgtable_pmd_page_dtor(struct page *page)
1537 {
1538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1539 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1540 #endif
1541 ptlock_free(page);
1542 }
1543
1544 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1545
1546 #else
1547
1548 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1549 {
1550 return &mm->page_table_lock;
1551 }
1552
1553 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1554 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1555
1556 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1557
1558 #endif
1559
1560 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1561 {
1562 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1563 spin_lock(ptl);
1564 return ptl;
1565 }
1566
1567 extern void free_area_init(unsigned long * zones_size);
1568 extern void free_area_init_node(int nid, unsigned long * zones_size,
1569 unsigned long zone_start_pfn, unsigned long *zholes_size);
1570 extern void free_initmem(void);
1571
1572 /*
1573 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1574 * into the buddy system. The freed pages will be poisoned with pattern
1575 * "poison" if it's within range [0, UCHAR_MAX].
1576 * Return pages freed into the buddy system.
1577 */
1578 extern unsigned long free_reserved_area(void *start, void *end,
1579 int poison, char *s);
1580
1581 #ifdef CONFIG_HIGHMEM
1582 /*
1583 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1584 * and totalram_pages.
1585 */
1586 extern void free_highmem_page(struct page *page);
1587 #endif
1588
1589 extern void adjust_managed_page_count(struct page *page, long count);
1590 extern void mem_init_print_info(const char *str);
1591
1592 /* Free the reserved page into the buddy system, so it gets managed. */
1593 static inline void __free_reserved_page(struct page *page)
1594 {
1595 ClearPageReserved(page);
1596 init_page_count(page);
1597 __free_page(page);
1598 }
1599
1600 static inline void free_reserved_page(struct page *page)
1601 {
1602 __free_reserved_page(page);
1603 adjust_managed_page_count(page, 1);
1604 }
1605
1606 static inline void mark_page_reserved(struct page *page)
1607 {
1608 SetPageReserved(page);
1609 adjust_managed_page_count(page, -1);
1610 }
1611
1612 /*
1613 * Default method to free all the __init memory into the buddy system.
1614 * The freed pages will be poisoned with pattern "poison" if it's within
1615 * range [0, UCHAR_MAX].
1616 * Return pages freed into the buddy system.
1617 */
1618 static inline unsigned long free_initmem_default(int poison)
1619 {
1620 extern char __init_begin[], __init_end[];
1621
1622 return free_reserved_area(&__init_begin, &__init_end,
1623 poison, "unused kernel");
1624 }
1625
1626 static inline unsigned long get_num_physpages(void)
1627 {
1628 int nid;
1629 unsigned long phys_pages = 0;
1630
1631 for_each_online_node(nid)
1632 phys_pages += node_present_pages(nid);
1633
1634 return phys_pages;
1635 }
1636
1637 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1638 /*
1639 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1640 * zones, allocate the backing mem_map and account for memory holes in a more
1641 * architecture independent manner. This is a substitute for creating the
1642 * zone_sizes[] and zholes_size[] arrays and passing them to
1643 * free_area_init_node()
1644 *
1645 * An architecture is expected to register range of page frames backed by
1646 * physical memory with memblock_add[_node]() before calling
1647 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1648 * usage, an architecture is expected to do something like
1649 *
1650 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1651 * max_highmem_pfn};
1652 * for_each_valid_physical_page_range()
1653 * memblock_add_node(base, size, nid)
1654 * free_area_init_nodes(max_zone_pfns);
1655 *
1656 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1657 * registered physical page range. Similarly
1658 * sparse_memory_present_with_active_regions() calls memory_present() for
1659 * each range when SPARSEMEM is enabled.
1660 *
1661 * See mm/page_alloc.c for more information on each function exposed by
1662 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1663 */
1664 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1665 unsigned long node_map_pfn_alignment(void);
1666 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1667 unsigned long end_pfn);
1668 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1669 unsigned long end_pfn);
1670 extern void get_pfn_range_for_nid(unsigned int nid,
1671 unsigned long *start_pfn, unsigned long *end_pfn);
1672 extern unsigned long find_min_pfn_with_active_regions(void);
1673 extern void free_bootmem_with_active_regions(int nid,
1674 unsigned long max_low_pfn);
1675 extern void sparse_memory_present_with_active_regions(int nid);
1676
1677 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1678
1679 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1680 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1681 static inline int __early_pfn_to_nid(unsigned long pfn)
1682 {
1683 return 0;
1684 }
1685 #else
1686 /* please see mm/page_alloc.c */
1687 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1688 /* there is a per-arch backend function. */
1689 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1690 #endif
1691
1692 extern void set_dma_reserve(unsigned long new_dma_reserve);
1693 extern void memmap_init_zone(unsigned long, int, unsigned long,
1694 unsigned long, enum memmap_context);
1695 extern void setup_per_zone_wmarks(void);
1696 extern int __meminit init_per_zone_wmark_min(void);
1697 extern void mem_init(void);
1698 extern void __init mmap_init(void);
1699 extern void show_mem(unsigned int flags);
1700 extern void si_meminfo(struct sysinfo * val);
1701 extern void si_meminfo_node(struct sysinfo *val, int nid);
1702
1703 extern __printf(3, 4)
1704 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1705
1706 extern void setup_per_cpu_pageset(void);
1707
1708 extern void zone_pcp_update(struct zone *zone);
1709 extern void zone_pcp_reset(struct zone *zone);
1710
1711 /* page_alloc.c */
1712 extern int min_free_kbytes;
1713
1714 /* nommu.c */
1715 extern atomic_long_t mmap_pages_allocated;
1716 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1717
1718 /* interval_tree.c */
1719 void vma_interval_tree_insert(struct vm_area_struct *node,
1720 struct rb_root *root);
1721 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1722 struct vm_area_struct *prev,
1723 struct rb_root *root);
1724 void vma_interval_tree_remove(struct vm_area_struct *node,
1725 struct rb_root *root);
1726 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1727 unsigned long start, unsigned long last);
1728 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1729 unsigned long start, unsigned long last);
1730
1731 #define vma_interval_tree_foreach(vma, root, start, last) \
1732 for (vma = vma_interval_tree_iter_first(root, start, last); \
1733 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1734
1735 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1736 struct list_head *list)
1737 {
1738 list_add_tail(&vma->shared.nonlinear, list);
1739 }
1740
1741 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1742 struct rb_root *root);
1743 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1744 struct rb_root *root);
1745 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1746 struct rb_root *root, unsigned long start, unsigned long last);
1747 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1748 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1749 #ifdef CONFIG_DEBUG_VM_RB
1750 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1751 #endif
1752
1753 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1754 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1755 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1756
1757 /* mmap.c */
1758 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1759 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1760 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1761 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1762 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1763 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1764 struct mempolicy *);
1765 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1766 extern int split_vma(struct mm_struct *,
1767 struct vm_area_struct *, unsigned long addr, int new_below);
1768 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1769 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1770 struct rb_node **, struct rb_node *);
1771 extern void unlink_file_vma(struct vm_area_struct *);
1772 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1773 unsigned long addr, unsigned long len, pgoff_t pgoff,
1774 bool *need_rmap_locks);
1775 extern void exit_mmap(struct mm_struct *);
1776
1777 extern int mm_take_all_locks(struct mm_struct *mm);
1778 extern void mm_drop_all_locks(struct mm_struct *mm);
1779
1780 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1781 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1782
1783 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1784 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1785 unsigned long addr, unsigned long len,
1786 unsigned long flags, struct page **pages);
1787 extern int install_special_mapping(struct mm_struct *mm,
1788 unsigned long addr, unsigned long len,
1789 unsigned long flags, struct page **pages);
1790
1791 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1792
1793 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1794 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1795 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1796 unsigned long len, unsigned long prot, unsigned long flags,
1797 unsigned long pgoff, unsigned long *populate);
1798 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1799
1800 #ifdef CONFIG_MMU
1801 extern int __mm_populate(unsigned long addr, unsigned long len,
1802 int ignore_errors);
1803 static inline void mm_populate(unsigned long addr, unsigned long len)
1804 {
1805 /* Ignore errors */
1806 (void) __mm_populate(addr, len, 1);
1807 }
1808 #else
1809 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1810 #endif
1811
1812 /* These take the mm semaphore themselves */
1813 extern unsigned long vm_brk(unsigned long, unsigned long);
1814 extern int vm_munmap(unsigned long, size_t);
1815 extern unsigned long vm_mmap(struct file *, unsigned long,
1816 unsigned long, unsigned long,
1817 unsigned long, unsigned long);
1818
1819 struct vm_unmapped_area_info {
1820 #define VM_UNMAPPED_AREA_TOPDOWN 1
1821 unsigned long flags;
1822 unsigned long length;
1823 unsigned long low_limit;
1824 unsigned long high_limit;
1825 unsigned long align_mask;
1826 unsigned long align_offset;
1827 };
1828
1829 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1830 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1831
1832 /*
1833 * Search for an unmapped address range.
1834 *
1835 * We are looking for a range that:
1836 * - does not intersect with any VMA;
1837 * - is contained within the [low_limit, high_limit) interval;
1838 * - is at least the desired size.
1839 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1840 */
1841 static inline unsigned long
1842 vm_unmapped_area(struct vm_unmapped_area_info *info)
1843 {
1844 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1845 return unmapped_area(info);
1846 else
1847 return unmapped_area_topdown(info);
1848 }
1849
1850 /* truncate.c */
1851 extern void truncate_inode_pages(struct address_space *, loff_t);
1852 extern void truncate_inode_pages_range(struct address_space *,
1853 loff_t lstart, loff_t lend);
1854 extern void truncate_inode_pages_final(struct address_space *);
1855
1856 /* generic vm_area_ops exported for stackable file systems */
1857 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1858 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1859 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1860
1861 /* mm/page-writeback.c */
1862 int write_one_page(struct page *page, int wait);
1863 void task_dirty_inc(struct task_struct *tsk);
1864
1865 /* readahead.c */
1866 #define VM_MAX_READAHEAD 128 /* kbytes */
1867 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1868
1869 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1870 pgoff_t offset, unsigned long nr_to_read);
1871
1872 void page_cache_sync_readahead(struct address_space *mapping,
1873 struct file_ra_state *ra,
1874 struct file *filp,
1875 pgoff_t offset,
1876 unsigned long size);
1877
1878 void page_cache_async_readahead(struct address_space *mapping,
1879 struct file_ra_state *ra,
1880 struct file *filp,
1881 struct page *pg,
1882 pgoff_t offset,
1883 unsigned long size);
1884
1885 unsigned long max_sane_readahead(unsigned long nr);
1886
1887 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1888 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1889
1890 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1891 extern int expand_downwards(struct vm_area_struct *vma,
1892 unsigned long address);
1893 #if VM_GROWSUP
1894 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1895 #else
1896 #define expand_upwards(vma, address) do { } while (0)
1897 #endif
1898
1899 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1900 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1901 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1902 struct vm_area_struct **pprev);
1903
1904 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1905 NULL if none. Assume start_addr < end_addr. */
1906 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1907 {
1908 struct vm_area_struct * vma = find_vma(mm,start_addr);
1909
1910 if (vma && end_addr <= vma->vm_start)
1911 vma = NULL;
1912 return vma;
1913 }
1914
1915 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1916 {
1917 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1918 }
1919
1920 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1921 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1922 unsigned long vm_start, unsigned long vm_end)
1923 {
1924 struct vm_area_struct *vma = find_vma(mm, vm_start);
1925
1926 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1927 vma = NULL;
1928
1929 return vma;
1930 }
1931
1932 #ifdef CONFIG_MMU
1933 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1934 #else
1935 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1936 {
1937 return __pgprot(0);
1938 }
1939 #endif
1940
1941 #ifdef CONFIG_NUMA_BALANCING
1942 unsigned long change_prot_numa(struct vm_area_struct *vma,
1943 unsigned long start, unsigned long end);
1944 #endif
1945
1946 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1947 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1948 unsigned long pfn, unsigned long size, pgprot_t);
1949 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1950 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1951 unsigned long pfn);
1952 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1953 unsigned long pfn);
1954 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1955
1956
1957 struct page *follow_page_mask(struct vm_area_struct *vma,
1958 unsigned long address, unsigned int foll_flags,
1959 unsigned int *page_mask);
1960
1961 static inline struct page *follow_page(struct vm_area_struct *vma,
1962 unsigned long address, unsigned int foll_flags)
1963 {
1964 unsigned int unused_page_mask;
1965 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1966 }
1967
1968 #define FOLL_WRITE 0x01 /* check pte is writable */
1969 #define FOLL_TOUCH 0x02 /* mark page accessed */
1970 #define FOLL_GET 0x04 /* do get_page on page */
1971 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1972 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1973 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1974 * and return without waiting upon it */
1975 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1976 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1977 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1978 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1979 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1980
1981 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1982 void *data);
1983 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1984 unsigned long size, pte_fn_t fn, void *data);
1985
1986 #ifdef CONFIG_PROC_FS
1987 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1988 #else
1989 static inline void vm_stat_account(struct mm_struct *mm,
1990 unsigned long flags, struct file *file, long pages)
1991 {
1992 mm->total_vm += pages;
1993 }
1994 #endif /* CONFIG_PROC_FS */
1995
1996 #ifdef CONFIG_DEBUG_PAGEALLOC
1997 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1998 #ifdef CONFIG_HIBERNATION
1999 extern bool kernel_page_present(struct page *page);
2000 #endif /* CONFIG_HIBERNATION */
2001 #else
2002 static inline void
2003 kernel_map_pages(struct page *page, int numpages, int enable) {}
2004 #ifdef CONFIG_HIBERNATION
2005 static inline bool kernel_page_present(struct page *page) { return true; }
2006 #endif /* CONFIG_HIBERNATION */
2007 #endif
2008
2009 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2010 #ifdef __HAVE_ARCH_GATE_AREA
2011 int in_gate_area_no_mm(unsigned long addr);
2012 int in_gate_area(struct mm_struct *mm, unsigned long addr);
2013 #else
2014 int in_gate_area_no_mm(unsigned long addr);
2015 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
2016 #endif /* __HAVE_ARCH_GATE_AREA */
2017
2018 #ifdef CONFIG_SYSCTL
2019 extern int sysctl_drop_caches;
2020 int drop_caches_sysctl_handler(struct ctl_table *, int,
2021 void __user *, size_t *, loff_t *);
2022 #endif
2023
2024 unsigned long shrink_slab(struct shrink_control *shrink,
2025 unsigned long nr_pages_scanned,
2026 unsigned long lru_pages);
2027
2028 #ifndef CONFIG_MMU
2029 #define randomize_va_space 0
2030 #else
2031 extern int randomize_va_space;
2032 #endif
2033
2034 const char * arch_vma_name(struct vm_area_struct *vma);
2035 void print_vma_addr(char *prefix, unsigned long rip);
2036
2037 void sparse_mem_maps_populate_node(struct page **map_map,
2038 unsigned long pnum_begin,
2039 unsigned long pnum_end,
2040 unsigned long map_count,
2041 int nodeid);
2042
2043 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2044 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2045 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2046 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2047 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2048 void *vmemmap_alloc_block(unsigned long size, int node);
2049 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2050 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2051 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2052 int node);
2053 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2054 void vmemmap_populate_print_last(void);
2055 #ifdef CONFIG_MEMORY_HOTPLUG
2056 void vmemmap_free(unsigned long start, unsigned long end);
2057 #endif
2058 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2059 unsigned long size);
2060
2061 enum mf_flags {
2062 MF_COUNT_INCREASED = 1 << 0,
2063 MF_ACTION_REQUIRED = 1 << 1,
2064 MF_MUST_KILL = 1 << 2,
2065 MF_SOFT_OFFLINE = 1 << 3,
2066 };
2067 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2068 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2069 extern int unpoison_memory(unsigned long pfn);
2070 extern int sysctl_memory_failure_early_kill;
2071 extern int sysctl_memory_failure_recovery;
2072 extern void shake_page(struct page *p, int access);
2073 extern atomic_long_t num_poisoned_pages;
2074 extern int soft_offline_page(struct page *page, int flags);
2075
2076 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2077 extern void clear_huge_page(struct page *page,
2078 unsigned long addr,
2079 unsigned int pages_per_huge_page);
2080 extern void copy_user_huge_page(struct page *dst, struct page *src,
2081 unsigned long addr, struct vm_area_struct *vma,
2082 unsigned int pages_per_huge_page);
2083 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2084
2085 #ifdef CONFIG_DEBUG_PAGEALLOC
2086 extern unsigned int _debug_guardpage_minorder;
2087
2088 static inline unsigned int debug_guardpage_minorder(void)
2089 {
2090 return _debug_guardpage_minorder;
2091 }
2092
2093 static inline bool page_is_guard(struct page *page)
2094 {
2095 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2096 }
2097 #else
2098 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2099 static inline bool page_is_guard(struct page *page) { return false; }
2100 #endif /* CONFIG_DEBUG_PAGEALLOC */
2101
2102 #if MAX_NUMNODES > 1
2103 void __init setup_nr_node_ids(void);
2104 #else
2105 static inline void setup_nr_node_ids(void) {}
2106 #endif
2107
2108 #endif /* __KERNEL__ */
2109 #endif /* _LINUX_MM_H */