]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mm.h
mm: migrate: support non-lru movable page migration
[mirror_ubuntu-artful-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34
35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70
71 #ifndef __pa_symbol
72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74
75 #ifndef page_to_virt
76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77 #endif
78
79 /*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86 #ifndef mm_forbids_zeropage
87 #define mm_forbids_zeropage(X) (0)
88 #endif
89
90 /*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106 #define MAPCOUNT_ELF_CORE_MARGIN (5)
107 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109 extern int sysctl_max_map_count;
110
111 extern unsigned long sysctl_user_reserve_kbytes;
112 extern unsigned long sysctl_admin_reserve_kbytes;
113
114 extern int sysctl_overcommit_memory;
115 extern int sysctl_overcommit_ratio;
116 extern unsigned long sysctl_overcommit_kbytes;
117
118 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
123 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
125 /* to align the pointer to the (next) page boundary */
126 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
128 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
130
131 /*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
140 extern struct kmem_cache *vm_area_cachep;
141
142 #ifndef CONFIG_MMU
143 extern struct rb_root nommu_region_tree;
144 extern struct rw_semaphore nommu_region_sem;
145
146 extern unsigned int kobjsize(const void *objp);
147 #endif
148
149 /*
150 * vm_flags in vm_area_struct, see mm_types.h.
151 * When changing, update also include/trace/events/mmflags.h
152 */
153 #define VM_NONE 0x00000000
154
155 #define VM_READ 0x00000001 /* currently active flags */
156 #define VM_WRITE 0x00000002
157 #define VM_EXEC 0x00000004
158 #define VM_SHARED 0x00000008
159
160 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
161 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162 #define VM_MAYWRITE 0x00000020
163 #define VM_MAYEXEC 0x00000040
164 #define VM_MAYSHARE 0x00000080
165
166 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
167 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
168 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
169 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
170 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
171
172 #define VM_LOCKED 0x00002000
173 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
181 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
182 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
183 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
184 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
185 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
186 #define VM_ARCH_2 0x02000000
187 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
188
189 #ifdef CONFIG_MEM_SOFT_DIRTY
190 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191 #else
192 # define VM_SOFTDIRTY 0
193 #endif
194
195 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
196 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
198 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
199
200 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
211 #if defined(CONFIG_X86)
212 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
213 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219 #endif
220 #elif defined(CONFIG_PPC)
221 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222 #elif defined(CONFIG_PARISC)
223 # define VM_GROWSUP VM_ARCH_1
224 #elif defined(CONFIG_METAG)
225 # define VM_GROWSUP VM_ARCH_1
226 #elif defined(CONFIG_IA64)
227 # define VM_GROWSUP VM_ARCH_1
228 #elif !defined(CONFIG_MMU)
229 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230 #endif
231
232 #if defined(CONFIG_X86)
233 /* MPX specific bounds table or bounds directory */
234 # define VM_MPX VM_ARCH_2
235 #endif
236
237 #ifndef VM_GROWSUP
238 # define VM_GROWSUP VM_NONE
239 #endif
240
241 /* Bits set in the VMA until the stack is in its final location */
242 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
244 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246 #endif
247
248 #ifdef CONFIG_STACK_GROWSUP
249 #define VM_STACK VM_GROWSUP
250 #else
251 #define VM_STACK VM_GROWSDOWN
252 #endif
253
254 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
256 /*
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
259 */
260 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
261
262 /* This mask defines which mm->def_flags a process can inherit its parent */
263 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
265 /* This mask is used to clear all the VMA flags used by mlock */
266 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
268 /*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272 extern pgprot_t protection_map[16];
273
274 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
275 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279 #define FAULT_FLAG_TRIED 0x20 /* Second try */
280 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
281 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
282 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
283
284 /*
285 * vm_fault is filled by the the pagefault handler and passed to the vma's
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
288 *
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
292 * pgoff should be used in favour of virtual_address, if possible.
293 */
294 struct vm_fault {
295 unsigned int flags; /* FAULT_FLAG_xxx flags */
296 gfp_t gfp_mask; /* gfp mask to be used for allocations */
297 pgoff_t pgoff; /* Logical page offset based on vma */
298 void __user *virtual_address; /* Faulting virtual address */
299
300 struct page *cow_page; /* Handler may choose to COW */
301 struct page *page; /* ->fault handlers should return a
302 * page here, unless VM_FAULT_NOPAGE
303 * is set (which is also implied by
304 * VM_FAULT_ERROR).
305 */
306 void *entry; /* ->fault handler can alternatively
307 * return locked DAX entry. In that
308 * case handler should return
309 * VM_FAULT_DAX_LOCKED and fill in
310 * entry here.
311 */
312 /* for ->map_pages() only */
313 pgoff_t max_pgoff; /* map pages for offset from pgoff till
314 * max_pgoff inclusive */
315 pte_t *pte; /* pte entry associated with ->pgoff */
316 };
317
318 /*
319 * These are the virtual MM functions - opening of an area, closing and
320 * unmapping it (needed to keep files on disk up-to-date etc), pointer
321 * to the functions called when a no-page or a wp-page exception occurs.
322 */
323 struct vm_operations_struct {
324 void (*open)(struct vm_area_struct * area);
325 void (*close)(struct vm_area_struct * area);
326 int (*mremap)(struct vm_area_struct * area);
327 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
328 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
329 pmd_t *, unsigned int flags);
330 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
331
332 /* notification that a previously read-only page is about to become
333 * writable, if an error is returned it will cause a SIGBUS */
334 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
335
336 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
337 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
338
339 /* called by access_process_vm when get_user_pages() fails, typically
340 * for use by special VMAs that can switch between memory and hardware
341 */
342 int (*access)(struct vm_area_struct *vma, unsigned long addr,
343 void *buf, int len, int write);
344
345 /* Called by the /proc/PID/maps code to ask the vma whether it
346 * has a special name. Returning non-NULL will also cause this
347 * vma to be dumped unconditionally. */
348 const char *(*name)(struct vm_area_struct *vma);
349
350 #ifdef CONFIG_NUMA
351 /*
352 * set_policy() op must add a reference to any non-NULL @new mempolicy
353 * to hold the policy upon return. Caller should pass NULL @new to
354 * remove a policy and fall back to surrounding context--i.e. do not
355 * install a MPOL_DEFAULT policy, nor the task or system default
356 * mempolicy.
357 */
358 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
359
360 /*
361 * get_policy() op must add reference [mpol_get()] to any policy at
362 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
363 * in mm/mempolicy.c will do this automatically.
364 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
365 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
366 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
367 * must return NULL--i.e., do not "fallback" to task or system default
368 * policy.
369 */
370 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
371 unsigned long addr);
372 #endif
373 /*
374 * Called by vm_normal_page() for special PTEs to find the
375 * page for @addr. This is useful if the default behavior
376 * (using pte_page()) would not find the correct page.
377 */
378 struct page *(*find_special_page)(struct vm_area_struct *vma,
379 unsigned long addr);
380 };
381
382 struct mmu_gather;
383 struct inode;
384
385 #define page_private(page) ((page)->private)
386 #define set_page_private(page, v) ((page)->private = (v))
387
388 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
389 static inline int pmd_devmap(pmd_t pmd)
390 {
391 return 0;
392 }
393 #endif
394
395 /*
396 * FIXME: take this include out, include page-flags.h in
397 * files which need it (119 of them)
398 */
399 #include <linux/page-flags.h>
400 #include <linux/huge_mm.h>
401
402 /*
403 * Methods to modify the page usage count.
404 *
405 * What counts for a page usage:
406 * - cache mapping (page->mapping)
407 * - private data (page->private)
408 * - page mapped in a task's page tables, each mapping
409 * is counted separately
410 *
411 * Also, many kernel routines increase the page count before a critical
412 * routine so they can be sure the page doesn't go away from under them.
413 */
414
415 /*
416 * Drop a ref, return true if the refcount fell to zero (the page has no users)
417 */
418 static inline int put_page_testzero(struct page *page)
419 {
420 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
421 return page_ref_dec_and_test(page);
422 }
423
424 /*
425 * Try to grab a ref unless the page has a refcount of zero, return false if
426 * that is the case.
427 * This can be called when MMU is off so it must not access
428 * any of the virtual mappings.
429 */
430 static inline int get_page_unless_zero(struct page *page)
431 {
432 return page_ref_add_unless(page, 1, 0);
433 }
434
435 extern int page_is_ram(unsigned long pfn);
436
437 enum {
438 REGION_INTERSECTS,
439 REGION_DISJOINT,
440 REGION_MIXED,
441 };
442
443 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
444 unsigned long desc);
445
446 /* Support for virtually mapped pages */
447 struct page *vmalloc_to_page(const void *addr);
448 unsigned long vmalloc_to_pfn(const void *addr);
449
450 /*
451 * Determine if an address is within the vmalloc range
452 *
453 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
454 * is no special casing required.
455 */
456 static inline bool is_vmalloc_addr(const void *x)
457 {
458 #ifdef CONFIG_MMU
459 unsigned long addr = (unsigned long)x;
460
461 return addr >= VMALLOC_START && addr < VMALLOC_END;
462 #else
463 return false;
464 #endif
465 }
466 #ifdef CONFIG_MMU
467 extern int is_vmalloc_or_module_addr(const void *x);
468 #else
469 static inline int is_vmalloc_or_module_addr(const void *x)
470 {
471 return 0;
472 }
473 #endif
474
475 extern void kvfree(const void *addr);
476
477 static inline atomic_t *compound_mapcount_ptr(struct page *page)
478 {
479 return &page[1].compound_mapcount;
480 }
481
482 static inline int compound_mapcount(struct page *page)
483 {
484 VM_BUG_ON_PAGE(!PageCompound(page), page);
485 page = compound_head(page);
486 return atomic_read(compound_mapcount_ptr(page)) + 1;
487 }
488
489 /*
490 * The atomic page->_mapcount, starts from -1: so that transitions
491 * both from it and to it can be tracked, using atomic_inc_and_test
492 * and atomic_add_negative(-1).
493 */
494 static inline void page_mapcount_reset(struct page *page)
495 {
496 atomic_set(&(page)->_mapcount, -1);
497 }
498
499 int __page_mapcount(struct page *page);
500
501 static inline int page_mapcount(struct page *page)
502 {
503 VM_BUG_ON_PAGE(PageSlab(page), page);
504
505 if (unlikely(PageCompound(page)))
506 return __page_mapcount(page);
507 return atomic_read(&page->_mapcount) + 1;
508 }
509
510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
511 int total_mapcount(struct page *page);
512 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
513 #else
514 static inline int total_mapcount(struct page *page)
515 {
516 return page_mapcount(page);
517 }
518 static inline int page_trans_huge_mapcount(struct page *page,
519 int *total_mapcount)
520 {
521 int mapcount = page_mapcount(page);
522 if (total_mapcount)
523 *total_mapcount = mapcount;
524 return mapcount;
525 }
526 #endif
527
528 static inline struct page *virt_to_head_page(const void *x)
529 {
530 struct page *page = virt_to_page(x);
531
532 return compound_head(page);
533 }
534
535 void __put_page(struct page *page);
536
537 void put_pages_list(struct list_head *pages);
538
539 void split_page(struct page *page, unsigned int order);
540 int split_free_page(struct page *page);
541
542 /*
543 * Compound pages have a destructor function. Provide a
544 * prototype for that function and accessor functions.
545 * These are _only_ valid on the head of a compound page.
546 */
547 typedef void compound_page_dtor(struct page *);
548
549 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
550 enum compound_dtor_id {
551 NULL_COMPOUND_DTOR,
552 COMPOUND_PAGE_DTOR,
553 #ifdef CONFIG_HUGETLB_PAGE
554 HUGETLB_PAGE_DTOR,
555 #endif
556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
557 TRANSHUGE_PAGE_DTOR,
558 #endif
559 NR_COMPOUND_DTORS,
560 };
561 extern compound_page_dtor * const compound_page_dtors[];
562
563 static inline void set_compound_page_dtor(struct page *page,
564 enum compound_dtor_id compound_dtor)
565 {
566 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
567 page[1].compound_dtor = compound_dtor;
568 }
569
570 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
571 {
572 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
573 return compound_page_dtors[page[1].compound_dtor];
574 }
575
576 static inline unsigned int compound_order(struct page *page)
577 {
578 if (!PageHead(page))
579 return 0;
580 return page[1].compound_order;
581 }
582
583 static inline void set_compound_order(struct page *page, unsigned int order)
584 {
585 page[1].compound_order = order;
586 }
587
588 void free_compound_page(struct page *page);
589
590 #ifdef CONFIG_MMU
591 /*
592 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
593 * servicing faults for write access. In the normal case, do always want
594 * pte_mkwrite. But get_user_pages can cause write faults for mappings
595 * that do not have writing enabled, when used by access_process_vm.
596 */
597 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
598 {
599 if (likely(vma->vm_flags & VM_WRITE))
600 pte = pte_mkwrite(pte);
601 return pte;
602 }
603
604 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
605 struct page *page, pte_t *pte, bool write, bool anon);
606 #endif
607
608 /*
609 * Multiple processes may "see" the same page. E.g. for untouched
610 * mappings of /dev/null, all processes see the same page full of
611 * zeroes, and text pages of executables and shared libraries have
612 * only one copy in memory, at most, normally.
613 *
614 * For the non-reserved pages, page_count(page) denotes a reference count.
615 * page_count() == 0 means the page is free. page->lru is then used for
616 * freelist management in the buddy allocator.
617 * page_count() > 0 means the page has been allocated.
618 *
619 * Pages are allocated by the slab allocator in order to provide memory
620 * to kmalloc and kmem_cache_alloc. In this case, the management of the
621 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
622 * unless a particular usage is carefully commented. (the responsibility of
623 * freeing the kmalloc memory is the caller's, of course).
624 *
625 * A page may be used by anyone else who does a __get_free_page().
626 * In this case, page_count still tracks the references, and should only
627 * be used through the normal accessor functions. The top bits of page->flags
628 * and page->virtual store page management information, but all other fields
629 * are unused and could be used privately, carefully. The management of this
630 * page is the responsibility of the one who allocated it, and those who have
631 * subsequently been given references to it.
632 *
633 * The other pages (we may call them "pagecache pages") are completely
634 * managed by the Linux memory manager: I/O, buffers, swapping etc.
635 * The following discussion applies only to them.
636 *
637 * A pagecache page contains an opaque `private' member, which belongs to the
638 * page's address_space. Usually, this is the address of a circular list of
639 * the page's disk buffers. PG_private must be set to tell the VM to call
640 * into the filesystem to release these pages.
641 *
642 * A page may belong to an inode's memory mapping. In this case, page->mapping
643 * is the pointer to the inode, and page->index is the file offset of the page,
644 * in units of PAGE_SIZE.
645 *
646 * If pagecache pages are not associated with an inode, they are said to be
647 * anonymous pages. These may become associated with the swapcache, and in that
648 * case PG_swapcache is set, and page->private is an offset into the swapcache.
649 *
650 * In either case (swapcache or inode backed), the pagecache itself holds one
651 * reference to the page. Setting PG_private should also increment the
652 * refcount. The each user mapping also has a reference to the page.
653 *
654 * The pagecache pages are stored in a per-mapping radix tree, which is
655 * rooted at mapping->page_tree, and indexed by offset.
656 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
657 * lists, we instead now tag pages as dirty/writeback in the radix tree.
658 *
659 * All pagecache pages may be subject to I/O:
660 * - inode pages may need to be read from disk,
661 * - inode pages which have been modified and are MAP_SHARED may need
662 * to be written back to the inode on disk,
663 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
664 * modified may need to be swapped out to swap space and (later) to be read
665 * back into memory.
666 */
667
668 /*
669 * The zone field is never updated after free_area_init_core()
670 * sets it, so none of the operations on it need to be atomic.
671 */
672
673 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
674 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
675 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
676 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
677 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
678
679 /*
680 * Define the bit shifts to access each section. For non-existent
681 * sections we define the shift as 0; that plus a 0 mask ensures
682 * the compiler will optimise away reference to them.
683 */
684 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
685 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
686 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
687 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
688
689 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
690 #ifdef NODE_NOT_IN_PAGE_FLAGS
691 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
692 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
693 SECTIONS_PGOFF : ZONES_PGOFF)
694 #else
695 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
696 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
697 NODES_PGOFF : ZONES_PGOFF)
698 #endif
699
700 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
701
702 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
703 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
704 #endif
705
706 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
707 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
708 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
709 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
710 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
711
712 static inline enum zone_type page_zonenum(const struct page *page)
713 {
714 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
715 }
716
717 #ifdef CONFIG_ZONE_DEVICE
718 void get_zone_device_page(struct page *page);
719 void put_zone_device_page(struct page *page);
720 static inline bool is_zone_device_page(const struct page *page)
721 {
722 return page_zonenum(page) == ZONE_DEVICE;
723 }
724 #else
725 static inline void get_zone_device_page(struct page *page)
726 {
727 }
728 static inline void put_zone_device_page(struct page *page)
729 {
730 }
731 static inline bool is_zone_device_page(const struct page *page)
732 {
733 return false;
734 }
735 #endif
736
737 static inline void get_page(struct page *page)
738 {
739 page = compound_head(page);
740 /*
741 * Getting a normal page or the head of a compound page
742 * requires to already have an elevated page->_refcount.
743 */
744 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
745 page_ref_inc(page);
746
747 if (unlikely(is_zone_device_page(page)))
748 get_zone_device_page(page);
749 }
750
751 static inline void put_page(struct page *page)
752 {
753 page = compound_head(page);
754
755 if (put_page_testzero(page))
756 __put_page(page);
757
758 if (unlikely(is_zone_device_page(page)))
759 put_zone_device_page(page);
760 }
761
762 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
763 #define SECTION_IN_PAGE_FLAGS
764 #endif
765
766 /*
767 * The identification function is mainly used by the buddy allocator for
768 * determining if two pages could be buddies. We are not really identifying
769 * the zone since we could be using the section number id if we do not have
770 * node id available in page flags.
771 * We only guarantee that it will return the same value for two combinable
772 * pages in a zone.
773 */
774 static inline int page_zone_id(struct page *page)
775 {
776 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
777 }
778
779 static inline int zone_to_nid(struct zone *zone)
780 {
781 #ifdef CONFIG_NUMA
782 return zone->node;
783 #else
784 return 0;
785 #endif
786 }
787
788 #ifdef NODE_NOT_IN_PAGE_FLAGS
789 extern int page_to_nid(const struct page *page);
790 #else
791 static inline int page_to_nid(const struct page *page)
792 {
793 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
794 }
795 #endif
796
797 #ifdef CONFIG_NUMA_BALANCING
798 static inline int cpu_pid_to_cpupid(int cpu, int pid)
799 {
800 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
801 }
802
803 static inline int cpupid_to_pid(int cpupid)
804 {
805 return cpupid & LAST__PID_MASK;
806 }
807
808 static inline int cpupid_to_cpu(int cpupid)
809 {
810 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
811 }
812
813 static inline int cpupid_to_nid(int cpupid)
814 {
815 return cpu_to_node(cpupid_to_cpu(cpupid));
816 }
817
818 static inline bool cpupid_pid_unset(int cpupid)
819 {
820 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
821 }
822
823 static inline bool cpupid_cpu_unset(int cpupid)
824 {
825 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
826 }
827
828 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
829 {
830 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
831 }
832
833 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
834 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
835 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
836 {
837 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
838 }
839
840 static inline int page_cpupid_last(struct page *page)
841 {
842 return page->_last_cpupid;
843 }
844 static inline void page_cpupid_reset_last(struct page *page)
845 {
846 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
847 }
848 #else
849 static inline int page_cpupid_last(struct page *page)
850 {
851 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
852 }
853
854 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
855
856 static inline void page_cpupid_reset_last(struct page *page)
857 {
858 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
859 }
860 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
861 #else /* !CONFIG_NUMA_BALANCING */
862 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
863 {
864 return page_to_nid(page); /* XXX */
865 }
866
867 static inline int page_cpupid_last(struct page *page)
868 {
869 return page_to_nid(page); /* XXX */
870 }
871
872 static inline int cpupid_to_nid(int cpupid)
873 {
874 return -1;
875 }
876
877 static inline int cpupid_to_pid(int cpupid)
878 {
879 return -1;
880 }
881
882 static inline int cpupid_to_cpu(int cpupid)
883 {
884 return -1;
885 }
886
887 static inline int cpu_pid_to_cpupid(int nid, int pid)
888 {
889 return -1;
890 }
891
892 static inline bool cpupid_pid_unset(int cpupid)
893 {
894 return 1;
895 }
896
897 static inline void page_cpupid_reset_last(struct page *page)
898 {
899 }
900
901 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
902 {
903 return false;
904 }
905 #endif /* CONFIG_NUMA_BALANCING */
906
907 static inline struct zone *page_zone(const struct page *page)
908 {
909 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
910 }
911
912 #ifdef SECTION_IN_PAGE_FLAGS
913 static inline void set_page_section(struct page *page, unsigned long section)
914 {
915 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
916 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
917 }
918
919 static inline unsigned long page_to_section(const struct page *page)
920 {
921 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
922 }
923 #endif
924
925 static inline void set_page_zone(struct page *page, enum zone_type zone)
926 {
927 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
928 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
929 }
930
931 static inline void set_page_node(struct page *page, unsigned long node)
932 {
933 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
934 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
935 }
936
937 static inline void set_page_links(struct page *page, enum zone_type zone,
938 unsigned long node, unsigned long pfn)
939 {
940 set_page_zone(page, zone);
941 set_page_node(page, node);
942 #ifdef SECTION_IN_PAGE_FLAGS
943 set_page_section(page, pfn_to_section_nr(pfn));
944 #endif
945 }
946
947 #ifdef CONFIG_MEMCG
948 static inline struct mem_cgroup *page_memcg(struct page *page)
949 {
950 return page->mem_cgroup;
951 }
952 #else
953 static inline struct mem_cgroup *page_memcg(struct page *page)
954 {
955 return NULL;
956 }
957 #endif
958
959 /*
960 * Some inline functions in vmstat.h depend on page_zone()
961 */
962 #include <linux/vmstat.h>
963
964 static __always_inline void *lowmem_page_address(const struct page *page)
965 {
966 return page_to_virt(page);
967 }
968
969 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
970 #define HASHED_PAGE_VIRTUAL
971 #endif
972
973 #if defined(WANT_PAGE_VIRTUAL)
974 static inline void *page_address(const struct page *page)
975 {
976 return page->virtual;
977 }
978 static inline void set_page_address(struct page *page, void *address)
979 {
980 page->virtual = address;
981 }
982 #define page_address_init() do { } while(0)
983 #endif
984
985 #if defined(HASHED_PAGE_VIRTUAL)
986 void *page_address(const struct page *page);
987 void set_page_address(struct page *page, void *virtual);
988 void page_address_init(void);
989 #endif
990
991 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
992 #define page_address(page) lowmem_page_address(page)
993 #define set_page_address(page, address) do { } while(0)
994 #define page_address_init() do { } while(0)
995 #endif
996
997 extern void *page_rmapping(struct page *page);
998 extern struct anon_vma *page_anon_vma(struct page *page);
999 extern struct address_space *page_mapping(struct page *page);
1000
1001 extern struct address_space *__page_file_mapping(struct page *);
1002
1003 static inline
1004 struct address_space *page_file_mapping(struct page *page)
1005 {
1006 if (unlikely(PageSwapCache(page)))
1007 return __page_file_mapping(page);
1008
1009 return page->mapping;
1010 }
1011
1012 /*
1013 * Return the pagecache index of the passed page. Regular pagecache pages
1014 * use ->index whereas swapcache pages use ->private
1015 */
1016 static inline pgoff_t page_index(struct page *page)
1017 {
1018 if (unlikely(PageSwapCache(page)))
1019 return page_private(page);
1020 return page->index;
1021 }
1022
1023 extern pgoff_t __page_file_index(struct page *page);
1024
1025 /*
1026 * Return the file index of the page. Regular pagecache pages use ->index
1027 * whereas swapcache pages use swp_offset(->private)
1028 */
1029 static inline pgoff_t page_file_index(struct page *page)
1030 {
1031 if (unlikely(PageSwapCache(page)))
1032 return __page_file_index(page);
1033
1034 return page->index;
1035 }
1036
1037 bool page_mapped(struct page *page);
1038 struct address_space *page_mapping(struct page *page);
1039
1040 /*
1041 * Return true only if the page has been allocated with
1042 * ALLOC_NO_WATERMARKS and the low watermark was not
1043 * met implying that the system is under some pressure.
1044 */
1045 static inline bool page_is_pfmemalloc(struct page *page)
1046 {
1047 /*
1048 * Page index cannot be this large so this must be
1049 * a pfmemalloc page.
1050 */
1051 return page->index == -1UL;
1052 }
1053
1054 /*
1055 * Only to be called by the page allocator on a freshly allocated
1056 * page.
1057 */
1058 static inline void set_page_pfmemalloc(struct page *page)
1059 {
1060 page->index = -1UL;
1061 }
1062
1063 static inline void clear_page_pfmemalloc(struct page *page)
1064 {
1065 page->index = 0;
1066 }
1067
1068 /*
1069 * Different kinds of faults, as returned by handle_mm_fault().
1070 * Used to decide whether a process gets delivered SIGBUS or
1071 * just gets major/minor fault counters bumped up.
1072 */
1073
1074 #define VM_FAULT_OOM 0x0001
1075 #define VM_FAULT_SIGBUS 0x0002
1076 #define VM_FAULT_MAJOR 0x0004
1077 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1078 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1079 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1080 #define VM_FAULT_SIGSEGV 0x0040
1081
1082 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1083 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1084 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1085 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1086 #define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
1087
1088 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1089
1090 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1091 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1092 VM_FAULT_FALLBACK)
1093
1094 /* Encode hstate index for a hwpoisoned large page */
1095 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1096 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1097
1098 /*
1099 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1100 */
1101 extern void pagefault_out_of_memory(void);
1102
1103 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1104
1105 /*
1106 * Flags passed to show_mem() and show_free_areas() to suppress output in
1107 * various contexts.
1108 */
1109 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1110
1111 extern void show_free_areas(unsigned int flags);
1112 extern bool skip_free_areas_node(unsigned int flags, int nid);
1113
1114 int shmem_zero_setup(struct vm_area_struct *);
1115 #ifdef CONFIG_SHMEM
1116 bool shmem_mapping(struct address_space *mapping);
1117 #else
1118 static inline bool shmem_mapping(struct address_space *mapping)
1119 {
1120 return false;
1121 }
1122 #endif
1123
1124 extern bool can_do_mlock(void);
1125 extern int user_shm_lock(size_t, struct user_struct *);
1126 extern void user_shm_unlock(size_t, struct user_struct *);
1127
1128 /*
1129 * Parameter block passed down to zap_pte_range in exceptional cases.
1130 */
1131 struct zap_details {
1132 struct address_space *check_mapping; /* Check page->mapping if set */
1133 pgoff_t first_index; /* Lowest page->index to unmap */
1134 pgoff_t last_index; /* Highest page->index to unmap */
1135 bool ignore_dirty; /* Ignore dirty pages */
1136 bool check_swap_entries; /* Check also swap entries */
1137 };
1138
1139 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1140 pte_t pte);
1141 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1142 pmd_t pmd);
1143
1144 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1145 unsigned long size);
1146 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1147 unsigned long size, struct zap_details *);
1148 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1149 unsigned long start, unsigned long end);
1150
1151 /**
1152 * mm_walk - callbacks for walk_page_range
1153 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1154 * this handler is required to be able to handle
1155 * pmd_trans_huge() pmds. They may simply choose to
1156 * split_huge_page() instead of handling it explicitly.
1157 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1158 * @pte_hole: if set, called for each hole at all levels
1159 * @hugetlb_entry: if set, called for each hugetlb entry
1160 * @test_walk: caller specific callback function to determine whether
1161 * we walk over the current vma or not. A positive returned
1162 * value means "do page table walk over the current vma,"
1163 * and a negative one means "abort current page table walk
1164 * right now." 0 means "skip the current vma."
1165 * @mm: mm_struct representing the target process of page table walk
1166 * @vma: vma currently walked (NULL if walking outside vmas)
1167 * @private: private data for callbacks' usage
1168 *
1169 * (see the comment on walk_page_range() for more details)
1170 */
1171 struct mm_walk {
1172 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1173 unsigned long next, struct mm_walk *walk);
1174 int (*pte_entry)(pte_t *pte, unsigned long addr,
1175 unsigned long next, struct mm_walk *walk);
1176 int (*pte_hole)(unsigned long addr, unsigned long next,
1177 struct mm_walk *walk);
1178 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1179 unsigned long addr, unsigned long next,
1180 struct mm_walk *walk);
1181 int (*test_walk)(unsigned long addr, unsigned long next,
1182 struct mm_walk *walk);
1183 struct mm_struct *mm;
1184 struct vm_area_struct *vma;
1185 void *private;
1186 };
1187
1188 int walk_page_range(unsigned long addr, unsigned long end,
1189 struct mm_walk *walk);
1190 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1191 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1192 unsigned long end, unsigned long floor, unsigned long ceiling);
1193 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1194 struct vm_area_struct *vma);
1195 void unmap_mapping_range(struct address_space *mapping,
1196 loff_t const holebegin, loff_t const holelen, int even_cows);
1197 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1198 unsigned long *pfn);
1199 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1200 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1201 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1202 void *buf, int len, int write);
1203
1204 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1205 loff_t const holebegin, loff_t const holelen)
1206 {
1207 unmap_mapping_range(mapping, holebegin, holelen, 0);
1208 }
1209
1210 extern void truncate_pagecache(struct inode *inode, loff_t new);
1211 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1212 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1213 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1214 int truncate_inode_page(struct address_space *mapping, struct page *page);
1215 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1216 int invalidate_inode_page(struct page *page);
1217
1218 #ifdef CONFIG_MMU
1219 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1220 unsigned long address, unsigned int flags);
1221 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1222 unsigned long address, unsigned int fault_flags,
1223 bool *unlocked);
1224 #else
1225 static inline int handle_mm_fault(struct mm_struct *mm,
1226 struct vm_area_struct *vma, unsigned long address,
1227 unsigned int flags)
1228 {
1229 /* should never happen if there's no MMU */
1230 BUG();
1231 return VM_FAULT_SIGBUS;
1232 }
1233 static inline int fixup_user_fault(struct task_struct *tsk,
1234 struct mm_struct *mm, unsigned long address,
1235 unsigned int fault_flags, bool *unlocked)
1236 {
1237 /* should never happen if there's no MMU */
1238 BUG();
1239 return -EFAULT;
1240 }
1241 #endif
1242
1243 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1244 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1245 void *buf, int len, int write);
1246
1247 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1248 unsigned long start, unsigned long nr_pages,
1249 unsigned int foll_flags, struct page **pages,
1250 struct vm_area_struct **vmas, int *nonblocking);
1251 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1252 unsigned long start, unsigned long nr_pages,
1253 int write, int force, struct page **pages,
1254 struct vm_area_struct **vmas);
1255 long get_user_pages(unsigned long start, unsigned long nr_pages,
1256 int write, int force, struct page **pages,
1257 struct vm_area_struct **vmas);
1258 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1259 int write, int force, struct page **pages, int *locked);
1260 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1261 unsigned long start, unsigned long nr_pages,
1262 int write, int force, struct page **pages,
1263 unsigned int gup_flags);
1264 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1265 int write, int force, struct page **pages);
1266 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1267 struct page **pages);
1268
1269 /* Container for pinned pfns / pages */
1270 struct frame_vector {
1271 unsigned int nr_allocated; /* Number of frames we have space for */
1272 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1273 bool got_ref; /* Did we pin pages by getting page ref? */
1274 bool is_pfns; /* Does array contain pages or pfns? */
1275 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1276 * pfns_vector_pages() or pfns_vector_pfns()
1277 * for access */
1278 };
1279
1280 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1281 void frame_vector_destroy(struct frame_vector *vec);
1282 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1283 bool write, bool force, struct frame_vector *vec);
1284 void put_vaddr_frames(struct frame_vector *vec);
1285 int frame_vector_to_pages(struct frame_vector *vec);
1286 void frame_vector_to_pfns(struct frame_vector *vec);
1287
1288 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1289 {
1290 return vec->nr_frames;
1291 }
1292
1293 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1294 {
1295 if (vec->is_pfns) {
1296 int err = frame_vector_to_pages(vec);
1297
1298 if (err)
1299 return ERR_PTR(err);
1300 }
1301 return (struct page **)(vec->ptrs);
1302 }
1303
1304 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1305 {
1306 if (!vec->is_pfns)
1307 frame_vector_to_pfns(vec);
1308 return (unsigned long *)(vec->ptrs);
1309 }
1310
1311 struct kvec;
1312 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1313 struct page **pages);
1314 int get_kernel_page(unsigned long start, int write, struct page **pages);
1315 struct page *get_dump_page(unsigned long addr);
1316
1317 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1318 extern void do_invalidatepage(struct page *page, unsigned int offset,
1319 unsigned int length);
1320
1321 int __set_page_dirty_nobuffers(struct page *page);
1322 int __set_page_dirty_no_writeback(struct page *page);
1323 int redirty_page_for_writepage(struct writeback_control *wbc,
1324 struct page *page);
1325 void account_page_dirtied(struct page *page, struct address_space *mapping);
1326 void account_page_cleaned(struct page *page, struct address_space *mapping,
1327 struct bdi_writeback *wb);
1328 int set_page_dirty(struct page *page);
1329 int set_page_dirty_lock(struct page *page);
1330 void cancel_dirty_page(struct page *page);
1331 int clear_page_dirty_for_io(struct page *page);
1332
1333 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1334
1335 /* Is the vma a continuation of the stack vma above it? */
1336 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1337 {
1338 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1339 }
1340
1341 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1342 {
1343 return !vma->vm_ops;
1344 }
1345
1346 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1347 unsigned long addr)
1348 {
1349 return (vma->vm_flags & VM_GROWSDOWN) &&
1350 (vma->vm_start == addr) &&
1351 !vma_growsdown(vma->vm_prev, addr);
1352 }
1353
1354 /* Is the vma a continuation of the stack vma below it? */
1355 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1356 {
1357 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1358 }
1359
1360 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1361 unsigned long addr)
1362 {
1363 return (vma->vm_flags & VM_GROWSUP) &&
1364 (vma->vm_end == addr) &&
1365 !vma_growsup(vma->vm_next, addr);
1366 }
1367
1368 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1369
1370 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1371 unsigned long old_addr, struct vm_area_struct *new_vma,
1372 unsigned long new_addr, unsigned long len,
1373 bool need_rmap_locks);
1374 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1375 unsigned long end, pgprot_t newprot,
1376 int dirty_accountable, int prot_numa);
1377 extern int mprotect_fixup(struct vm_area_struct *vma,
1378 struct vm_area_struct **pprev, unsigned long start,
1379 unsigned long end, unsigned long newflags);
1380
1381 /*
1382 * doesn't attempt to fault and will return short.
1383 */
1384 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1385 struct page **pages);
1386 /*
1387 * per-process(per-mm_struct) statistics.
1388 */
1389 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1390 {
1391 long val = atomic_long_read(&mm->rss_stat.count[member]);
1392
1393 #ifdef SPLIT_RSS_COUNTING
1394 /*
1395 * counter is updated in asynchronous manner and may go to minus.
1396 * But it's never be expected number for users.
1397 */
1398 if (val < 0)
1399 val = 0;
1400 #endif
1401 return (unsigned long)val;
1402 }
1403
1404 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1405 {
1406 atomic_long_add(value, &mm->rss_stat.count[member]);
1407 }
1408
1409 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1410 {
1411 atomic_long_inc(&mm->rss_stat.count[member]);
1412 }
1413
1414 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1415 {
1416 atomic_long_dec(&mm->rss_stat.count[member]);
1417 }
1418
1419 /* Optimized variant when page is already known not to be PageAnon */
1420 static inline int mm_counter_file(struct page *page)
1421 {
1422 if (PageSwapBacked(page))
1423 return MM_SHMEMPAGES;
1424 return MM_FILEPAGES;
1425 }
1426
1427 static inline int mm_counter(struct page *page)
1428 {
1429 if (PageAnon(page))
1430 return MM_ANONPAGES;
1431 return mm_counter_file(page);
1432 }
1433
1434 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1435 {
1436 return get_mm_counter(mm, MM_FILEPAGES) +
1437 get_mm_counter(mm, MM_ANONPAGES) +
1438 get_mm_counter(mm, MM_SHMEMPAGES);
1439 }
1440
1441 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1442 {
1443 return max(mm->hiwater_rss, get_mm_rss(mm));
1444 }
1445
1446 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1447 {
1448 return max(mm->hiwater_vm, mm->total_vm);
1449 }
1450
1451 static inline void update_hiwater_rss(struct mm_struct *mm)
1452 {
1453 unsigned long _rss = get_mm_rss(mm);
1454
1455 if ((mm)->hiwater_rss < _rss)
1456 (mm)->hiwater_rss = _rss;
1457 }
1458
1459 static inline void update_hiwater_vm(struct mm_struct *mm)
1460 {
1461 if (mm->hiwater_vm < mm->total_vm)
1462 mm->hiwater_vm = mm->total_vm;
1463 }
1464
1465 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1466 {
1467 mm->hiwater_rss = get_mm_rss(mm);
1468 }
1469
1470 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1471 struct mm_struct *mm)
1472 {
1473 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1474
1475 if (*maxrss < hiwater_rss)
1476 *maxrss = hiwater_rss;
1477 }
1478
1479 #if defined(SPLIT_RSS_COUNTING)
1480 void sync_mm_rss(struct mm_struct *mm);
1481 #else
1482 static inline void sync_mm_rss(struct mm_struct *mm)
1483 {
1484 }
1485 #endif
1486
1487 #ifndef __HAVE_ARCH_PTE_DEVMAP
1488 static inline int pte_devmap(pte_t pte)
1489 {
1490 return 0;
1491 }
1492 #endif
1493
1494 int vma_wants_writenotify(struct vm_area_struct *vma);
1495
1496 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1497 spinlock_t **ptl);
1498 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1499 spinlock_t **ptl)
1500 {
1501 pte_t *ptep;
1502 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1503 return ptep;
1504 }
1505
1506 #ifdef __PAGETABLE_PUD_FOLDED
1507 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1508 unsigned long address)
1509 {
1510 return 0;
1511 }
1512 #else
1513 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1514 #endif
1515
1516 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1517 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1518 unsigned long address)
1519 {
1520 return 0;
1521 }
1522
1523 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1524
1525 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1526 {
1527 return 0;
1528 }
1529
1530 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1531 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1532
1533 #else
1534 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1535
1536 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1537 {
1538 atomic_long_set(&mm->nr_pmds, 0);
1539 }
1540
1541 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1542 {
1543 return atomic_long_read(&mm->nr_pmds);
1544 }
1545
1546 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1547 {
1548 atomic_long_inc(&mm->nr_pmds);
1549 }
1550
1551 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1552 {
1553 atomic_long_dec(&mm->nr_pmds);
1554 }
1555 #endif
1556
1557 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1558 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1559
1560 /*
1561 * The following ifdef needed to get the 4level-fixup.h header to work.
1562 * Remove it when 4level-fixup.h has been removed.
1563 */
1564 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1565 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1566 {
1567 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1568 NULL: pud_offset(pgd, address);
1569 }
1570
1571 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1572 {
1573 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1574 NULL: pmd_offset(pud, address);
1575 }
1576 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1577
1578 #if USE_SPLIT_PTE_PTLOCKS
1579 #if ALLOC_SPLIT_PTLOCKS
1580 void __init ptlock_cache_init(void);
1581 extern bool ptlock_alloc(struct page *page);
1582 extern void ptlock_free(struct page *page);
1583
1584 static inline spinlock_t *ptlock_ptr(struct page *page)
1585 {
1586 return page->ptl;
1587 }
1588 #else /* ALLOC_SPLIT_PTLOCKS */
1589 static inline void ptlock_cache_init(void)
1590 {
1591 }
1592
1593 static inline bool ptlock_alloc(struct page *page)
1594 {
1595 return true;
1596 }
1597
1598 static inline void ptlock_free(struct page *page)
1599 {
1600 }
1601
1602 static inline spinlock_t *ptlock_ptr(struct page *page)
1603 {
1604 return &page->ptl;
1605 }
1606 #endif /* ALLOC_SPLIT_PTLOCKS */
1607
1608 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1609 {
1610 return ptlock_ptr(pmd_page(*pmd));
1611 }
1612
1613 static inline bool ptlock_init(struct page *page)
1614 {
1615 /*
1616 * prep_new_page() initialize page->private (and therefore page->ptl)
1617 * with 0. Make sure nobody took it in use in between.
1618 *
1619 * It can happen if arch try to use slab for page table allocation:
1620 * slab code uses page->slab_cache, which share storage with page->ptl.
1621 */
1622 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1623 if (!ptlock_alloc(page))
1624 return false;
1625 spin_lock_init(ptlock_ptr(page));
1626 return true;
1627 }
1628
1629 /* Reset page->mapping so free_pages_check won't complain. */
1630 static inline void pte_lock_deinit(struct page *page)
1631 {
1632 page->mapping = NULL;
1633 ptlock_free(page);
1634 }
1635
1636 #else /* !USE_SPLIT_PTE_PTLOCKS */
1637 /*
1638 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1639 */
1640 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1641 {
1642 return &mm->page_table_lock;
1643 }
1644 static inline void ptlock_cache_init(void) {}
1645 static inline bool ptlock_init(struct page *page) { return true; }
1646 static inline void pte_lock_deinit(struct page *page) {}
1647 #endif /* USE_SPLIT_PTE_PTLOCKS */
1648
1649 static inline void pgtable_init(void)
1650 {
1651 ptlock_cache_init();
1652 pgtable_cache_init();
1653 }
1654
1655 static inline bool pgtable_page_ctor(struct page *page)
1656 {
1657 if (!ptlock_init(page))
1658 return false;
1659 inc_zone_page_state(page, NR_PAGETABLE);
1660 return true;
1661 }
1662
1663 static inline void pgtable_page_dtor(struct page *page)
1664 {
1665 pte_lock_deinit(page);
1666 dec_zone_page_state(page, NR_PAGETABLE);
1667 }
1668
1669 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1670 ({ \
1671 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1672 pte_t *__pte = pte_offset_map(pmd, address); \
1673 *(ptlp) = __ptl; \
1674 spin_lock(__ptl); \
1675 __pte; \
1676 })
1677
1678 #define pte_unmap_unlock(pte, ptl) do { \
1679 spin_unlock(ptl); \
1680 pte_unmap(pte); \
1681 } while (0)
1682
1683 #define pte_alloc(mm, pmd, address) \
1684 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1685
1686 #define pte_alloc_map(mm, pmd, address) \
1687 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1688
1689 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1690 (pte_alloc(mm, pmd, address) ? \
1691 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1692
1693 #define pte_alloc_kernel(pmd, address) \
1694 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1695 NULL: pte_offset_kernel(pmd, address))
1696
1697 #if USE_SPLIT_PMD_PTLOCKS
1698
1699 static struct page *pmd_to_page(pmd_t *pmd)
1700 {
1701 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1702 return virt_to_page((void *)((unsigned long) pmd & mask));
1703 }
1704
1705 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1706 {
1707 return ptlock_ptr(pmd_to_page(pmd));
1708 }
1709
1710 static inline bool pgtable_pmd_page_ctor(struct page *page)
1711 {
1712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1713 page->pmd_huge_pte = NULL;
1714 #endif
1715 return ptlock_init(page);
1716 }
1717
1718 static inline void pgtable_pmd_page_dtor(struct page *page)
1719 {
1720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1721 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1722 #endif
1723 ptlock_free(page);
1724 }
1725
1726 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1727
1728 #else
1729
1730 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1731 {
1732 return &mm->page_table_lock;
1733 }
1734
1735 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1736 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1737
1738 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1739
1740 #endif
1741
1742 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1743 {
1744 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1745 spin_lock(ptl);
1746 return ptl;
1747 }
1748
1749 extern void free_area_init(unsigned long * zones_size);
1750 extern void free_area_init_node(int nid, unsigned long * zones_size,
1751 unsigned long zone_start_pfn, unsigned long *zholes_size);
1752 extern void free_initmem(void);
1753
1754 /*
1755 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1756 * into the buddy system. The freed pages will be poisoned with pattern
1757 * "poison" if it's within range [0, UCHAR_MAX].
1758 * Return pages freed into the buddy system.
1759 */
1760 extern unsigned long free_reserved_area(void *start, void *end,
1761 int poison, char *s);
1762
1763 #ifdef CONFIG_HIGHMEM
1764 /*
1765 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1766 * and totalram_pages.
1767 */
1768 extern void free_highmem_page(struct page *page);
1769 #endif
1770
1771 extern void adjust_managed_page_count(struct page *page, long count);
1772 extern void mem_init_print_info(const char *str);
1773
1774 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1775
1776 /* Free the reserved page into the buddy system, so it gets managed. */
1777 static inline void __free_reserved_page(struct page *page)
1778 {
1779 ClearPageReserved(page);
1780 init_page_count(page);
1781 __free_page(page);
1782 }
1783
1784 static inline void free_reserved_page(struct page *page)
1785 {
1786 __free_reserved_page(page);
1787 adjust_managed_page_count(page, 1);
1788 }
1789
1790 static inline void mark_page_reserved(struct page *page)
1791 {
1792 SetPageReserved(page);
1793 adjust_managed_page_count(page, -1);
1794 }
1795
1796 /*
1797 * Default method to free all the __init memory into the buddy system.
1798 * The freed pages will be poisoned with pattern "poison" if it's within
1799 * range [0, UCHAR_MAX].
1800 * Return pages freed into the buddy system.
1801 */
1802 static inline unsigned long free_initmem_default(int poison)
1803 {
1804 extern char __init_begin[], __init_end[];
1805
1806 return free_reserved_area(&__init_begin, &__init_end,
1807 poison, "unused kernel");
1808 }
1809
1810 static inline unsigned long get_num_physpages(void)
1811 {
1812 int nid;
1813 unsigned long phys_pages = 0;
1814
1815 for_each_online_node(nid)
1816 phys_pages += node_present_pages(nid);
1817
1818 return phys_pages;
1819 }
1820
1821 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1822 /*
1823 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1824 * zones, allocate the backing mem_map and account for memory holes in a more
1825 * architecture independent manner. This is a substitute for creating the
1826 * zone_sizes[] and zholes_size[] arrays and passing them to
1827 * free_area_init_node()
1828 *
1829 * An architecture is expected to register range of page frames backed by
1830 * physical memory with memblock_add[_node]() before calling
1831 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1832 * usage, an architecture is expected to do something like
1833 *
1834 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1835 * max_highmem_pfn};
1836 * for_each_valid_physical_page_range()
1837 * memblock_add_node(base, size, nid)
1838 * free_area_init_nodes(max_zone_pfns);
1839 *
1840 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1841 * registered physical page range. Similarly
1842 * sparse_memory_present_with_active_regions() calls memory_present() for
1843 * each range when SPARSEMEM is enabled.
1844 *
1845 * See mm/page_alloc.c for more information on each function exposed by
1846 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1847 */
1848 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1849 unsigned long node_map_pfn_alignment(void);
1850 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1851 unsigned long end_pfn);
1852 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1853 unsigned long end_pfn);
1854 extern void get_pfn_range_for_nid(unsigned int nid,
1855 unsigned long *start_pfn, unsigned long *end_pfn);
1856 extern unsigned long find_min_pfn_with_active_regions(void);
1857 extern void free_bootmem_with_active_regions(int nid,
1858 unsigned long max_low_pfn);
1859 extern void sparse_memory_present_with_active_regions(int nid);
1860
1861 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1862
1863 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1864 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1865 static inline int __early_pfn_to_nid(unsigned long pfn,
1866 struct mminit_pfnnid_cache *state)
1867 {
1868 return 0;
1869 }
1870 #else
1871 /* please see mm/page_alloc.c */
1872 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1873 /* there is a per-arch backend function. */
1874 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1875 struct mminit_pfnnid_cache *state);
1876 #endif
1877
1878 extern void set_dma_reserve(unsigned long new_dma_reserve);
1879 extern void memmap_init_zone(unsigned long, int, unsigned long,
1880 unsigned long, enum memmap_context);
1881 extern void setup_per_zone_wmarks(void);
1882 extern int __meminit init_per_zone_wmark_min(void);
1883 extern void mem_init(void);
1884 extern void __init mmap_init(void);
1885 extern void show_mem(unsigned int flags);
1886 extern long si_mem_available(void);
1887 extern void si_meminfo(struct sysinfo * val);
1888 extern void si_meminfo_node(struct sysinfo *val, int nid);
1889
1890 extern __printf(3, 4)
1891 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1892 const char *fmt, ...);
1893
1894 extern void setup_per_cpu_pageset(void);
1895
1896 extern void zone_pcp_update(struct zone *zone);
1897 extern void zone_pcp_reset(struct zone *zone);
1898
1899 /* page_alloc.c */
1900 extern int min_free_kbytes;
1901 extern int watermark_scale_factor;
1902
1903 /* nommu.c */
1904 extern atomic_long_t mmap_pages_allocated;
1905 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1906
1907 /* interval_tree.c */
1908 void vma_interval_tree_insert(struct vm_area_struct *node,
1909 struct rb_root *root);
1910 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1911 struct vm_area_struct *prev,
1912 struct rb_root *root);
1913 void vma_interval_tree_remove(struct vm_area_struct *node,
1914 struct rb_root *root);
1915 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1916 unsigned long start, unsigned long last);
1917 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1918 unsigned long start, unsigned long last);
1919
1920 #define vma_interval_tree_foreach(vma, root, start, last) \
1921 for (vma = vma_interval_tree_iter_first(root, start, last); \
1922 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1923
1924 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1925 struct rb_root *root);
1926 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1927 struct rb_root *root);
1928 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1929 struct rb_root *root, unsigned long start, unsigned long last);
1930 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1931 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1932 #ifdef CONFIG_DEBUG_VM_RB
1933 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1934 #endif
1935
1936 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1937 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1938 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1939
1940 /* mmap.c */
1941 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1942 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1943 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1944 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1945 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1946 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1947 struct mempolicy *, struct vm_userfaultfd_ctx);
1948 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1949 extern int split_vma(struct mm_struct *,
1950 struct vm_area_struct *, unsigned long addr, int new_below);
1951 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1952 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1953 struct rb_node **, struct rb_node *);
1954 extern void unlink_file_vma(struct vm_area_struct *);
1955 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1956 unsigned long addr, unsigned long len, pgoff_t pgoff,
1957 bool *need_rmap_locks);
1958 extern void exit_mmap(struct mm_struct *);
1959
1960 static inline int check_data_rlimit(unsigned long rlim,
1961 unsigned long new,
1962 unsigned long start,
1963 unsigned long end_data,
1964 unsigned long start_data)
1965 {
1966 if (rlim < RLIM_INFINITY) {
1967 if (((new - start) + (end_data - start_data)) > rlim)
1968 return -ENOSPC;
1969 }
1970
1971 return 0;
1972 }
1973
1974 extern int mm_take_all_locks(struct mm_struct *mm);
1975 extern void mm_drop_all_locks(struct mm_struct *mm);
1976
1977 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1978 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1979
1980 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1981 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1982
1983 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1984 unsigned long addr, unsigned long len,
1985 unsigned long flags,
1986 const struct vm_special_mapping *spec);
1987 /* This is an obsolete alternative to _install_special_mapping. */
1988 extern int install_special_mapping(struct mm_struct *mm,
1989 unsigned long addr, unsigned long len,
1990 unsigned long flags, struct page **pages);
1991
1992 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1993
1994 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1995 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1996 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1997 unsigned long len, unsigned long prot, unsigned long flags,
1998 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1999 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2000
2001 static inline unsigned long
2002 do_mmap_pgoff(struct file *file, unsigned long addr,
2003 unsigned long len, unsigned long prot, unsigned long flags,
2004 unsigned long pgoff, unsigned long *populate)
2005 {
2006 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2007 }
2008
2009 #ifdef CONFIG_MMU
2010 extern int __mm_populate(unsigned long addr, unsigned long len,
2011 int ignore_errors);
2012 static inline void mm_populate(unsigned long addr, unsigned long len)
2013 {
2014 /* Ignore errors */
2015 (void) __mm_populate(addr, len, 1);
2016 }
2017 #else
2018 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2019 #endif
2020
2021 /* These take the mm semaphore themselves */
2022 extern int __must_check vm_brk(unsigned long, unsigned long);
2023 extern int vm_munmap(unsigned long, size_t);
2024 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2025 unsigned long, unsigned long,
2026 unsigned long, unsigned long);
2027
2028 struct vm_unmapped_area_info {
2029 #define VM_UNMAPPED_AREA_TOPDOWN 1
2030 unsigned long flags;
2031 unsigned long length;
2032 unsigned long low_limit;
2033 unsigned long high_limit;
2034 unsigned long align_mask;
2035 unsigned long align_offset;
2036 };
2037
2038 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2039 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2040
2041 /*
2042 * Search for an unmapped address range.
2043 *
2044 * We are looking for a range that:
2045 * - does not intersect with any VMA;
2046 * - is contained within the [low_limit, high_limit) interval;
2047 * - is at least the desired size.
2048 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2049 */
2050 static inline unsigned long
2051 vm_unmapped_area(struct vm_unmapped_area_info *info)
2052 {
2053 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2054 return unmapped_area_topdown(info);
2055 else
2056 return unmapped_area(info);
2057 }
2058
2059 /* truncate.c */
2060 extern void truncate_inode_pages(struct address_space *, loff_t);
2061 extern void truncate_inode_pages_range(struct address_space *,
2062 loff_t lstart, loff_t lend);
2063 extern void truncate_inode_pages_final(struct address_space *);
2064
2065 /* generic vm_area_ops exported for stackable file systems */
2066 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2067 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2068 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2069
2070 /* mm/page-writeback.c */
2071 int write_one_page(struct page *page, int wait);
2072 void task_dirty_inc(struct task_struct *tsk);
2073
2074 /* readahead.c */
2075 #define VM_MAX_READAHEAD 128 /* kbytes */
2076 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2077
2078 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2079 pgoff_t offset, unsigned long nr_to_read);
2080
2081 void page_cache_sync_readahead(struct address_space *mapping,
2082 struct file_ra_state *ra,
2083 struct file *filp,
2084 pgoff_t offset,
2085 unsigned long size);
2086
2087 void page_cache_async_readahead(struct address_space *mapping,
2088 struct file_ra_state *ra,
2089 struct file *filp,
2090 struct page *pg,
2091 pgoff_t offset,
2092 unsigned long size);
2093
2094 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2095 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2096
2097 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2098 extern int expand_downwards(struct vm_area_struct *vma,
2099 unsigned long address);
2100 #if VM_GROWSUP
2101 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2102 #else
2103 #define expand_upwards(vma, address) (0)
2104 #endif
2105
2106 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2107 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2108 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2109 struct vm_area_struct **pprev);
2110
2111 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2112 NULL if none. Assume start_addr < end_addr. */
2113 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2114 {
2115 struct vm_area_struct * vma = find_vma(mm,start_addr);
2116
2117 if (vma && end_addr <= vma->vm_start)
2118 vma = NULL;
2119 return vma;
2120 }
2121
2122 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2123 {
2124 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2125 }
2126
2127 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2128 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2129 unsigned long vm_start, unsigned long vm_end)
2130 {
2131 struct vm_area_struct *vma = find_vma(mm, vm_start);
2132
2133 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2134 vma = NULL;
2135
2136 return vma;
2137 }
2138
2139 #ifdef CONFIG_MMU
2140 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2141 void vma_set_page_prot(struct vm_area_struct *vma);
2142 #else
2143 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2144 {
2145 return __pgprot(0);
2146 }
2147 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2148 {
2149 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2150 }
2151 #endif
2152
2153 #ifdef CONFIG_NUMA_BALANCING
2154 unsigned long change_prot_numa(struct vm_area_struct *vma,
2155 unsigned long start, unsigned long end);
2156 #endif
2157
2158 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2159 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2160 unsigned long pfn, unsigned long size, pgprot_t);
2161 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2162 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2163 unsigned long pfn);
2164 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2165 unsigned long pfn, pgprot_t pgprot);
2166 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2167 pfn_t pfn);
2168 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2169
2170
2171 struct page *follow_page_mask(struct vm_area_struct *vma,
2172 unsigned long address, unsigned int foll_flags,
2173 unsigned int *page_mask);
2174
2175 static inline struct page *follow_page(struct vm_area_struct *vma,
2176 unsigned long address, unsigned int foll_flags)
2177 {
2178 unsigned int unused_page_mask;
2179 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2180 }
2181
2182 #define FOLL_WRITE 0x01 /* check pte is writable */
2183 #define FOLL_TOUCH 0x02 /* mark page accessed */
2184 #define FOLL_GET 0x04 /* do get_page on page */
2185 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2186 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2187 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2188 * and return without waiting upon it */
2189 #define FOLL_POPULATE 0x40 /* fault in page */
2190 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2191 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2192 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2193 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2194 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2195 #define FOLL_MLOCK 0x1000 /* lock present pages */
2196 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2197
2198 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2199 void *data);
2200 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2201 unsigned long size, pte_fn_t fn, void *data);
2202
2203
2204 #ifdef CONFIG_PAGE_POISONING
2205 extern bool page_poisoning_enabled(void);
2206 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2207 extern bool page_is_poisoned(struct page *page);
2208 #else
2209 static inline bool page_poisoning_enabled(void) { return false; }
2210 static inline void kernel_poison_pages(struct page *page, int numpages,
2211 int enable) { }
2212 static inline bool page_is_poisoned(struct page *page) { return false; }
2213 #endif
2214
2215 #ifdef CONFIG_DEBUG_PAGEALLOC
2216 extern bool _debug_pagealloc_enabled;
2217 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2218
2219 static inline bool debug_pagealloc_enabled(void)
2220 {
2221 return _debug_pagealloc_enabled;
2222 }
2223
2224 static inline void
2225 kernel_map_pages(struct page *page, int numpages, int enable)
2226 {
2227 if (!debug_pagealloc_enabled())
2228 return;
2229
2230 __kernel_map_pages(page, numpages, enable);
2231 }
2232 #ifdef CONFIG_HIBERNATION
2233 extern bool kernel_page_present(struct page *page);
2234 #endif /* CONFIG_HIBERNATION */
2235 #else /* CONFIG_DEBUG_PAGEALLOC */
2236 static inline void
2237 kernel_map_pages(struct page *page, int numpages, int enable) {}
2238 #ifdef CONFIG_HIBERNATION
2239 static inline bool kernel_page_present(struct page *page) { return true; }
2240 #endif /* CONFIG_HIBERNATION */
2241 static inline bool debug_pagealloc_enabled(void)
2242 {
2243 return false;
2244 }
2245 #endif /* CONFIG_DEBUG_PAGEALLOC */
2246
2247 #ifdef __HAVE_ARCH_GATE_AREA
2248 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2249 extern int in_gate_area_no_mm(unsigned long addr);
2250 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2251 #else
2252 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2253 {
2254 return NULL;
2255 }
2256 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2257 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2258 {
2259 return 0;
2260 }
2261 #endif /* __HAVE_ARCH_GATE_AREA */
2262
2263 #ifdef CONFIG_SYSCTL
2264 extern int sysctl_drop_caches;
2265 int drop_caches_sysctl_handler(struct ctl_table *, int,
2266 void __user *, size_t *, loff_t *);
2267 #endif
2268
2269 void drop_slab(void);
2270 void drop_slab_node(int nid);
2271
2272 #ifndef CONFIG_MMU
2273 #define randomize_va_space 0
2274 #else
2275 extern int randomize_va_space;
2276 #endif
2277
2278 const char * arch_vma_name(struct vm_area_struct *vma);
2279 void print_vma_addr(char *prefix, unsigned long rip);
2280
2281 void sparse_mem_maps_populate_node(struct page **map_map,
2282 unsigned long pnum_begin,
2283 unsigned long pnum_end,
2284 unsigned long map_count,
2285 int nodeid);
2286
2287 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2288 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2289 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2290 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2291 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2292 void *vmemmap_alloc_block(unsigned long size, int node);
2293 struct vmem_altmap;
2294 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2295 struct vmem_altmap *altmap);
2296 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2297 {
2298 return __vmemmap_alloc_block_buf(size, node, NULL);
2299 }
2300
2301 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2302 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2303 int node);
2304 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2305 void vmemmap_populate_print_last(void);
2306 #ifdef CONFIG_MEMORY_HOTPLUG
2307 void vmemmap_free(unsigned long start, unsigned long end);
2308 #endif
2309 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2310 unsigned long size);
2311
2312 enum mf_flags {
2313 MF_COUNT_INCREASED = 1 << 0,
2314 MF_ACTION_REQUIRED = 1 << 1,
2315 MF_MUST_KILL = 1 << 2,
2316 MF_SOFT_OFFLINE = 1 << 3,
2317 };
2318 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2319 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2320 extern int unpoison_memory(unsigned long pfn);
2321 extern int get_hwpoison_page(struct page *page);
2322 #define put_hwpoison_page(page) put_page(page)
2323 extern int sysctl_memory_failure_early_kill;
2324 extern int sysctl_memory_failure_recovery;
2325 extern void shake_page(struct page *p, int access);
2326 extern atomic_long_t num_poisoned_pages;
2327 extern int soft_offline_page(struct page *page, int flags);
2328
2329
2330 /*
2331 * Error handlers for various types of pages.
2332 */
2333 enum mf_result {
2334 MF_IGNORED, /* Error: cannot be handled */
2335 MF_FAILED, /* Error: handling failed */
2336 MF_DELAYED, /* Will be handled later */
2337 MF_RECOVERED, /* Successfully recovered */
2338 };
2339
2340 enum mf_action_page_type {
2341 MF_MSG_KERNEL,
2342 MF_MSG_KERNEL_HIGH_ORDER,
2343 MF_MSG_SLAB,
2344 MF_MSG_DIFFERENT_COMPOUND,
2345 MF_MSG_POISONED_HUGE,
2346 MF_MSG_HUGE,
2347 MF_MSG_FREE_HUGE,
2348 MF_MSG_UNMAP_FAILED,
2349 MF_MSG_DIRTY_SWAPCACHE,
2350 MF_MSG_CLEAN_SWAPCACHE,
2351 MF_MSG_DIRTY_MLOCKED_LRU,
2352 MF_MSG_CLEAN_MLOCKED_LRU,
2353 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2354 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2355 MF_MSG_DIRTY_LRU,
2356 MF_MSG_CLEAN_LRU,
2357 MF_MSG_TRUNCATED_LRU,
2358 MF_MSG_BUDDY,
2359 MF_MSG_BUDDY_2ND,
2360 MF_MSG_UNKNOWN,
2361 };
2362
2363 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2364 extern void clear_huge_page(struct page *page,
2365 unsigned long addr,
2366 unsigned int pages_per_huge_page);
2367 extern void copy_user_huge_page(struct page *dst, struct page *src,
2368 unsigned long addr, struct vm_area_struct *vma,
2369 unsigned int pages_per_huge_page);
2370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2371
2372 extern struct page_ext_operations debug_guardpage_ops;
2373 extern struct page_ext_operations page_poisoning_ops;
2374
2375 #ifdef CONFIG_DEBUG_PAGEALLOC
2376 extern unsigned int _debug_guardpage_minorder;
2377 extern bool _debug_guardpage_enabled;
2378
2379 static inline unsigned int debug_guardpage_minorder(void)
2380 {
2381 return _debug_guardpage_minorder;
2382 }
2383
2384 static inline bool debug_guardpage_enabled(void)
2385 {
2386 return _debug_guardpage_enabled;
2387 }
2388
2389 static inline bool page_is_guard(struct page *page)
2390 {
2391 struct page_ext *page_ext;
2392
2393 if (!debug_guardpage_enabled())
2394 return false;
2395
2396 page_ext = lookup_page_ext(page);
2397 if (unlikely(!page_ext))
2398 return false;
2399
2400 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2401 }
2402 #else
2403 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2404 static inline bool debug_guardpage_enabled(void) { return false; }
2405 static inline bool page_is_guard(struct page *page) { return false; }
2406 #endif /* CONFIG_DEBUG_PAGEALLOC */
2407
2408 #if MAX_NUMNODES > 1
2409 void __init setup_nr_node_ids(void);
2410 #else
2411 static inline void setup_nr_node_ids(void) {}
2412 #endif
2413
2414 #endif /* __KERNEL__ */
2415 #endif /* _LINUX_MM_H */