]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mm.h
Merge tag 'for-linus-4.12b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 void init_mm_internals(void);
36
37 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
38 extern unsigned long max_mapnr;
39
40 static inline void set_max_mapnr(unsigned long limit)
41 {
42 max_mapnr = limit;
43 }
44 #else
45 static inline void set_max_mapnr(unsigned long limit) { }
46 #endif
47
48 extern unsigned long totalram_pages;
49 extern void * high_memory;
50 extern int page_cluster;
51
52 #ifdef CONFIG_SYSCTL
53 extern int sysctl_legacy_va_layout;
54 #else
55 #define sysctl_legacy_va_layout 0
56 #endif
57
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 extern const int mmap_rnd_bits_min;
60 extern const int mmap_rnd_bits_max;
61 extern int mmap_rnd_bits __read_mostly;
62 #endif
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 extern const int mmap_rnd_compat_bits_min;
65 extern const int mmap_rnd_compat_bits_max;
66 extern int mmap_rnd_compat_bits __read_mostly;
67 #endif
68
69 #include <asm/page.h>
70 #include <asm/pgtable.h>
71 #include <asm/processor.h>
72
73 #ifndef __pa_symbol
74 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
75 #endif
76
77 #ifndef page_to_virt
78 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
79 #endif
80
81 #ifndef lm_alias
82 #define lm_alias(x) __va(__pa_symbol(x))
83 #endif
84
85 /*
86 * To prevent common memory management code establishing
87 * a zero page mapping on a read fault.
88 * This macro should be defined within <asm/pgtable.h>.
89 * s390 does this to prevent multiplexing of hardware bits
90 * related to the physical page in case of virtualization.
91 */
92 #ifndef mm_forbids_zeropage
93 #define mm_forbids_zeropage(X) (0)
94 #endif
95
96 /*
97 * Default maximum number of active map areas, this limits the number of vmas
98 * per mm struct. Users can overwrite this number by sysctl but there is a
99 * problem.
100 *
101 * When a program's coredump is generated as ELF format, a section is created
102 * per a vma. In ELF, the number of sections is represented in unsigned short.
103 * This means the number of sections should be smaller than 65535 at coredump.
104 * Because the kernel adds some informative sections to a image of program at
105 * generating coredump, we need some margin. The number of extra sections is
106 * 1-3 now and depends on arch. We use "5" as safe margin, here.
107 *
108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
109 * not a hard limit any more. Although some userspace tools can be surprised by
110 * that.
111 */
112 #define MAPCOUNT_ELF_CORE_MARGIN (5)
113 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
114
115 extern int sysctl_max_map_count;
116
117 extern unsigned long sysctl_user_reserve_kbytes;
118 extern unsigned long sysctl_admin_reserve_kbytes;
119
120 extern int sysctl_overcommit_memory;
121 extern int sysctl_overcommit_ratio;
122 extern unsigned long sysctl_overcommit_kbytes;
123
124 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
125 size_t *, loff_t *);
126 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
127 size_t *, loff_t *);
128
129 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
130
131 /* to align the pointer to the (next) page boundary */
132 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
133
134 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
135 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
136
137 /*
138 * Linux kernel virtual memory manager primitives.
139 * The idea being to have a "virtual" mm in the same way
140 * we have a virtual fs - giving a cleaner interface to the
141 * mm details, and allowing different kinds of memory mappings
142 * (from shared memory to executable loading to arbitrary
143 * mmap() functions).
144 */
145
146 extern struct kmem_cache *vm_area_cachep;
147
148 #ifndef CONFIG_MMU
149 extern struct rb_root nommu_region_tree;
150 extern struct rw_semaphore nommu_region_sem;
151
152 extern unsigned int kobjsize(const void *objp);
153 #endif
154
155 /*
156 * vm_flags in vm_area_struct, see mm_types.h.
157 * When changing, update also include/trace/events/mmflags.h
158 */
159 #define VM_NONE 0x00000000
160
161 #define VM_READ 0x00000001 /* currently active flags */
162 #define VM_WRITE 0x00000002
163 #define VM_EXEC 0x00000004
164 #define VM_SHARED 0x00000008
165
166 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
167 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
168 #define VM_MAYWRITE 0x00000020
169 #define VM_MAYEXEC 0x00000040
170 #define VM_MAYSHARE 0x00000080
171
172 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
173 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
174 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
175 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
176 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
177
178 #define VM_LOCKED 0x00002000
179 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
180
181 /* Used by sys_madvise() */
182 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
183 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
184
185 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
186 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
187 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
188 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
189 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
190 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
191 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
192 #define VM_ARCH_2 0x02000000
193 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
194
195 #ifdef CONFIG_MEM_SOFT_DIRTY
196 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
197 #else
198 # define VM_SOFTDIRTY 0
199 #endif
200
201 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
202 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
203 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
204 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
205
206 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
207 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
210 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
211 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
212 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
213 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
214 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
215 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
216
217 #if defined(CONFIG_X86)
218 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
219 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
220 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
221 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
222 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
223 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
224 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
225 #endif
226 #elif defined(CONFIG_PPC)
227 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
228 #elif defined(CONFIG_PARISC)
229 # define VM_GROWSUP VM_ARCH_1
230 #elif defined(CONFIG_METAG)
231 # define VM_GROWSUP VM_ARCH_1
232 #elif defined(CONFIG_IA64)
233 # define VM_GROWSUP VM_ARCH_1
234 #elif !defined(CONFIG_MMU)
235 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
236 #endif
237
238 #if defined(CONFIG_X86)
239 /* MPX specific bounds table or bounds directory */
240 # define VM_MPX VM_ARCH_2
241 #endif
242
243 #ifndef VM_GROWSUP
244 # define VM_GROWSUP VM_NONE
245 #endif
246
247 /* Bits set in the VMA until the stack is in its final location */
248 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
249
250 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
251 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
252 #endif
253
254 #ifdef CONFIG_STACK_GROWSUP
255 #define VM_STACK VM_GROWSUP
256 #else
257 #define VM_STACK VM_GROWSDOWN
258 #endif
259
260 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
261
262 /*
263 * Special vmas that are non-mergable, non-mlock()able.
264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
265 */
266 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
267
268 /* This mask defines which mm->def_flags a process can inherit its parent */
269 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
270
271 /* This mask is used to clear all the VMA flags used by mlock */
272 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
273
274 /*
275 * mapping from the currently active vm_flags protection bits (the
276 * low four bits) to a page protection mask..
277 */
278 extern pgprot_t protection_map[16];
279
280 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
281 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
282 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
283 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
284 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
285 #define FAULT_FLAG_TRIED 0x20 /* Second try */
286 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
287 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
288 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
289
290 #define FAULT_FLAG_TRACE \
291 { FAULT_FLAG_WRITE, "WRITE" }, \
292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
296 { FAULT_FLAG_TRIED, "TRIED" }, \
297 { FAULT_FLAG_USER, "USER" }, \
298 { FAULT_FLAG_REMOTE, "REMOTE" }, \
299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
300
301 /*
302 * vm_fault is filled by the the pagefault handler and passed to the vma's
303 * ->fault function. The vma's ->fault is responsible for returning a bitmask
304 * of VM_FAULT_xxx flags that give details about how the fault was handled.
305 *
306 * MM layer fills up gfp_mask for page allocations but fault handler might
307 * alter it if its implementation requires a different allocation context.
308 *
309 * pgoff should be used in favour of virtual_address, if possible.
310 */
311 struct vm_fault {
312 struct vm_area_struct *vma; /* Target VMA */
313 unsigned int flags; /* FAULT_FLAG_xxx flags */
314 gfp_t gfp_mask; /* gfp mask to be used for allocations */
315 pgoff_t pgoff; /* Logical page offset based on vma */
316 unsigned long address; /* Faulting virtual address */
317 pmd_t *pmd; /* Pointer to pmd entry matching
318 * the 'address' */
319 pud_t *pud; /* Pointer to pud entry matching
320 * the 'address'
321 */
322 pte_t orig_pte; /* Value of PTE at the time of fault */
323
324 struct page *cow_page; /* Page handler may use for COW fault */
325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
326 struct page *page; /* ->fault handlers should return a
327 * page here, unless VM_FAULT_NOPAGE
328 * is set (which is also implied by
329 * VM_FAULT_ERROR).
330 */
331 /* These three entries are valid only while holding ptl lock */
332 pte_t *pte; /* Pointer to pte entry matching
333 * the 'address'. NULL if the page
334 * table hasn't been allocated.
335 */
336 spinlock_t *ptl; /* Page table lock.
337 * Protects pte page table if 'pte'
338 * is not NULL, otherwise pmd.
339 */
340 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
341 * vm_ops->map_pages() calls
342 * alloc_set_pte() from atomic context.
343 * do_fault_around() pre-allocates
344 * page table to avoid allocation from
345 * atomic context.
346 */
347 };
348
349 /* page entry size for vm->huge_fault() */
350 enum page_entry_size {
351 PE_SIZE_PTE = 0,
352 PE_SIZE_PMD,
353 PE_SIZE_PUD,
354 };
355
356 /*
357 * These are the virtual MM functions - opening of an area, closing and
358 * unmapping it (needed to keep files on disk up-to-date etc), pointer
359 * to the functions called when a no-page or a wp-page exception occurs.
360 */
361 struct vm_operations_struct {
362 void (*open)(struct vm_area_struct * area);
363 void (*close)(struct vm_area_struct * area);
364 int (*mremap)(struct vm_area_struct * area);
365 int (*fault)(struct vm_fault *vmf);
366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
367 void (*map_pages)(struct vm_fault *vmf,
368 pgoff_t start_pgoff, pgoff_t end_pgoff);
369
370 /* notification that a previously read-only page is about to become
371 * writable, if an error is returned it will cause a SIGBUS */
372 int (*page_mkwrite)(struct vm_fault *vmf);
373
374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
375 int (*pfn_mkwrite)(struct vm_fault *vmf);
376
377 /* called by access_process_vm when get_user_pages() fails, typically
378 * for use by special VMAs that can switch between memory and hardware
379 */
380 int (*access)(struct vm_area_struct *vma, unsigned long addr,
381 void *buf, int len, int write);
382
383 /* Called by the /proc/PID/maps code to ask the vma whether it
384 * has a special name. Returning non-NULL will also cause this
385 * vma to be dumped unconditionally. */
386 const char *(*name)(struct vm_area_struct *vma);
387
388 #ifdef CONFIG_NUMA
389 /*
390 * set_policy() op must add a reference to any non-NULL @new mempolicy
391 * to hold the policy upon return. Caller should pass NULL @new to
392 * remove a policy and fall back to surrounding context--i.e. do not
393 * install a MPOL_DEFAULT policy, nor the task or system default
394 * mempolicy.
395 */
396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
397
398 /*
399 * get_policy() op must add reference [mpol_get()] to any policy at
400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
401 * in mm/mempolicy.c will do this automatically.
402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
405 * must return NULL--i.e., do not "fallback" to task or system default
406 * policy.
407 */
408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
409 unsigned long addr);
410 #endif
411 /*
412 * Called by vm_normal_page() for special PTEs to find the
413 * page for @addr. This is useful if the default behavior
414 * (using pte_page()) would not find the correct page.
415 */
416 struct page *(*find_special_page)(struct vm_area_struct *vma,
417 unsigned long addr);
418 };
419
420 struct mmu_gather;
421 struct inode;
422
423 #define page_private(page) ((page)->private)
424 #define set_page_private(page, v) ((page)->private = (v))
425
426 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
427 static inline int pmd_devmap(pmd_t pmd)
428 {
429 return 0;
430 }
431 static inline int pud_devmap(pud_t pud)
432 {
433 return 0;
434 }
435 static inline int pgd_devmap(pgd_t pgd)
436 {
437 return 0;
438 }
439 #endif
440
441 /*
442 * FIXME: take this include out, include page-flags.h in
443 * files which need it (119 of them)
444 */
445 #include <linux/page-flags.h>
446 #include <linux/huge_mm.h>
447
448 /*
449 * Methods to modify the page usage count.
450 *
451 * What counts for a page usage:
452 * - cache mapping (page->mapping)
453 * - private data (page->private)
454 * - page mapped in a task's page tables, each mapping
455 * is counted separately
456 *
457 * Also, many kernel routines increase the page count before a critical
458 * routine so they can be sure the page doesn't go away from under them.
459 */
460
461 /*
462 * Drop a ref, return true if the refcount fell to zero (the page has no users)
463 */
464 static inline int put_page_testzero(struct page *page)
465 {
466 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
467 return page_ref_dec_and_test(page);
468 }
469
470 /*
471 * Try to grab a ref unless the page has a refcount of zero, return false if
472 * that is the case.
473 * This can be called when MMU is off so it must not access
474 * any of the virtual mappings.
475 */
476 static inline int get_page_unless_zero(struct page *page)
477 {
478 return page_ref_add_unless(page, 1, 0);
479 }
480
481 extern int page_is_ram(unsigned long pfn);
482
483 enum {
484 REGION_INTERSECTS,
485 REGION_DISJOINT,
486 REGION_MIXED,
487 };
488
489 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
490 unsigned long desc);
491
492 /* Support for virtually mapped pages */
493 struct page *vmalloc_to_page(const void *addr);
494 unsigned long vmalloc_to_pfn(const void *addr);
495
496 /*
497 * Determine if an address is within the vmalloc range
498 *
499 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
500 * is no special casing required.
501 */
502 static inline bool is_vmalloc_addr(const void *x)
503 {
504 #ifdef CONFIG_MMU
505 unsigned long addr = (unsigned long)x;
506
507 return addr >= VMALLOC_START && addr < VMALLOC_END;
508 #else
509 return false;
510 #endif
511 }
512 #ifdef CONFIG_MMU
513 extern int is_vmalloc_or_module_addr(const void *x);
514 #else
515 static inline int is_vmalloc_or_module_addr(const void *x)
516 {
517 return 0;
518 }
519 #endif
520
521 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
522 static inline void *kvmalloc(size_t size, gfp_t flags)
523 {
524 return kvmalloc_node(size, flags, NUMA_NO_NODE);
525 }
526 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
527 {
528 return kvmalloc_node(size, flags | __GFP_ZERO, node);
529 }
530 static inline void *kvzalloc(size_t size, gfp_t flags)
531 {
532 return kvmalloc(size, flags | __GFP_ZERO);
533 }
534
535 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
536 {
537 if (size != 0 && n > SIZE_MAX / size)
538 return NULL;
539
540 return kvmalloc(n * size, flags);
541 }
542
543 extern void kvfree(const void *addr);
544
545 static inline atomic_t *compound_mapcount_ptr(struct page *page)
546 {
547 return &page[1].compound_mapcount;
548 }
549
550 static inline int compound_mapcount(struct page *page)
551 {
552 VM_BUG_ON_PAGE(!PageCompound(page), page);
553 page = compound_head(page);
554 return atomic_read(compound_mapcount_ptr(page)) + 1;
555 }
556
557 /*
558 * The atomic page->_mapcount, starts from -1: so that transitions
559 * both from it and to it can be tracked, using atomic_inc_and_test
560 * and atomic_add_negative(-1).
561 */
562 static inline void page_mapcount_reset(struct page *page)
563 {
564 atomic_set(&(page)->_mapcount, -1);
565 }
566
567 int __page_mapcount(struct page *page);
568
569 static inline int page_mapcount(struct page *page)
570 {
571 VM_BUG_ON_PAGE(PageSlab(page), page);
572
573 if (unlikely(PageCompound(page)))
574 return __page_mapcount(page);
575 return atomic_read(&page->_mapcount) + 1;
576 }
577
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 int total_mapcount(struct page *page);
580 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
581 #else
582 static inline int total_mapcount(struct page *page)
583 {
584 return page_mapcount(page);
585 }
586 static inline int page_trans_huge_mapcount(struct page *page,
587 int *total_mapcount)
588 {
589 int mapcount = page_mapcount(page);
590 if (total_mapcount)
591 *total_mapcount = mapcount;
592 return mapcount;
593 }
594 #endif
595
596 static inline struct page *virt_to_head_page(const void *x)
597 {
598 struct page *page = virt_to_page(x);
599
600 return compound_head(page);
601 }
602
603 void __put_page(struct page *page);
604
605 void put_pages_list(struct list_head *pages);
606
607 void split_page(struct page *page, unsigned int order);
608
609 /*
610 * Compound pages have a destructor function. Provide a
611 * prototype for that function and accessor functions.
612 * These are _only_ valid on the head of a compound page.
613 */
614 typedef void compound_page_dtor(struct page *);
615
616 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
617 enum compound_dtor_id {
618 NULL_COMPOUND_DTOR,
619 COMPOUND_PAGE_DTOR,
620 #ifdef CONFIG_HUGETLB_PAGE
621 HUGETLB_PAGE_DTOR,
622 #endif
623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
624 TRANSHUGE_PAGE_DTOR,
625 #endif
626 NR_COMPOUND_DTORS,
627 };
628 extern compound_page_dtor * const compound_page_dtors[];
629
630 static inline void set_compound_page_dtor(struct page *page,
631 enum compound_dtor_id compound_dtor)
632 {
633 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
634 page[1].compound_dtor = compound_dtor;
635 }
636
637 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
638 {
639 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
640 return compound_page_dtors[page[1].compound_dtor];
641 }
642
643 static inline unsigned int compound_order(struct page *page)
644 {
645 if (!PageHead(page))
646 return 0;
647 return page[1].compound_order;
648 }
649
650 static inline void set_compound_order(struct page *page, unsigned int order)
651 {
652 page[1].compound_order = order;
653 }
654
655 void free_compound_page(struct page *page);
656
657 #ifdef CONFIG_MMU
658 /*
659 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
660 * servicing faults for write access. In the normal case, do always want
661 * pte_mkwrite. But get_user_pages can cause write faults for mappings
662 * that do not have writing enabled, when used by access_process_vm.
663 */
664 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
665 {
666 if (likely(vma->vm_flags & VM_WRITE))
667 pte = pte_mkwrite(pte);
668 return pte;
669 }
670
671 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
672 struct page *page);
673 int finish_fault(struct vm_fault *vmf);
674 int finish_mkwrite_fault(struct vm_fault *vmf);
675 #endif
676
677 /*
678 * Multiple processes may "see" the same page. E.g. for untouched
679 * mappings of /dev/null, all processes see the same page full of
680 * zeroes, and text pages of executables and shared libraries have
681 * only one copy in memory, at most, normally.
682 *
683 * For the non-reserved pages, page_count(page) denotes a reference count.
684 * page_count() == 0 means the page is free. page->lru is then used for
685 * freelist management in the buddy allocator.
686 * page_count() > 0 means the page has been allocated.
687 *
688 * Pages are allocated by the slab allocator in order to provide memory
689 * to kmalloc and kmem_cache_alloc. In this case, the management of the
690 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
691 * unless a particular usage is carefully commented. (the responsibility of
692 * freeing the kmalloc memory is the caller's, of course).
693 *
694 * A page may be used by anyone else who does a __get_free_page().
695 * In this case, page_count still tracks the references, and should only
696 * be used through the normal accessor functions. The top bits of page->flags
697 * and page->virtual store page management information, but all other fields
698 * are unused and could be used privately, carefully. The management of this
699 * page is the responsibility of the one who allocated it, and those who have
700 * subsequently been given references to it.
701 *
702 * The other pages (we may call them "pagecache pages") are completely
703 * managed by the Linux memory manager: I/O, buffers, swapping etc.
704 * The following discussion applies only to them.
705 *
706 * A pagecache page contains an opaque `private' member, which belongs to the
707 * page's address_space. Usually, this is the address of a circular list of
708 * the page's disk buffers. PG_private must be set to tell the VM to call
709 * into the filesystem to release these pages.
710 *
711 * A page may belong to an inode's memory mapping. In this case, page->mapping
712 * is the pointer to the inode, and page->index is the file offset of the page,
713 * in units of PAGE_SIZE.
714 *
715 * If pagecache pages are not associated with an inode, they are said to be
716 * anonymous pages. These may become associated with the swapcache, and in that
717 * case PG_swapcache is set, and page->private is an offset into the swapcache.
718 *
719 * In either case (swapcache or inode backed), the pagecache itself holds one
720 * reference to the page. Setting PG_private should also increment the
721 * refcount. The each user mapping also has a reference to the page.
722 *
723 * The pagecache pages are stored in a per-mapping radix tree, which is
724 * rooted at mapping->page_tree, and indexed by offset.
725 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
726 * lists, we instead now tag pages as dirty/writeback in the radix tree.
727 *
728 * All pagecache pages may be subject to I/O:
729 * - inode pages may need to be read from disk,
730 * - inode pages which have been modified and are MAP_SHARED may need
731 * to be written back to the inode on disk,
732 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
733 * modified may need to be swapped out to swap space and (later) to be read
734 * back into memory.
735 */
736
737 /*
738 * The zone field is never updated after free_area_init_core()
739 * sets it, so none of the operations on it need to be atomic.
740 */
741
742 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
743 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
744 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
745 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
746 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
747
748 /*
749 * Define the bit shifts to access each section. For non-existent
750 * sections we define the shift as 0; that plus a 0 mask ensures
751 * the compiler will optimise away reference to them.
752 */
753 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
754 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
755 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
756 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
757
758 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
759 #ifdef NODE_NOT_IN_PAGE_FLAGS
760 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
761 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
762 SECTIONS_PGOFF : ZONES_PGOFF)
763 #else
764 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
765 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
766 NODES_PGOFF : ZONES_PGOFF)
767 #endif
768
769 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
770
771 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
772 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
773 #endif
774
775 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
776 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
777 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
778 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
779 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
780
781 static inline enum zone_type page_zonenum(const struct page *page)
782 {
783 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
784 }
785
786 #ifdef CONFIG_ZONE_DEVICE
787 static inline bool is_zone_device_page(const struct page *page)
788 {
789 return page_zonenum(page) == ZONE_DEVICE;
790 }
791 #else
792 static inline bool is_zone_device_page(const struct page *page)
793 {
794 return false;
795 }
796 #endif
797
798 static inline void get_page(struct page *page)
799 {
800 page = compound_head(page);
801 /*
802 * Getting a normal page or the head of a compound page
803 * requires to already have an elevated page->_refcount.
804 */
805 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
806 page_ref_inc(page);
807 }
808
809 static inline void put_page(struct page *page)
810 {
811 page = compound_head(page);
812
813 if (put_page_testzero(page))
814 __put_page(page);
815 }
816
817 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
818 #define SECTION_IN_PAGE_FLAGS
819 #endif
820
821 /*
822 * The identification function is mainly used by the buddy allocator for
823 * determining if two pages could be buddies. We are not really identifying
824 * the zone since we could be using the section number id if we do not have
825 * node id available in page flags.
826 * We only guarantee that it will return the same value for two combinable
827 * pages in a zone.
828 */
829 static inline int page_zone_id(struct page *page)
830 {
831 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
832 }
833
834 static inline int zone_to_nid(struct zone *zone)
835 {
836 #ifdef CONFIG_NUMA
837 return zone->node;
838 #else
839 return 0;
840 #endif
841 }
842
843 #ifdef NODE_NOT_IN_PAGE_FLAGS
844 extern int page_to_nid(const struct page *page);
845 #else
846 static inline int page_to_nid(const struct page *page)
847 {
848 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
849 }
850 #endif
851
852 #ifdef CONFIG_NUMA_BALANCING
853 static inline int cpu_pid_to_cpupid(int cpu, int pid)
854 {
855 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
856 }
857
858 static inline int cpupid_to_pid(int cpupid)
859 {
860 return cpupid & LAST__PID_MASK;
861 }
862
863 static inline int cpupid_to_cpu(int cpupid)
864 {
865 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
866 }
867
868 static inline int cpupid_to_nid(int cpupid)
869 {
870 return cpu_to_node(cpupid_to_cpu(cpupid));
871 }
872
873 static inline bool cpupid_pid_unset(int cpupid)
874 {
875 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
876 }
877
878 static inline bool cpupid_cpu_unset(int cpupid)
879 {
880 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
881 }
882
883 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
884 {
885 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
886 }
887
888 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
889 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
890 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
891 {
892 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
893 }
894
895 static inline int page_cpupid_last(struct page *page)
896 {
897 return page->_last_cpupid;
898 }
899 static inline void page_cpupid_reset_last(struct page *page)
900 {
901 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
902 }
903 #else
904 static inline int page_cpupid_last(struct page *page)
905 {
906 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
907 }
908
909 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
910
911 static inline void page_cpupid_reset_last(struct page *page)
912 {
913 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
914 }
915 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
916 #else /* !CONFIG_NUMA_BALANCING */
917 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
918 {
919 return page_to_nid(page); /* XXX */
920 }
921
922 static inline int page_cpupid_last(struct page *page)
923 {
924 return page_to_nid(page); /* XXX */
925 }
926
927 static inline int cpupid_to_nid(int cpupid)
928 {
929 return -1;
930 }
931
932 static inline int cpupid_to_pid(int cpupid)
933 {
934 return -1;
935 }
936
937 static inline int cpupid_to_cpu(int cpupid)
938 {
939 return -1;
940 }
941
942 static inline int cpu_pid_to_cpupid(int nid, int pid)
943 {
944 return -1;
945 }
946
947 static inline bool cpupid_pid_unset(int cpupid)
948 {
949 return 1;
950 }
951
952 static inline void page_cpupid_reset_last(struct page *page)
953 {
954 }
955
956 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
957 {
958 return false;
959 }
960 #endif /* CONFIG_NUMA_BALANCING */
961
962 static inline struct zone *page_zone(const struct page *page)
963 {
964 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
965 }
966
967 static inline pg_data_t *page_pgdat(const struct page *page)
968 {
969 return NODE_DATA(page_to_nid(page));
970 }
971
972 #ifdef SECTION_IN_PAGE_FLAGS
973 static inline void set_page_section(struct page *page, unsigned long section)
974 {
975 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
976 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
977 }
978
979 static inline unsigned long page_to_section(const struct page *page)
980 {
981 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
982 }
983 #endif
984
985 static inline void set_page_zone(struct page *page, enum zone_type zone)
986 {
987 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
988 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
989 }
990
991 static inline void set_page_node(struct page *page, unsigned long node)
992 {
993 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
994 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
995 }
996
997 static inline void set_page_links(struct page *page, enum zone_type zone,
998 unsigned long node, unsigned long pfn)
999 {
1000 set_page_zone(page, zone);
1001 set_page_node(page, node);
1002 #ifdef SECTION_IN_PAGE_FLAGS
1003 set_page_section(page, pfn_to_section_nr(pfn));
1004 #endif
1005 }
1006
1007 #ifdef CONFIG_MEMCG
1008 static inline struct mem_cgroup *page_memcg(struct page *page)
1009 {
1010 return page->mem_cgroup;
1011 }
1012 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1013 {
1014 WARN_ON_ONCE(!rcu_read_lock_held());
1015 return READ_ONCE(page->mem_cgroup);
1016 }
1017 #else
1018 static inline struct mem_cgroup *page_memcg(struct page *page)
1019 {
1020 return NULL;
1021 }
1022 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1023 {
1024 WARN_ON_ONCE(!rcu_read_lock_held());
1025 return NULL;
1026 }
1027 #endif
1028
1029 /*
1030 * Some inline functions in vmstat.h depend on page_zone()
1031 */
1032 #include <linux/vmstat.h>
1033
1034 static __always_inline void *lowmem_page_address(const struct page *page)
1035 {
1036 return page_to_virt(page);
1037 }
1038
1039 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1040 #define HASHED_PAGE_VIRTUAL
1041 #endif
1042
1043 #if defined(WANT_PAGE_VIRTUAL)
1044 static inline void *page_address(const struct page *page)
1045 {
1046 return page->virtual;
1047 }
1048 static inline void set_page_address(struct page *page, void *address)
1049 {
1050 page->virtual = address;
1051 }
1052 #define page_address_init() do { } while(0)
1053 #endif
1054
1055 #if defined(HASHED_PAGE_VIRTUAL)
1056 void *page_address(const struct page *page);
1057 void set_page_address(struct page *page, void *virtual);
1058 void page_address_init(void);
1059 #endif
1060
1061 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1062 #define page_address(page) lowmem_page_address(page)
1063 #define set_page_address(page, address) do { } while(0)
1064 #define page_address_init() do { } while(0)
1065 #endif
1066
1067 extern void *page_rmapping(struct page *page);
1068 extern struct anon_vma *page_anon_vma(struct page *page);
1069 extern struct address_space *page_mapping(struct page *page);
1070
1071 extern struct address_space *__page_file_mapping(struct page *);
1072
1073 static inline
1074 struct address_space *page_file_mapping(struct page *page)
1075 {
1076 if (unlikely(PageSwapCache(page)))
1077 return __page_file_mapping(page);
1078
1079 return page->mapping;
1080 }
1081
1082 extern pgoff_t __page_file_index(struct page *page);
1083
1084 /*
1085 * Return the pagecache index of the passed page. Regular pagecache pages
1086 * use ->index whereas swapcache pages use swp_offset(->private)
1087 */
1088 static inline pgoff_t page_index(struct page *page)
1089 {
1090 if (unlikely(PageSwapCache(page)))
1091 return __page_file_index(page);
1092 return page->index;
1093 }
1094
1095 bool page_mapped(struct page *page);
1096 struct address_space *page_mapping(struct page *page);
1097
1098 /*
1099 * Return true only if the page has been allocated with
1100 * ALLOC_NO_WATERMARKS and the low watermark was not
1101 * met implying that the system is under some pressure.
1102 */
1103 static inline bool page_is_pfmemalloc(struct page *page)
1104 {
1105 /*
1106 * Page index cannot be this large so this must be
1107 * a pfmemalloc page.
1108 */
1109 return page->index == -1UL;
1110 }
1111
1112 /*
1113 * Only to be called by the page allocator on a freshly allocated
1114 * page.
1115 */
1116 static inline void set_page_pfmemalloc(struct page *page)
1117 {
1118 page->index = -1UL;
1119 }
1120
1121 static inline void clear_page_pfmemalloc(struct page *page)
1122 {
1123 page->index = 0;
1124 }
1125
1126 /*
1127 * Different kinds of faults, as returned by handle_mm_fault().
1128 * Used to decide whether a process gets delivered SIGBUS or
1129 * just gets major/minor fault counters bumped up.
1130 */
1131
1132 #define VM_FAULT_OOM 0x0001
1133 #define VM_FAULT_SIGBUS 0x0002
1134 #define VM_FAULT_MAJOR 0x0004
1135 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1136 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1137 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1138 #define VM_FAULT_SIGSEGV 0x0040
1139
1140 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1141 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1142 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1143 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1144 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1145
1146 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1147
1148 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1149 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1150 VM_FAULT_FALLBACK)
1151
1152 #define VM_FAULT_RESULT_TRACE \
1153 { VM_FAULT_OOM, "OOM" }, \
1154 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1155 { VM_FAULT_MAJOR, "MAJOR" }, \
1156 { VM_FAULT_WRITE, "WRITE" }, \
1157 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1158 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1159 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1160 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1161 { VM_FAULT_LOCKED, "LOCKED" }, \
1162 { VM_FAULT_RETRY, "RETRY" }, \
1163 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1164 { VM_FAULT_DONE_COW, "DONE_COW" }
1165
1166 /* Encode hstate index for a hwpoisoned large page */
1167 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1168 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1169
1170 /*
1171 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1172 */
1173 extern void pagefault_out_of_memory(void);
1174
1175 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1176
1177 /*
1178 * Flags passed to show_mem() and show_free_areas() to suppress output in
1179 * various contexts.
1180 */
1181 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1182
1183 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1184
1185 extern bool can_do_mlock(void);
1186 extern int user_shm_lock(size_t, struct user_struct *);
1187 extern void user_shm_unlock(size_t, struct user_struct *);
1188
1189 /*
1190 * Parameter block passed down to zap_pte_range in exceptional cases.
1191 */
1192 struct zap_details {
1193 struct address_space *check_mapping; /* Check page->mapping if set */
1194 pgoff_t first_index; /* Lowest page->index to unmap */
1195 pgoff_t last_index; /* Highest page->index to unmap */
1196 };
1197
1198 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1199 pte_t pte);
1200 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1201 pmd_t pmd);
1202
1203 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1204 unsigned long size);
1205 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1206 unsigned long size);
1207 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1208 unsigned long start, unsigned long end);
1209
1210 /**
1211 * mm_walk - callbacks for walk_page_range
1212 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1213 * this handler should only handle pud_trans_huge() puds.
1214 * the pmd_entry or pte_entry callbacks will be used for
1215 * regular PUDs.
1216 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1217 * this handler is required to be able to handle
1218 * pmd_trans_huge() pmds. They may simply choose to
1219 * split_huge_page() instead of handling it explicitly.
1220 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1221 * @pte_hole: if set, called for each hole at all levels
1222 * @hugetlb_entry: if set, called for each hugetlb entry
1223 * @test_walk: caller specific callback function to determine whether
1224 * we walk over the current vma or not. Returning 0
1225 * value means "do page table walk over the current vma,"
1226 * and a negative one means "abort current page table walk
1227 * right now." 1 means "skip the current vma."
1228 * @mm: mm_struct representing the target process of page table walk
1229 * @vma: vma currently walked (NULL if walking outside vmas)
1230 * @private: private data for callbacks' usage
1231 *
1232 * (see the comment on walk_page_range() for more details)
1233 */
1234 struct mm_walk {
1235 int (*pud_entry)(pud_t *pud, unsigned long addr,
1236 unsigned long next, struct mm_walk *walk);
1237 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1238 unsigned long next, struct mm_walk *walk);
1239 int (*pte_entry)(pte_t *pte, unsigned long addr,
1240 unsigned long next, struct mm_walk *walk);
1241 int (*pte_hole)(unsigned long addr, unsigned long next,
1242 struct mm_walk *walk);
1243 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1244 unsigned long addr, unsigned long next,
1245 struct mm_walk *walk);
1246 int (*test_walk)(unsigned long addr, unsigned long next,
1247 struct mm_walk *walk);
1248 struct mm_struct *mm;
1249 struct vm_area_struct *vma;
1250 void *private;
1251 };
1252
1253 int walk_page_range(unsigned long addr, unsigned long end,
1254 struct mm_walk *walk);
1255 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1256 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1257 unsigned long end, unsigned long floor, unsigned long ceiling);
1258 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1259 struct vm_area_struct *vma);
1260 void unmap_mapping_range(struct address_space *mapping,
1261 loff_t const holebegin, loff_t const holelen, int even_cows);
1262 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1263 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1264 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1265 unsigned long *pfn);
1266 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1267 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1268 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1269 void *buf, int len, int write);
1270
1271 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1272 loff_t const holebegin, loff_t const holelen)
1273 {
1274 unmap_mapping_range(mapping, holebegin, holelen, 0);
1275 }
1276
1277 extern void truncate_pagecache(struct inode *inode, loff_t new);
1278 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1279 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1280 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1281 int truncate_inode_page(struct address_space *mapping, struct page *page);
1282 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1283 int invalidate_inode_page(struct page *page);
1284
1285 #ifdef CONFIG_MMU
1286 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1287 unsigned int flags);
1288 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1289 unsigned long address, unsigned int fault_flags,
1290 bool *unlocked);
1291 #else
1292 static inline int handle_mm_fault(struct vm_area_struct *vma,
1293 unsigned long address, unsigned int flags)
1294 {
1295 /* should never happen if there's no MMU */
1296 BUG();
1297 return VM_FAULT_SIGBUS;
1298 }
1299 static inline int fixup_user_fault(struct task_struct *tsk,
1300 struct mm_struct *mm, unsigned long address,
1301 unsigned int fault_flags, bool *unlocked)
1302 {
1303 /* should never happen if there's no MMU */
1304 BUG();
1305 return -EFAULT;
1306 }
1307 #endif
1308
1309 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1310 unsigned int gup_flags);
1311 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1312 void *buf, int len, unsigned int gup_flags);
1313 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1314 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1315
1316 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1317 unsigned long start, unsigned long nr_pages,
1318 unsigned int gup_flags, struct page **pages,
1319 struct vm_area_struct **vmas, int *locked);
1320 long get_user_pages(unsigned long start, unsigned long nr_pages,
1321 unsigned int gup_flags, struct page **pages,
1322 struct vm_area_struct **vmas);
1323 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1324 unsigned int gup_flags, struct page **pages, int *locked);
1325 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1326 struct page **pages, unsigned int gup_flags);
1327 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1328 struct page **pages);
1329
1330 /* Container for pinned pfns / pages */
1331 struct frame_vector {
1332 unsigned int nr_allocated; /* Number of frames we have space for */
1333 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1334 bool got_ref; /* Did we pin pages by getting page ref? */
1335 bool is_pfns; /* Does array contain pages or pfns? */
1336 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1337 * pfns_vector_pages() or pfns_vector_pfns()
1338 * for access */
1339 };
1340
1341 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1342 void frame_vector_destroy(struct frame_vector *vec);
1343 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1344 unsigned int gup_flags, struct frame_vector *vec);
1345 void put_vaddr_frames(struct frame_vector *vec);
1346 int frame_vector_to_pages(struct frame_vector *vec);
1347 void frame_vector_to_pfns(struct frame_vector *vec);
1348
1349 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1350 {
1351 return vec->nr_frames;
1352 }
1353
1354 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1355 {
1356 if (vec->is_pfns) {
1357 int err = frame_vector_to_pages(vec);
1358
1359 if (err)
1360 return ERR_PTR(err);
1361 }
1362 return (struct page **)(vec->ptrs);
1363 }
1364
1365 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1366 {
1367 if (!vec->is_pfns)
1368 frame_vector_to_pfns(vec);
1369 return (unsigned long *)(vec->ptrs);
1370 }
1371
1372 struct kvec;
1373 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1374 struct page **pages);
1375 int get_kernel_page(unsigned long start, int write, struct page **pages);
1376 struct page *get_dump_page(unsigned long addr);
1377
1378 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1379 extern void do_invalidatepage(struct page *page, unsigned int offset,
1380 unsigned int length);
1381
1382 int __set_page_dirty_nobuffers(struct page *page);
1383 int __set_page_dirty_no_writeback(struct page *page);
1384 int redirty_page_for_writepage(struct writeback_control *wbc,
1385 struct page *page);
1386 void account_page_dirtied(struct page *page, struct address_space *mapping);
1387 void account_page_cleaned(struct page *page, struct address_space *mapping,
1388 struct bdi_writeback *wb);
1389 int set_page_dirty(struct page *page);
1390 int set_page_dirty_lock(struct page *page);
1391 void cancel_dirty_page(struct page *page);
1392 int clear_page_dirty_for_io(struct page *page);
1393
1394 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1395
1396 /* Is the vma a continuation of the stack vma above it? */
1397 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1398 {
1399 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1400 }
1401
1402 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1403 {
1404 return !vma->vm_ops;
1405 }
1406
1407 #ifdef CONFIG_SHMEM
1408 /*
1409 * The vma_is_shmem is not inline because it is used only by slow
1410 * paths in userfault.
1411 */
1412 bool vma_is_shmem(struct vm_area_struct *vma);
1413 #else
1414 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1415 #endif
1416
1417 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1418 unsigned long addr)
1419 {
1420 return (vma->vm_flags & VM_GROWSDOWN) &&
1421 (vma->vm_start == addr) &&
1422 !vma_growsdown(vma->vm_prev, addr);
1423 }
1424
1425 /* Is the vma a continuation of the stack vma below it? */
1426 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1427 {
1428 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1429 }
1430
1431 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1432 unsigned long addr)
1433 {
1434 return (vma->vm_flags & VM_GROWSUP) &&
1435 (vma->vm_end == addr) &&
1436 !vma_growsup(vma->vm_next, addr);
1437 }
1438
1439 int vma_is_stack_for_current(struct vm_area_struct *vma);
1440
1441 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1442 unsigned long old_addr, struct vm_area_struct *new_vma,
1443 unsigned long new_addr, unsigned long len,
1444 bool need_rmap_locks);
1445 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1446 unsigned long end, pgprot_t newprot,
1447 int dirty_accountable, int prot_numa);
1448 extern int mprotect_fixup(struct vm_area_struct *vma,
1449 struct vm_area_struct **pprev, unsigned long start,
1450 unsigned long end, unsigned long newflags);
1451
1452 /*
1453 * doesn't attempt to fault and will return short.
1454 */
1455 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1456 struct page **pages);
1457 /*
1458 * per-process(per-mm_struct) statistics.
1459 */
1460 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1461 {
1462 long val = atomic_long_read(&mm->rss_stat.count[member]);
1463
1464 #ifdef SPLIT_RSS_COUNTING
1465 /*
1466 * counter is updated in asynchronous manner and may go to minus.
1467 * But it's never be expected number for users.
1468 */
1469 if (val < 0)
1470 val = 0;
1471 #endif
1472 return (unsigned long)val;
1473 }
1474
1475 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1476 {
1477 atomic_long_add(value, &mm->rss_stat.count[member]);
1478 }
1479
1480 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1481 {
1482 atomic_long_inc(&mm->rss_stat.count[member]);
1483 }
1484
1485 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1486 {
1487 atomic_long_dec(&mm->rss_stat.count[member]);
1488 }
1489
1490 /* Optimized variant when page is already known not to be PageAnon */
1491 static inline int mm_counter_file(struct page *page)
1492 {
1493 if (PageSwapBacked(page))
1494 return MM_SHMEMPAGES;
1495 return MM_FILEPAGES;
1496 }
1497
1498 static inline int mm_counter(struct page *page)
1499 {
1500 if (PageAnon(page))
1501 return MM_ANONPAGES;
1502 return mm_counter_file(page);
1503 }
1504
1505 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1506 {
1507 return get_mm_counter(mm, MM_FILEPAGES) +
1508 get_mm_counter(mm, MM_ANONPAGES) +
1509 get_mm_counter(mm, MM_SHMEMPAGES);
1510 }
1511
1512 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1513 {
1514 return max(mm->hiwater_rss, get_mm_rss(mm));
1515 }
1516
1517 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1518 {
1519 return max(mm->hiwater_vm, mm->total_vm);
1520 }
1521
1522 static inline void update_hiwater_rss(struct mm_struct *mm)
1523 {
1524 unsigned long _rss = get_mm_rss(mm);
1525
1526 if ((mm)->hiwater_rss < _rss)
1527 (mm)->hiwater_rss = _rss;
1528 }
1529
1530 static inline void update_hiwater_vm(struct mm_struct *mm)
1531 {
1532 if (mm->hiwater_vm < mm->total_vm)
1533 mm->hiwater_vm = mm->total_vm;
1534 }
1535
1536 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1537 {
1538 mm->hiwater_rss = get_mm_rss(mm);
1539 }
1540
1541 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1542 struct mm_struct *mm)
1543 {
1544 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1545
1546 if (*maxrss < hiwater_rss)
1547 *maxrss = hiwater_rss;
1548 }
1549
1550 #if defined(SPLIT_RSS_COUNTING)
1551 void sync_mm_rss(struct mm_struct *mm);
1552 #else
1553 static inline void sync_mm_rss(struct mm_struct *mm)
1554 {
1555 }
1556 #endif
1557
1558 #ifndef __HAVE_ARCH_PTE_DEVMAP
1559 static inline int pte_devmap(pte_t pte)
1560 {
1561 return 0;
1562 }
1563 #endif
1564
1565 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1566
1567 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1568 spinlock_t **ptl);
1569 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1570 spinlock_t **ptl)
1571 {
1572 pte_t *ptep;
1573 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1574 return ptep;
1575 }
1576
1577 #ifdef __PAGETABLE_P4D_FOLDED
1578 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1579 unsigned long address)
1580 {
1581 return 0;
1582 }
1583 #else
1584 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1585 #endif
1586
1587 #ifdef __PAGETABLE_PUD_FOLDED
1588 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1589 unsigned long address)
1590 {
1591 return 0;
1592 }
1593 #else
1594 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1595 #endif
1596
1597 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1598 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1599 unsigned long address)
1600 {
1601 return 0;
1602 }
1603
1604 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1605
1606 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1607 {
1608 return 0;
1609 }
1610
1611 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1612 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1613
1614 #else
1615 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1616
1617 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1618 {
1619 atomic_long_set(&mm->nr_pmds, 0);
1620 }
1621
1622 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1623 {
1624 return atomic_long_read(&mm->nr_pmds);
1625 }
1626
1627 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1628 {
1629 atomic_long_inc(&mm->nr_pmds);
1630 }
1631
1632 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1633 {
1634 atomic_long_dec(&mm->nr_pmds);
1635 }
1636 #endif
1637
1638 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1639 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1640
1641 /*
1642 * The following ifdef needed to get the 4level-fixup.h header to work.
1643 * Remove it when 4level-fixup.h has been removed.
1644 */
1645 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1646
1647 #ifndef __ARCH_HAS_5LEVEL_HACK
1648 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1649 unsigned long address)
1650 {
1651 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1652 NULL : p4d_offset(pgd, address);
1653 }
1654
1655 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1656 unsigned long address)
1657 {
1658 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1659 NULL : pud_offset(p4d, address);
1660 }
1661 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1662
1663 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1664 {
1665 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1666 NULL: pmd_offset(pud, address);
1667 }
1668 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1669
1670 #if USE_SPLIT_PTE_PTLOCKS
1671 #if ALLOC_SPLIT_PTLOCKS
1672 void __init ptlock_cache_init(void);
1673 extern bool ptlock_alloc(struct page *page);
1674 extern void ptlock_free(struct page *page);
1675
1676 static inline spinlock_t *ptlock_ptr(struct page *page)
1677 {
1678 return page->ptl;
1679 }
1680 #else /* ALLOC_SPLIT_PTLOCKS */
1681 static inline void ptlock_cache_init(void)
1682 {
1683 }
1684
1685 static inline bool ptlock_alloc(struct page *page)
1686 {
1687 return true;
1688 }
1689
1690 static inline void ptlock_free(struct page *page)
1691 {
1692 }
1693
1694 static inline spinlock_t *ptlock_ptr(struct page *page)
1695 {
1696 return &page->ptl;
1697 }
1698 #endif /* ALLOC_SPLIT_PTLOCKS */
1699
1700 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1701 {
1702 return ptlock_ptr(pmd_page(*pmd));
1703 }
1704
1705 static inline bool ptlock_init(struct page *page)
1706 {
1707 /*
1708 * prep_new_page() initialize page->private (and therefore page->ptl)
1709 * with 0. Make sure nobody took it in use in between.
1710 *
1711 * It can happen if arch try to use slab for page table allocation:
1712 * slab code uses page->slab_cache, which share storage with page->ptl.
1713 */
1714 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1715 if (!ptlock_alloc(page))
1716 return false;
1717 spin_lock_init(ptlock_ptr(page));
1718 return true;
1719 }
1720
1721 /* Reset page->mapping so free_pages_check won't complain. */
1722 static inline void pte_lock_deinit(struct page *page)
1723 {
1724 page->mapping = NULL;
1725 ptlock_free(page);
1726 }
1727
1728 #else /* !USE_SPLIT_PTE_PTLOCKS */
1729 /*
1730 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1731 */
1732 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1733 {
1734 return &mm->page_table_lock;
1735 }
1736 static inline void ptlock_cache_init(void) {}
1737 static inline bool ptlock_init(struct page *page) { return true; }
1738 static inline void pte_lock_deinit(struct page *page) {}
1739 #endif /* USE_SPLIT_PTE_PTLOCKS */
1740
1741 static inline void pgtable_init(void)
1742 {
1743 ptlock_cache_init();
1744 pgtable_cache_init();
1745 }
1746
1747 static inline bool pgtable_page_ctor(struct page *page)
1748 {
1749 if (!ptlock_init(page))
1750 return false;
1751 inc_zone_page_state(page, NR_PAGETABLE);
1752 return true;
1753 }
1754
1755 static inline void pgtable_page_dtor(struct page *page)
1756 {
1757 pte_lock_deinit(page);
1758 dec_zone_page_state(page, NR_PAGETABLE);
1759 }
1760
1761 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1762 ({ \
1763 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1764 pte_t *__pte = pte_offset_map(pmd, address); \
1765 *(ptlp) = __ptl; \
1766 spin_lock(__ptl); \
1767 __pte; \
1768 })
1769
1770 #define pte_unmap_unlock(pte, ptl) do { \
1771 spin_unlock(ptl); \
1772 pte_unmap(pte); \
1773 } while (0)
1774
1775 #define pte_alloc(mm, pmd, address) \
1776 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1777
1778 #define pte_alloc_map(mm, pmd, address) \
1779 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1780
1781 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1782 (pte_alloc(mm, pmd, address) ? \
1783 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1784
1785 #define pte_alloc_kernel(pmd, address) \
1786 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1787 NULL: pte_offset_kernel(pmd, address))
1788
1789 #if USE_SPLIT_PMD_PTLOCKS
1790
1791 static struct page *pmd_to_page(pmd_t *pmd)
1792 {
1793 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1794 return virt_to_page((void *)((unsigned long) pmd & mask));
1795 }
1796
1797 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1798 {
1799 return ptlock_ptr(pmd_to_page(pmd));
1800 }
1801
1802 static inline bool pgtable_pmd_page_ctor(struct page *page)
1803 {
1804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1805 page->pmd_huge_pte = NULL;
1806 #endif
1807 return ptlock_init(page);
1808 }
1809
1810 static inline void pgtable_pmd_page_dtor(struct page *page)
1811 {
1812 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1813 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1814 #endif
1815 ptlock_free(page);
1816 }
1817
1818 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1819
1820 #else
1821
1822 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1823 {
1824 return &mm->page_table_lock;
1825 }
1826
1827 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1828 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1829
1830 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1831
1832 #endif
1833
1834 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1835 {
1836 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1837 spin_lock(ptl);
1838 return ptl;
1839 }
1840
1841 /*
1842 * No scalability reason to split PUD locks yet, but follow the same pattern
1843 * as the PMD locks to make it easier if we decide to. The VM should not be
1844 * considered ready to switch to split PUD locks yet; there may be places
1845 * which need to be converted from page_table_lock.
1846 */
1847 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1848 {
1849 return &mm->page_table_lock;
1850 }
1851
1852 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1853 {
1854 spinlock_t *ptl = pud_lockptr(mm, pud);
1855
1856 spin_lock(ptl);
1857 return ptl;
1858 }
1859
1860 extern void __init pagecache_init(void);
1861 extern void free_area_init(unsigned long * zones_size);
1862 extern void free_area_init_node(int nid, unsigned long * zones_size,
1863 unsigned long zone_start_pfn, unsigned long *zholes_size);
1864 extern void free_initmem(void);
1865
1866 /*
1867 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1868 * into the buddy system. The freed pages will be poisoned with pattern
1869 * "poison" if it's within range [0, UCHAR_MAX].
1870 * Return pages freed into the buddy system.
1871 */
1872 extern unsigned long free_reserved_area(void *start, void *end,
1873 int poison, char *s);
1874
1875 #ifdef CONFIG_HIGHMEM
1876 /*
1877 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1878 * and totalram_pages.
1879 */
1880 extern void free_highmem_page(struct page *page);
1881 #endif
1882
1883 extern void adjust_managed_page_count(struct page *page, long count);
1884 extern void mem_init_print_info(const char *str);
1885
1886 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1887
1888 /* Free the reserved page into the buddy system, so it gets managed. */
1889 static inline void __free_reserved_page(struct page *page)
1890 {
1891 ClearPageReserved(page);
1892 init_page_count(page);
1893 __free_page(page);
1894 }
1895
1896 static inline void free_reserved_page(struct page *page)
1897 {
1898 __free_reserved_page(page);
1899 adjust_managed_page_count(page, 1);
1900 }
1901
1902 static inline void mark_page_reserved(struct page *page)
1903 {
1904 SetPageReserved(page);
1905 adjust_managed_page_count(page, -1);
1906 }
1907
1908 /*
1909 * Default method to free all the __init memory into the buddy system.
1910 * The freed pages will be poisoned with pattern "poison" if it's within
1911 * range [0, UCHAR_MAX].
1912 * Return pages freed into the buddy system.
1913 */
1914 static inline unsigned long free_initmem_default(int poison)
1915 {
1916 extern char __init_begin[], __init_end[];
1917
1918 return free_reserved_area(&__init_begin, &__init_end,
1919 poison, "unused kernel");
1920 }
1921
1922 static inline unsigned long get_num_physpages(void)
1923 {
1924 int nid;
1925 unsigned long phys_pages = 0;
1926
1927 for_each_online_node(nid)
1928 phys_pages += node_present_pages(nid);
1929
1930 return phys_pages;
1931 }
1932
1933 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1934 /*
1935 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1936 * zones, allocate the backing mem_map and account for memory holes in a more
1937 * architecture independent manner. This is a substitute for creating the
1938 * zone_sizes[] and zholes_size[] arrays and passing them to
1939 * free_area_init_node()
1940 *
1941 * An architecture is expected to register range of page frames backed by
1942 * physical memory with memblock_add[_node]() before calling
1943 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1944 * usage, an architecture is expected to do something like
1945 *
1946 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1947 * max_highmem_pfn};
1948 * for_each_valid_physical_page_range()
1949 * memblock_add_node(base, size, nid)
1950 * free_area_init_nodes(max_zone_pfns);
1951 *
1952 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1953 * registered physical page range. Similarly
1954 * sparse_memory_present_with_active_regions() calls memory_present() for
1955 * each range when SPARSEMEM is enabled.
1956 *
1957 * See mm/page_alloc.c for more information on each function exposed by
1958 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1959 */
1960 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1961 unsigned long node_map_pfn_alignment(void);
1962 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1963 unsigned long end_pfn);
1964 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1965 unsigned long end_pfn);
1966 extern void get_pfn_range_for_nid(unsigned int nid,
1967 unsigned long *start_pfn, unsigned long *end_pfn);
1968 extern unsigned long find_min_pfn_with_active_regions(void);
1969 extern void free_bootmem_with_active_regions(int nid,
1970 unsigned long max_low_pfn);
1971 extern void sparse_memory_present_with_active_regions(int nid);
1972
1973 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1974
1975 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1976 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1977 static inline int __early_pfn_to_nid(unsigned long pfn,
1978 struct mminit_pfnnid_cache *state)
1979 {
1980 return 0;
1981 }
1982 #else
1983 /* please see mm/page_alloc.c */
1984 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1985 /* there is a per-arch backend function. */
1986 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1987 struct mminit_pfnnid_cache *state);
1988 #endif
1989
1990 extern void set_dma_reserve(unsigned long new_dma_reserve);
1991 extern void memmap_init_zone(unsigned long, int, unsigned long,
1992 unsigned long, enum memmap_context);
1993 extern void setup_per_zone_wmarks(void);
1994 extern int __meminit init_per_zone_wmark_min(void);
1995 extern void mem_init(void);
1996 extern void __init mmap_init(void);
1997 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
1998 extern long si_mem_available(void);
1999 extern void si_meminfo(struct sysinfo * val);
2000 extern void si_meminfo_node(struct sysinfo *val, int nid);
2001 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2002 extern unsigned long arch_reserved_kernel_pages(void);
2003 #endif
2004
2005 extern __printf(3, 4)
2006 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2007
2008 extern void setup_per_cpu_pageset(void);
2009
2010 extern void zone_pcp_update(struct zone *zone);
2011 extern void zone_pcp_reset(struct zone *zone);
2012
2013 /* page_alloc.c */
2014 extern int min_free_kbytes;
2015 extern int watermark_scale_factor;
2016
2017 /* nommu.c */
2018 extern atomic_long_t mmap_pages_allocated;
2019 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2020
2021 /* interval_tree.c */
2022 void vma_interval_tree_insert(struct vm_area_struct *node,
2023 struct rb_root *root);
2024 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2025 struct vm_area_struct *prev,
2026 struct rb_root *root);
2027 void vma_interval_tree_remove(struct vm_area_struct *node,
2028 struct rb_root *root);
2029 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2030 unsigned long start, unsigned long last);
2031 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2032 unsigned long start, unsigned long last);
2033
2034 #define vma_interval_tree_foreach(vma, root, start, last) \
2035 for (vma = vma_interval_tree_iter_first(root, start, last); \
2036 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2037
2038 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2039 struct rb_root *root);
2040 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2041 struct rb_root *root);
2042 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2043 struct rb_root *root, unsigned long start, unsigned long last);
2044 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2045 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2046 #ifdef CONFIG_DEBUG_VM_RB
2047 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2048 #endif
2049
2050 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2051 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2052 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2053
2054 /* mmap.c */
2055 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2056 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2057 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2058 struct vm_area_struct *expand);
2059 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2060 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2061 {
2062 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2063 }
2064 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2065 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2066 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2067 struct mempolicy *, struct vm_userfaultfd_ctx);
2068 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2069 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2070 unsigned long addr, int new_below);
2071 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2072 unsigned long addr, int new_below);
2073 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2074 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2075 struct rb_node **, struct rb_node *);
2076 extern void unlink_file_vma(struct vm_area_struct *);
2077 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2078 unsigned long addr, unsigned long len, pgoff_t pgoff,
2079 bool *need_rmap_locks);
2080 extern void exit_mmap(struct mm_struct *);
2081
2082 static inline int check_data_rlimit(unsigned long rlim,
2083 unsigned long new,
2084 unsigned long start,
2085 unsigned long end_data,
2086 unsigned long start_data)
2087 {
2088 if (rlim < RLIM_INFINITY) {
2089 if (((new - start) + (end_data - start_data)) > rlim)
2090 return -ENOSPC;
2091 }
2092
2093 return 0;
2094 }
2095
2096 extern int mm_take_all_locks(struct mm_struct *mm);
2097 extern void mm_drop_all_locks(struct mm_struct *mm);
2098
2099 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2100 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2101 extern struct file *get_task_exe_file(struct task_struct *task);
2102
2103 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2104 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2105
2106 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2107 const struct vm_special_mapping *sm);
2108 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2109 unsigned long addr, unsigned long len,
2110 unsigned long flags,
2111 const struct vm_special_mapping *spec);
2112 /* This is an obsolete alternative to _install_special_mapping. */
2113 extern int install_special_mapping(struct mm_struct *mm,
2114 unsigned long addr, unsigned long len,
2115 unsigned long flags, struct page **pages);
2116
2117 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2118
2119 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2120 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2121 struct list_head *uf);
2122 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2123 unsigned long len, unsigned long prot, unsigned long flags,
2124 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2125 struct list_head *uf);
2126 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2127 struct list_head *uf);
2128
2129 static inline unsigned long
2130 do_mmap_pgoff(struct file *file, unsigned long addr,
2131 unsigned long len, unsigned long prot, unsigned long flags,
2132 unsigned long pgoff, unsigned long *populate,
2133 struct list_head *uf)
2134 {
2135 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2136 }
2137
2138 #ifdef CONFIG_MMU
2139 extern int __mm_populate(unsigned long addr, unsigned long len,
2140 int ignore_errors);
2141 static inline void mm_populate(unsigned long addr, unsigned long len)
2142 {
2143 /* Ignore errors */
2144 (void) __mm_populate(addr, len, 1);
2145 }
2146 #else
2147 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2148 #endif
2149
2150 /* These take the mm semaphore themselves */
2151 extern int __must_check vm_brk(unsigned long, unsigned long);
2152 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2153 extern int vm_munmap(unsigned long, size_t);
2154 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2155 unsigned long, unsigned long,
2156 unsigned long, unsigned long);
2157
2158 struct vm_unmapped_area_info {
2159 #define VM_UNMAPPED_AREA_TOPDOWN 1
2160 unsigned long flags;
2161 unsigned long length;
2162 unsigned long low_limit;
2163 unsigned long high_limit;
2164 unsigned long align_mask;
2165 unsigned long align_offset;
2166 };
2167
2168 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2169 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2170
2171 /*
2172 * Search for an unmapped address range.
2173 *
2174 * We are looking for a range that:
2175 * - does not intersect with any VMA;
2176 * - is contained within the [low_limit, high_limit) interval;
2177 * - is at least the desired size.
2178 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2179 */
2180 static inline unsigned long
2181 vm_unmapped_area(struct vm_unmapped_area_info *info)
2182 {
2183 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2184 return unmapped_area_topdown(info);
2185 else
2186 return unmapped_area(info);
2187 }
2188
2189 /* truncate.c */
2190 extern void truncate_inode_pages(struct address_space *, loff_t);
2191 extern void truncate_inode_pages_range(struct address_space *,
2192 loff_t lstart, loff_t lend);
2193 extern void truncate_inode_pages_final(struct address_space *);
2194
2195 /* generic vm_area_ops exported for stackable file systems */
2196 extern int filemap_fault(struct vm_fault *vmf);
2197 extern void filemap_map_pages(struct vm_fault *vmf,
2198 pgoff_t start_pgoff, pgoff_t end_pgoff);
2199 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2200
2201 /* mm/page-writeback.c */
2202 int write_one_page(struct page *page, int wait);
2203 void task_dirty_inc(struct task_struct *tsk);
2204
2205 /* readahead.c */
2206 #define VM_MAX_READAHEAD 128 /* kbytes */
2207 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2208
2209 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2210 pgoff_t offset, unsigned long nr_to_read);
2211
2212 void page_cache_sync_readahead(struct address_space *mapping,
2213 struct file_ra_state *ra,
2214 struct file *filp,
2215 pgoff_t offset,
2216 unsigned long size);
2217
2218 void page_cache_async_readahead(struct address_space *mapping,
2219 struct file_ra_state *ra,
2220 struct file *filp,
2221 struct page *pg,
2222 pgoff_t offset,
2223 unsigned long size);
2224
2225 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2226 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2227
2228 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2229 extern int expand_downwards(struct vm_area_struct *vma,
2230 unsigned long address);
2231 #if VM_GROWSUP
2232 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2233 #else
2234 #define expand_upwards(vma, address) (0)
2235 #endif
2236
2237 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2238 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2239 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2240 struct vm_area_struct **pprev);
2241
2242 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2243 NULL if none. Assume start_addr < end_addr. */
2244 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2245 {
2246 struct vm_area_struct * vma = find_vma(mm,start_addr);
2247
2248 if (vma && end_addr <= vma->vm_start)
2249 vma = NULL;
2250 return vma;
2251 }
2252
2253 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2254 {
2255 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2256 }
2257
2258 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2259 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2260 unsigned long vm_start, unsigned long vm_end)
2261 {
2262 struct vm_area_struct *vma = find_vma(mm, vm_start);
2263
2264 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2265 vma = NULL;
2266
2267 return vma;
2268 }
2269
2270 #ifdef CONFIG_MMU
2271 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2272 void vma_set_page_prot(struct vm_area_struct *vma);
2273 #else
2274 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2275 {
2276 return __pgprot(0);
2277 }
2278 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2279 {
2280 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2281 }
2282 #endif
2283
2284 #ifdef CONFIG_NUMA_BALANCING
2285 unsigned long change_prot_numa(struct vm_area_struct *vma,
2286 unsigned long start, unsigned long end);
2287 #endif
2288
2289 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2290 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2291 unsigned long pfn, unsigned long size, pgprot_t);
2292 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2293 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2294 unsigned long pfn);
2295 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2296 unsigned long pfn, pgprot_t pgprot);
2297 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2298 pfn_t pfn);
2299 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2300
2301
2302 struct page *follow_page_mask(struct vm_area_struct *vma,
2303 unsigned long address, unsigned int foll_flags,
2304 unsigned int *page_mask);
2305
2306 static inline struct page *follow_page(struct vm_area_struct *vma,
2307 unsigned long address, unsigned int foll_flags)
2308 {
2309 unsigned int unused_page_mask;
2310 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2311 }
2312
2313 #define FOLL_WRITE 0x01 /* check pte is writable */
2314 #define FOLL_TOUCH 0x02 /* mark page accessed */
2315 #define FOLL_GET 0x04 /* do get_page on page */
2316 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2317 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2318 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2319 * and return without waiting upon it */
2320 #define FOLL_POPULATE 0x40 /* fault in page */
2321 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2322 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2323 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2324 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2325 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2326 #define FOLL_MLOCK 0x1000 /* lock present pages */
2327 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2328 #define FOLL_COW 0x4000 /* internal GUP flag */
2329
2330 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2331 void *data);
2332 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2333 unsigned long size, pte_fn_t fn, void *data);
2334
2335
2336 #ifdef CONFIG_PAGE_POISONING
2337 extern bool page_poisoning_enabled(void);
2338 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2339 extern bool page_is_poisoned(struct page *page);
2340 #else
2341 static inline bool page_poisoning_enabled(void) { return false; }
2342 static inline void kernel_poison_pages(struct page *page, int numpages,
2343 int enable) { }
2344 static inline bool page_is_poisoned(struct page *page) { return false; }
2345 #endif
2346
2347 #ifdef CONFIG_DEBUG_PAGEALLOC
2348 extern bool _debug_pagealloc_enabled;
2349 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2350
2351 static inline bool debug_pagealloc_enabled(void)
2352 {
2353 return _debug_pagealloc_enabled;
2354 }
2355
2356 static inline void
2357 kernel_map_pages(struct page *page, int numpages, int enable)
2358 {
2359 if (!debug_pagealloc_enabled())
2360 return;
2361
2362 __kernel_map_pages(page, numpages, enable);
2363 }
2364 #ifdef CONFIG_HIBERNATION
2365 extern bool kernel_page_present(struct page *page);
2366 #endif /* CONFIG_HIBERNATION */
2367 #else /* CONFIG_DEBUG_PAGEALLOC */
2368 static inline void
2369 kernel_map_pages(struct page *page, int numpages, int enable) {}
2370 #ifdef CONFIG_HIBERNATION
2371 static inline bool kernel_page_present(struct page *page) { return true; }
2372 #endif /* CONFIG_HIBERNATION */
2373 static inline bool debug_pagealloc_enabled(void)
2374 {
2375 return false;
2376 }
2377 #endif /* CONFIG_DEBUG_PAGEALLOC */
2378
2379 #ifdef __HAVE_ARCH_GATE_AREA
2380 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2381 extern int in_gate_area_no_mm(unsigned long addr);
2382 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2383 #else
2384 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2385 {
2386 return NULL;
2387 }
2388 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2389 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2390 {
2391 return 0;
2392 }
2393 #endif /* __HAVE_ARCH_GATE_AREA */
2394
2395 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2396
2397 #ifdef CONFIG_SYSCTL
2398 extern int sysctl_drop_caches;
2399 int drop_caches_sysctl_handler(struct ctl_table *, int,
2400 void __user *, size_t *, loff_t *);
2401 #endif
2402
2403 void drop_slab(void);
2404 void drop_slab_node(int nid);
2405
2406 #ifndef CONFIG_MMU
2407 #define randomize_va_space 0
2408 #else
2409 extern int randomize_va_space;
2410 #endif
2411
2412 const char * arch_vma_name(struct vm_area_struct *vma);
2413 void print_vma_addr(char *prefix, unsigned long rip);
2414
2415 void sparse_mem_maps_populate_node(struct page **map_map,
2416 unsigned long pnum_begin,
2417 unsigned long pnum_end,
2418 unsigned long map_count,
2419 int nodeid);
2420
2421 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2422 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2423 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2424 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2425 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2426 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2427 void *vmemmap_alloc_block(unsigned long size, int node);
2428 struct vmem_altmap;
2429 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2430 struct vmem_altmap *altmap);
2431 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2432 {
2433 return __vmemmap_alloc_block_buf(size, node, NULL);
2434 }
2435
2436 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2437 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2438 int node);
2439 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2440 void vmemmap_populate_print_last(void);
2441 #ifdef CONFIG_MEMORY_HOTPLUG
2442 void vmemmap_free(unsigned long start, unsigned long end);
2443 #endif
2444 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2445 unsigned long size);
2446
2447 enum mf_flags {
2448 MF_COUNT_INCREASED = 1 << 0,
2449 MF_ACTION_REQUIRED = 1 << 1,
2450 MF_MUST_KILL = 1 << 2,
2451 MF_SOFT_OFFLINE = 1 << 3,
2452 };
2453 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2454 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2455 extern int unpoison_memory(unsigned long pfn);
2456 extern int get_hwpoison_page(struct page *page);
2457 #define put_hwpoison_page(page) put_page(page)
2458 extern int sysctl_memory_failure_early_kill;
2459 extern int sysctl_memory_failure_recovery;
2460 extern void shake_page(struct page *p, int access);
2461 extern atomic_long_t num_poisoned_pages;
2462 extern int soft_offline_page(struct page *page, int flags);
2463
2464
2465 /*
2466 * Error handlers for various types of pages.
2467 */
2468 enum mf_result {
2469 MF_IGNORED, /* Error: cannot be handled */
2470 MF_FAILED, /* Error: handling failed */
2471 MF_DELAYED, /* Will be handled later */
2472 MF_RECOVERED, /* Successfully recovered */
2473 };
2474
2475 enum mf_action_page_type {
2476 MF_MSG_KERNEL,
2477 MF_MSG_KERNEL_HIGH_ORDER,
2478 MF_MSG_SLAB,
2479 MF_MSG_DIFFERENT_COMPOUND,
2480 MF_MSG_POISONED_HUGE,
2481 MF_MSG_HUGE,
2482 MF_MSG_FREE_HUGE,
2483 MF_MSG_UNMAP_FAILED,
2484 MF_MSG_DIRTY_SWAPCACHE,
2485 MF_MSG_CLEAN_SWAPCACHE,
2486 MF_MSG_DIRTY_MLOCKED_LRU,
2487 MF_MSG_CLEAN_MLOCKED_LRU,
2488 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2489 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2490 MF_MSG_DIRTY_LRU,
2491 MF_MSG_CLEAN_LRU,
2492 MF_MSG_TRUNCATED_LRU,
2493 MF_MSG_BUDDY,
2494 MF_MSG_BUDDY_2ND,
2495 MF_MSG_UNKNOWN,
2496 };
2497
2498 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2499 extern void clear_huge_page(struct page *page,
2500 unsigned long addr,
2501 unsigned int pages_per_huge_page);
2502 extern void copy_user_huge_page(struct page *dst, struct page *src,
2503 unsigned long addr, struct vm_area_struct *vma,
2504 unsigned int pages_per_huge_page);
2505 extern long copy_huge_page_from_user(struct page *dst_page,
2506 const void __user *usr_src,
2507 unsigned int pages_per_huge_page,
2508 bool allow_pagefault);
2509 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2510
2511 extern struct page_ext_operations debug_guardpage_ops;
2512
2513 #ifdef CONFIG_DEBUG_PAGEALLOC
2514 extern unsigned int _debug_guardpage_minorder;
2515 extern bool _debug_guardpage_enabled;
2516
2517 static inline unsigned int debug_guardpage_minorder(void)
2518 {
2519 return _debug_guardpage_minorder;
2520 }
2521
2522 static inline bool debug_guardpage_enabled(void)
2523 {
2524 return _debug_guardpage_enabled;
2525 }
2526
2527 static inline bool page_is_guard(struct page *page)
2528 {
2529 struct page_ext *page_ext;
2530
2531 if (!debug_guardpage_enabled())
2532 return false;
2533
2534 page_ext = lookup_page_ext(page);
2535 if (unlikely(!page_ext))
2536 return false;
2537
2538 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2539 }
2540 #else
2541 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2542 static inline bool debug_guardpage_enabled(void) { return false; }
2543 static inline bool page_is_guard(struct page *page) { return false; }
2544 #endif /* CONFIG_DEBUG_PAGEALLOC */
2545
2546 #if MAX_NUMNODES > 1
2547 void __init setup_nr_node_ids(void);
2548 #else
2549 static inline void setup_nr_node_ids(void) {}
2550 #endif
2551
2552 #endif /* __KERNEL__ */
2553 #endif /* _LINUX_MM_H */