]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/mm.h
mm: fault feedback #1
[mirror_ubuntu-hirsute-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/fs.h>
14 #include <linux/mutex.h>
15 #include <linux/debug_locks.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mm_types.h>
18
19 struct mempolicy;
20 struct anon_vma;
21 struct user_struct;
22
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
25 #endif
26
27 extern unsigned long num_physpages;
28 extern void * high_memory;
29 extern int page_cluster;
30
31 #ifdef CONFIG_SYSCTL
32 extern int sysctl_legacy_va_layout;
33 #else
34 #define sysctl_legacy_va_layout 0
35 #endif
36
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40
41 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
42
43 /*
44 * Linux kernel virtual memory manager primitives.
45 * The idea being to have a "virtual" mm in the same way
46 * we have a virtual fs - giving a cleaner interface to the
47 * mm details, and allowing different kinds of memory mappings
48 * (from shared memory to executable loading to arbitrary
49 * mmap() functions).
50 */
51
52 /*
53 * This struct defines a memory VMM memory area. There is one of these
54 * per VM-area/task. A VM area is any part of the process virtual memory
55 * space that has a special rule for the page-fault handlers (ie a shared
56 * library, the executable area etc).
57 */
58 struct vm_area_struct {
59 struct mm_struct * vm_mm; /* The address space we belong to. */
60 unsigned long vm_start; /* Our start address within vm_mm. */
61 unsigned long vm_end; /* The first byte after our end address
62 within vm_mm. */
63
64 /* linked list of VM areas per task, sorted by address */
65 struct vm_area_struct *vm_next;
66
67 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
68 unsigned long vm_flags; /* Flags, listed below. */
69
70 struct rb_node vm_rb;
71
72 /*
73 * For areas with an address space and backing store,
74 * linkage into the address_space->i_mmap prio tree, or
75 * linkage to the list of like vmas hanging off its node, or
76 * linkage of vma in the address_space->i_mmap_nonlinear list.
77 */
78 union {
79 struct {
80 struct list_head list;
81 void *parent; /* aligns with prio_tree_node parent */
82 struct vm_area_struct *head;
83 } vm_set;
84
85 struct raw_prio_tree_node prio_tree_node;
86 } shared;
87
88 /*
89 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
90 * list, after a COW of one of the file pages. A MAP_SHARED vma
91 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
92 * or brk vma (with NULL file) can only be in an anon_vma list.
93 */
94 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
95 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
96
97 /* Function pointers to deal with this struct. */
98 struct vm_operations_struct * vm_ops;
99
100 /* Information about our backing store: */
101 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
102 units, *not* PAGE_CACHE_SIZE */
103 struct file * vm_file; /* File we map to (can be NULL). */
104 void * vm_private_data; /* was vm_pte (shared mem) */
105 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106
107 #ifndef CONFIG_MMU
108 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
109 #endif
110 #ifdef CONFIG_NUMA
111 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
112 #endif
113 };
114
115 extern struct kmem_cache *vm_area_cachep;
116
117 /*
118 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
119 * disabled, then there's a single shared list of VMAs maintained by the
120 * system, and mm's subscribe to these individually
121 */
122 struct vm_list_struct {
123 struct vm_list_struct *next;
124 struct vm_area_struct *vma;
125 };
126
127 #ifndef CONFIG_MMU
128 extern struct rb_root nommu_vma_tree;
129 extern struct rw_semaphore nommu_vma_sem;
130
131 extern unsigned int kobjsize(const void *objp);
132 #endif
133
134 /*
135 * vm_flags..
136 */
137 #define VM_READ 0x00000001 /* currently active flags */
138 #define VM_WRITE 0x00000002
139 #define VM_EXEC 0x00000004
140 #define VM_SHARED 0x00000008
141
142 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
143 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
144 #define VM_MAYWRITE 0x00000020
145 #define VM_MAYEXEC 0x00000040
146 #define VM_MAYSHARE 0x00000080
147
148 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
149 #define VM_GROWSUP 0x00000200
150 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
151 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
152
153 #define VM_EXECUTABLE 0x00001000
154 #define VM_LOCKED 0x00002000
155 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
156
157 /* Used by sys_madvise() */
158 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
159 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
160
161 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
162 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
163 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
164 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
165 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
166 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
167 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
168 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
169 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
170
171 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
172
173 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
174 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
175 #endif
176
177 #ifdef CONFIG_STACK_GROWSUP
178 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179 #else
180 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
181 #endif
182
183 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
184 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
185 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
186 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
187 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
188
189 /*
190 * mapping from the currently active vm_flags protection bits (the
191 * low four bits) to a page protection mask..
192 */
193 extern pgprot_t protection_map[16];
194
195 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
196 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
197
198
199 #define FAULT_RET_NOPAGE 0x0100 /* ->fault did not return a page. This
200 * can be used if the handler installs
201 * their own pte.
202 */
203 #define FAULT_RET_LOCKED 0x0200 /* ->fault locked the page, caller must
204 * unlock after installing the mapping.
205 * This is used by pagecache in
206 * particular, where the page lock is
207 * used to synchronise against truncate
208 * and invalidate. Mutually exclusive
209 * with FAULT_RET_NOPAGE.
210 */
211
212 /*
213 * vm_fault is filled by the the pagefault handler and passed to the vma's
214 * ->fault function. The vma's ->fault is responsible for returning the
215 * VM_FAULT_xxx type which occupies the lowest byte of the return code, ORed
216 * with FAULT_RET_ flags that occupy the next byte and give details about
217 * how the fault was handled.
218 *
219 * pgoff should be used in favour of virtual_address, if possible. If pgoff
220 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
221 * mapping support.
222 */
223 struct vm_fault {
224 unsigned int flags; /* FAULT_FLAG_xxx flags */
225 pgoff_t pgoff; /* Logical page offset based on vma */
226 void __user *virtual_address; /* Faulting virtual address */
227
228 struct page *page; /* ->fault handlers should return a
229 * page here, unless FAULT_RET_NOPAGE
230 * is set (which is also implied by
231 * VM_FAULT_OOM or SIGBUS).
232 */
233 };
234
235 /*
236 * These are the virtual MM functions - opening of an area, closing and
237 * unmapping it (needed to keep files on disk up-to-date etc), pointer
238 * to the functions called when a no-page or a wp-page exception occurs.
239 */
240 struct vm_operations_struct {
241 void (*open)(struct vm_area_struct * area);
242 void (*close)(struct vm_area_struct * area);
243 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
244 struct page *(*nopage)(struct vm_area_struct *area,
245 unsigned long address, int *type);
246 unsigned long (*nopfn)(struct vm_area_struct *area,
247 unsigned long address);
248
249 /* notification that a previously read-only page is about to become
250 * writable, if an error is returned it will cause a SIGBUS */
251 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
252 #ifdef CONFIG_NUMA
253 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
254 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
255 unsigned long addr);
256 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
257 const nodemask_t *to, unsigned long flags);
258 #endif
259 };
260
261 struct mmu_gather;
262 struct inode;
263
264 #define page_private(page) ((page)->private)
265 #define set_page_private(page, v) ((page)->private = (v))
266
267 /*
268 * FIXME: take this include out, include page-flags.h in
269 * files which need it (119 of them)
270 */
271 #include <linux/page-flags.h>
272
273 #ifdef CONFIG_DEBUG_VM
274 #define VM_BUG_ON(cond) BUG_ON(cond)
275 #else
276 #define VM_BUG_ON(condition) do { } while(0)
277 #endif
278
279 /*
280 * Methods to modify the page usage count.
281 *
282 * What counts for a page usage:
283 * - cache mapping (page->mapping)
284 * - private data (page->private)
285 * - page mapped in a task's page tables, each mapping
286 * is counted separately
287 *
288 * Also, many kernel routines increase the page count before a critical
289 * routine so they can be sure the page doesn't go away from under them.
290 */
291
292 /*
293 * Drop a ref, return true if the refcount fell to zero (the page has no users)
294 */
295 static inline int put_page_testzero(struct page *page)
296 {
297 VM_BUG_ON(atomic_read(&page->_count) == 0);
298 return atomic_dec_and_test(&page->_count);
299 }
300
301 /*
302 * Try to grab a ref unless the page has a refcount of zero, return false if
303 * that is the case.
304 */
305 static inline int get_page_unless_zero(struct page *page)
306 {
307 VM_BUG_ON(PageCompound(page));
308 return atomic_inc_not_zero(&page->_count);
309 }
310
311 static inline struct page *compound_head(struct page *page)
312 {
313 if (unlikely(PageTail(page)))
314 return page->first_page;
315 return page;
316 }
317
318 static inline int page_count(struct page *page)
319 {
320 return atomic_read(&compound_head(page)->_count);
321 }
322
323 static inline void get_page(struct page *page)
324 {
325 page = compound_head(page);
326 VM_BUG_ON(atomic_read(&page->_count) == 0);
327 atomic_inc(&page->_count);
328 }
329
330 static inline struct page *virt_to_head_page(const void *x)
331 {
332 struct page *page = virt_to_page(x);
333 return compound_head(page);
334 }
335
336 /*
337 * Setup the page count before being freed into the page allocator for
338 * the first time (boot or memory hotplug)
339 */
340 static inline void init_page_count(struct page *page)
341 {
342 atomic_set(&page->_count, 1);
343 }
344
345 void put_page(struct page *page);
346 void put_pages_list(struct list_head *pages);
347
348 void split_page(struct page *page, unsigned int order);
349
350 /*
351 * Compound pages have a destructor function. Provide a
352 * prototype for that function and accessor functions.
353 * These are _only_ valid on the head of a PG_compound page.
354 */
355 typedef void compound_page_dtor(struct page *);
356
357 static inline void set_compound_page_dtor(struct page *page,
358 compound_page_dtor *dtor)
359 {
360 page[1].lru.next = (void *)dtor;
361 }
362
363 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
364 {
365 return (compound_page_dtor *)page[1].lru.next;
366 }
367
368 static inline int compound_order(struct page *page)
369 {
370 if (!PageHead(page))
371 return 0;
372 return (unsigned long)page[1].lru.prev;
373 }
374
375 static inline void set_compound_order(struct page *page, unsigned long order)
376 {
377 page[1].lru.prev = (void *)order;
378 }
379
380 /*
381 * Multiple processes may "see" the same page. E.g. for untouched
382 * mappings of /dev/null, all processes see the same page full of
383 * zeroes, and text pages of executables and shared libraries have
384 * only one copy in memory, at most, normally.
385 *
386 * For the non-reserved pages, page_count(page) denotes a reference count.
387 * page_count() == 0 means the page is free. page->lru is then used for
388 * freelist management in the buddy allocator.
389 * page_count() > 0 means the page has been allocated.
390 *
391 * Pages are allocated by the slab allocator in order to provide memory
392 * to kmalloc and kmem_cache_alloc. In this case, the management of the
393 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
394 * unless a particular usage is carefully commented. (the responsibility of
395 * freeing the kmalloc memory is the caller's, of course).
396 *
397 * A page may be used by anyone else who does a __get_free_page().
398 * In this case, page_count still tracks the references, and should only
399 * be used through the normal accessor functions. The top bits of page->flags
400 * and page->virtual store page management information, but all other fields
401 * are unused and could be used privately, carefully. The management of this
402 * page is the responsibility of the one who allocated it, and those who have
403 * subsequently been given references to it.
404 *
405 * The other pages (we may call them "pagecache pages") are completely
406 * managed by the Linux memory manager: I/O, buffers, swapping etc.
407 * The following discussion applies only to them.
408 *
409 * A pagecache page contains an opaque `private' member, which belongs to the
410 * page's address_space. Usually, this is the address of a circular list of
411 * the page's disk buffers. PG_private must be set to tell the VM to call
412 * into the filesystem to release these pages.
413 *
414 * A page may belong to an inode's memory mapping. In this case, page->mapping
415 * is the pointer to the inode, and page->index is the file offset of the page,
416 * in units of PAGE_CACHE_SIZE.
417 *
418 * If pagecache pages are not associated with an inode, they are said to be
419 * anonymous pages. These may become associated with the swapcache, and in that
420 * case PG_swapcache is set, and page->private is an offset into the swapcache.
421 *
422 * In either case (swapcache or inode backed), the pagecache itself holds one
423 * reference to the page. Setting PG_private should also increment the
424 * refcount. The each user mapping also has a reference to the page.
425 *
426 * The pagecache pages are stored in a per-mapping radix tree, which is
427 * rooted at mapping->page_tree, and indexed by offset.
428 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
429 * lists, we instead now tag pages as dirty/writeback in the radix tree.
430 *
431 * All pagecache pages may be subject to I/O:
432 * - inode pages may need to be read from disk,
433 * - inode pages which have been modified and are MAP_SHARED may need
434 * to be written back to the inode on disk,
435 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
436 * modified may need to be swapped out to swap space and (later) to be read
437 * back into memory.
438 */
439
440 /*
441 * The zone field is never updated after free_area_init_core()
442 * sets it, so none of the operations on it need to be atomic.
443 */
444
445
446 /*
447 * page->flags layout:
448 *
449 * There are three possibilities for how page->flags get
450 * laid out. The first is for the normal case, without
451 * sparsemem. The second is for sparsemem when there is
452 * plenty of space for node and section. The last is when
453 * we have run out of space and have to fall back to an
454 * alternate (slower) way of determining the node.
455 *
456 * No sparsemem: | NODE | ZONE | ... | FLAGS |
457 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
458 * no space for node: | SECTION | ZONE | ... | FLAGS |
459 */
460 #ifdef CONFIG_SPARSEMEM
461 #define SECTIONS_WIDTH SECTIONS_SHIFT
462 #else
463 #define SECTIONS_WIDTH 0
464 #endif
465
466 #define ZONES_WIDTH ZONES_SHIFT
467
468 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
469 #define NODES_WIDTH NODES_SHIFT
470 #else
471 #define NODES_WIDTH 0
472 #endif
473
474 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
475 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
476 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
477 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
478
479 /*
480 * We are going to use the flags for the page to node mapping if its in
481 * there. This includes the case where there is no node, so it is implicit.
482 */
483 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
484 #define NODE_NOT_IN_PAGE_FLAGS
485 #endif
486
487 #ifndef PFN_SECTION_SHIFT
488 #define PFN_SECTION_SHIFT 0
489 #endif
490
491 /*
492 * Define the bit shifts to access each section. For non-existant
493 * sections we define the shift as 0; that plus a 0 mask ensures
494 * the compiler will optimise away reference to them.
495 */
496 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
497 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
498 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
499
500 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
501 #ifdef NODE_NOT_IN_PAGEFLAGS
502 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
503 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
504 SECTIONS_PGOFF : ZONES_PGOFF)
505 #else
506 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
507 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
508 NODES_PGOFF : ZONES_PGOFF)
509 #endif
510
511 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
512
513 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
514 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
515 #endif
516
517 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
518 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
519 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
520 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
521
522 static inline enum zone_type page_zonenum(struct page *page)
523 {
524 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
525 }
526
527 /*
528 * The identification function is only used by the buddy allocator for
529 * determining if two pages could be buddies. We are not really
530 * identifying a zone since we could be using a the section number
531 * id if we have not node id available in page flags.
532 * We guarantee only that it will return the same value for two
533 * combinable pages in a zone.
534 */
535 static inline int page_zone_id(struct page *page)
536 {
537 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
538 }
539
540 static inline int zone_to_nid(struct zone *zone)
541 {
542 #ifdef CONFIG_NUMA
543 return zone->node;
544 #else
545 return 0;
546 #endif
547 }
548
549 #ifdef NODE_NOT_IN_PAGE_FLAGS
550 extern int page_to_nid(struct page *page);
551 #else
552 static inline int page_to_nid(struct page *page)
553 {
554 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
555 }
556 #endif
557
558 static inline struct zone *page_zone(struct page *page)
559 {
560 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
561 }
562
563 static inline unsigned long page_to_section(struct page *page)
564 {
565 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
566 }
567
568 static inline void set_page_zone(struct page *page, enum zone_type zone)
569 {
570 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
571 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
572 }
573
574 static inline void set_page_node(struct page *page, unsigned long node)
575 {
576 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
577 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
578 }
579
580 static inline void set_page_section(struct page *page, unsigned long section)
581 {
582 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
583 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
584 }
585
586 static inline void set_page_links(struct page *page, enum zone_type zone,
587 unsigned long node, unsigned long pfn)
588 {
589 set_page_zone(page, zone);
590 set_page_node(page, node);
591 set_page_section(page, pfn_to_section_nr(pfn));
592 }
593
594 /*
595 * Some inline functions in vmstat.h depend on page_zone()
596 */
597 #include <linux/vmstat.h>
598
599 static __always_inline void *lowmem_page_address(struct page *page)
600 {
601 return __va(page_to_pfn(page) << PAGE_SHIFT);
602 }
603
604 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
605 #define HASHED_PAGE_VIRTUAL
606 #endif
607
608 #if defined(WANT_PAGE_VIRTUAL)
609 #define page_address(page) ((page)->virtual)
610 #define set_page_address(page, address) \
611 do { \
612 (page)->virtual = (address); \
613 } while(0)
614 #define page_address_init() do { } while(0)
615 #endif
616
617 #if defined(HASHED_PAGE_VIRTUAL)
618 void *page_address(struct page *page);
619 void set_page_address(struct page *page, void *virtual);
620 void page_address_init(void);
621 #endif
622
623 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
624 #define page_address(page) lowmem_page_address(page)
625 #define set_page_address(page, address) do { } while(0)
626 #define page_address_init() do { } while(0)
627 #endif
628
629 /*
630 * On an anonymous page mapped into a user virtual memory area,
631 * page->mapping points to its anon_vma, not to a struct address_space;
632 * with the PAGE_MAPPING_ANON bit set to distinguish it.
633 *
634 * Please note that, confusingly, "page_mapping" refers to the inode
635 * address_space which maps the page from disk; whereas "page_mapped"
636 * refers to user virtual address space into which the page is mapped.
637 */
638 #define PAGE_MAPPING_ANON 1
639
640 extern struct address_space swapper_space;
641 static inline struct address_space *page_mapping(struct page *page)
642 {
643 struct address_space *mapping = page->mapping;
644
645 VM_BUG_ON(PageSlab(page));
646 if (unlikely(PageSwapCache(page)))
647 mapping = &swapper_space;
648 #ifdef CONFIG_SLUB
649 else if (unlikely(PageSlab(page)))
650 mapping = NULL;
651 #endif
652 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
653 mapping = NULL;
654 return mapping;
655 }
656
657 static inline int PageAnon(struct page *page)
658 {
659 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
660 }
661
662 /*
663 * Return the pagecache index of the passed page. Regular pagecache pages
664 * use ->index whereas swapcache pages use ->private
665 */
666 static inline pgoff_t page_index(struct page *page)
667 {
668 if (unlikely(PageSwapCache(page)))
669 return page_private(page);
670 return page->index;
671 }
672
673 /*
674 * The atomic page->_mapcount, like _count, starts from -1:
675 * so that transitions both from it and to it can be tracked,
676 * using atomic_inc_and_test and atomic_add_negative(-1).
677 */
678 static inline void reset_page_mapcount(struct page *page)
679 {
680 atomic_set(&(page)->_mapcount, -1);
681 }
682
683 static inline int page_mapcount(struct page *page)
684 {
685 return atomic_read(&(page)->_mapcount) + 1;
686 }
687
688 /*
689 * Return true if this page is mapped into pagetables.
690 */
691 static inline int page_mapped(struct page *page)
692 {
693 return atomic_read(&(page)->_mapcount) >= 0;
694 }
695
696 /*
697 * Error return values for the *_nopage functions
698 */
699 #define NOPAGE_SIGBUS (NULL)
700 #define NOPAGE_OOM ((struct page *) (-1))
701
702 /*
703 * Error return values for the *_nopfn functions
704 */
705 #define NOPFN_SIGBUS ((unsigned long) -1)
706 #define NOPFN_OOM ((unsigned long) -2)
707 #define NOPFN_REFAULT ((unsigned long) -3)
708
709 /*
710 * Different kinds of faults, as returned by handle_mm_fault().
711 * Used to decide whether a process gets delivered SIGBUS or
712 * just gets major/minor fault counters bumped up.
713 */
714
715 /*
716 * VM_FAULT_ERROR is set for the error cases, to make some tests simpler.
717 */
718 #define VM_FAULT_ERROR 0x20
719
720 #define VM_FAULT_OOM (0x00 | VM_FAULT_ERROR)
721 #define VM_FAULT_SIGBUS (0x01 | VM_FAULT_ERROR)
722 #define VM_FAULT_MINOR 0x02
723 #define VM_FAULT_MAJOR 0x03
724
725 /*
726 * Special case for get_user_pages.
727 * Must be in a distinct bit from the above VM_FAULT_ flags.
728 */
729 #define VM_FAULT_WRITE 0x10
730
731 /*
732 * Mask of VM_FAULT_ flags
733 */
734 #define VM_FAULT_MASK 0xff
735
736 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
737
738 extern void show_free_areas(void);
739
740 #ifdef CONFIG_SHMEM
741 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
742 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
743 unsigned long addr);
744 int shmem_lock(struct file *file, int lock, struct user_struct *user);
745 #else
746 static inline int shmem_lock(struct file *file, int lock,
747 struct user_struct *user)
748 {
749 return 0;
750 }
751
752 static inline int shmem_set_policy(struct vm_area_struct *vma,
753 struct mempolicy *new)
754 {
755 return 0;
756 }
757
758 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
759 unsigned long addr)
760 {
761 return NULL;
762 }
763 #endif
764 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
765
766 int shmem_zero_setup(struct vm_area_struct *);
767
768 #ifndef CONFIG_MMU
769 extern unsigned long shmem_get_unmapped_area(struct file *file,
770 unsigned long addr,
771 unsigned long len,
772 unsigned long pgoff,
773 unsigned long flags);
774 #endif
775
776 extern int can_do_mlock(void);
777 extern int user_shm_lock(size_t, struct user_struct *);
778 extern void user_shm_unlock(size_t, struct user_struct *);
779
780 /*
781 * Parameter block passed down to zap_pte_range in exceptional cases.
782 */
783 struct zap_details {
784 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
785 struct address_space *check_mapping; /* Check page->mapping if set */
786 pgoff_t first_index; /* Lowest page->index to unmap */
787 pgoff_t last_index; /* Highest page->index to unmap */
788 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
789 unsigned long truncate_count; /* Compare vm_truncate_count */
790 };
791
792 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
793 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
794 unsigned long size, struct zap_details *);
795 unsigned long unmap_vmas(struct mmu_gather **tlb,
796 struct vm_area_struct *start_vma, unsigned long start_addr,
797 unsigned long end_addr, unsigned long *nr_accounted,
798 struct zap_details *);
799 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
800 unsigned long end, unsigned long floor, unsigned long ceiling);
801 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
802 unsigned long floor, unsigned long ceiling);
803 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
804 struct vm_area_struct *vma);
805 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
806 unsigned long size, pgprot_t prot);
807 void unmap_mapping_range(struct address_space *mapping,
808 loff_t const holebegin, loff_t const holelen, int even_cows);
809
810 static inline void unmap_shared_mapping_range(struct address_space *mapping,
811 loff_t const holebegin, loff_t const holelen)
812 {
813 unmap_mapping_range(mapping, holebegin, holelen, 0);
814 }
815
816 extern int vmtruncate(struct inode * inode, loff_t offset);
817 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
818
819 #ifdef CONFIG_MMU
820 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
821 unsigned long address, int write_access);
822
823 static inline int handle_mm_fault(struct mm_struct *mm,
824 struct vm_area_struct *vma, unsigned long address,
825 int write_access)
826 {
827 return __handle_mm_fault(mm, vma, address, write_access) &
828 (~VM_FAULT_WRITE);
829 }
830 #else
831 static inline int handle_mm_fault(struct mm_struct *mm,
832 struct vm_area_struct *vma, unsigned long address,
833 int write_access)
834 {
835 /* should never happen if there's no MMU */
836 BUG();
837 return VM_FAULT_SIGBUS;
838 }
839 #endif
840
841 extern int make_pages_present(unsigned long addr, unsigned long end);
842 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
843 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
844
845 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
846 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
847 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
848
849 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
850 extern void do_invalidatepage(struct page *page, unsigned long offset);
851
852 int __set_page_dirty_nobuffers(struct page *page);
853 int __set_page_dirty_no_writeback(struct page *page);
854 int redirty_page_for_writepage(struct writeback_control *wbc,
855 struct page *page);
856 int FASTCALL(set_page_dirty(struct page *page));
857 int set_page_dirty_lock(struct page *page);
858 int clear_page_dirty_for_io(struct page *page);
859
860 extern unsigned long do_mremap(unsigned long addr,
861 unsigned long old_len, unsigned long new_len,
862 unsigned long flags, unsigned long new_addr);
863
864 /*
865 * A callback you can register to apply pressure to ageable caches.
866 *
867 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
868 * look through the least-recently-used 'nr_to_scan' entries and
869 * attempt to free them up. It should return the number of objects
870 * which remain in the cache. If it returns -1, it means it cannot do
871 * any scanning at this time (eg. there is a risk of deadlock).
872 *
873 * The 'gfpmask' refers to the allocation we are currently trying to
874 * fulfil.
875 *
876 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
877 * querying the cache size, so a fastpath for that case is appropriate.
878 */
879 struct shrinker {
880 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
881 int seeks; /* seeks to recreate an obj */
882
883 /* These are for internal use */
884 struct list_head list;
885 long nr; /* objs pending delete */
886 };
887 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
888 extern void register_shrinker(struct shrinker *);
889 extern void unregister_shrinker(struct shrinker *);
890
891 /*
892 * Some shared mappigns will want the pages marked read-only
893 * to track write events. If so, we'll downgrade vm_page_prot
894 * to the private version (using protection_map[] without the
895 * VM_SHARED bit).
896 */
897 static inline int vma_wants_writenotify(struct vm_area_struct *vma)
898 {
899 unsigned int vm_flags = vma->vm_flags;
900
901 /* If it was private or non-writable, the write bit is already clear */
902 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
903 return 0;
904
905 /* The backer wishes to know when pages are first written to? */
906 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
907 return 1;
908
909 /* The open routine did something to the protections already? */
910 if (pgprot_val(vma->vm_page_prot) !=
911 pgprot_val(protection_map[vm_flags &
912 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
913 return 0;
914
915 /* Specialty mapping? */
916 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
917 return 0;
918
919 /* Can the mapping track the dirty pages? */
920 return vma->vm_file && vma->vm_file->f_mapping &&
921 mapping_cap_account_dirty(vma->vm_file->f_mapping);
922 }
923
924 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
925
926 #ifdef __PAGETABLE_PUD_FOLDED
927 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
928 unsigned long address)
929 {
930 return 0;
931 }
932 #else
933 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
934 #endif
935
936 #ifdef __PAGETABLE_PMD_FOLDED
937 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
938 unsigned long address)
939 {
940 return 0;
941 }
942 #else
943 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
944 #endif
945
946 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
947 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
948
949 /*
950 * The following ifdef needed to get the 4level-fixup.h header to work.
951 * Remove it when 4level-fixup.h has been removed.
952 */
953 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
954 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
955 {
956 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
957 NULL: pud_offset(pgd, address);
958 }
959
960 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
961 {
962 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
963 NULL: pmd_offset(pud, address);
964 }
965 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
966
967 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
968 /*
969 * We tuck a spinlock to guard each pagetable page into its struct page,
970 * at page->private, with BUILD_BUG_ON to make sure that this will not
971 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
972 * When freeing, reset page->mapping so free_pages_check won't complain.
973 */
974 #define __pte_lockptr(page) &((page)->ptl)
975 #define pte_lock_init(_page) do { \
976 spin_lock_init(__pte_lockptr(_page)); \
977 } while (0)
978 #define pte_lock_deinit(page) ((page)->mapping = NULL)
979 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
980 #else
981 /*
982 * We use mm->page_table_lock to guard all pagetable pages of the mm.
983 */
984 #define pte_lock_init(page) do {} while (0)
985 #define pte_lock_deinit(page) do {} while (0)
986 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
987 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
988
989 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
990 ({ \
991 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
992 pte_t *__pte = pte_offset_map(pmd, address); \
993 *(ptlp) = __ptl; \
994 spin_lock(__ptl); \
995 __pte; \
996 })
997
998 #define pte_unmap_unlock(pte, ptl) do { \
999 spin_unlock(ptl); \
1000 pte_unmap(pte); \
1001 } while (0)
1002
1003 #define pte_alloc_map(mm, pmd, address) \
1004 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1005 NULL: pte_offset_map(pmd, address))
1006
1007 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1008 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1009 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1010
1011 #define pte_alloc_kernel(pmd, address) \
1012 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1013 NULL: pte_offset_kernel(pmd, address))
1014
1015 extern void free_area_init(unsigned long * zones_size);
1016 extern void free_area_init_node(int nid, pg_data_t *pgdat,
1017 unsigned long * zones_size, unsigned long zone_start_pfn,
1018 unsigned long *zholes_size);
1019 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1020 /*
1021 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1022 * zones, allocate the backing mem_map and account for memory holes in a more
1023 * architecture independent manner. This is a substitute for creating the
1024 * zone_sizes[] and zholes_size[] arrays and passing them to
1025 * free_area_init_node()
1026 *
1027 * An architecture is expected to register range of page frames backed by
1028 * physical memory with add_active_range() before calling
1029 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1030 * usage, an architecture is expected to do something like
1031 *
1032 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1033 * max_highmem_pfn};
1034 * for_each_valid_physical_page_range()
1035 * add_active_range(node_id, start_pfn, end_pfn)
1036 * free_area_init_nodes(max_zone_pfns);
1037 *
1038 * If the architecture guarantees that there are no holes in the ranges
1039 * registered with add_active_range(), free_bootmem_active_regions()
1040 * will call free_bootmem_node() for each registered physical page range.
1041 * Similarly sparse_memory_present_with_active_regions() calls
1042 * memory_present() for each range when SPARSEMEM is enabled.
1043 *
1044 * See mm/page_alloc.c for more information on each function exposed by
1045 * CONFIG_ARCH_POPULATES_NODE_MAP
1046 */
1047 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1048 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1049 unsigned long end_pfn);
1050 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
1051 unsigned long new_end_pfn);
1052 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1053 unsigned long end_pfn);
1054 extern void remove_all_active_ranges(void);
1055 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1056 unsigned long end_pfn);
1057 extern void get_pfn_range_for_nid(unsigned int nid,
1058 unsigned long *start_pfn, unsigned long *end_pfn);
1059 extern unsigned long find_min_pfn_with_active_regions(void);
1060 extern unsigned long find_max_pfn_with_active_regions(void);
1061 extern void free_bootmem_with_active_regions(int nid,
1062 unsigned long max_low_pfn);
1063 extern void sparse_memory_present_with_active_regions(int nid);
1064 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1065 extern int early_pfn_to_nid(unsigned long pfn);
1066 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1067 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1068 extern void set_dma_reserve(unsigned long new_dma_reserve);
1069 extern void memmap_init_zone(unsigned long, int, unsigned long,
1070 unsigned long, enum memmap_context);
1071 extern void setup_per_zone_pages_min(void);
1072 extern void mem_init(void);
1073 extern void show_mem(void);
1074 extern void si_meminfo(struct sysinfo * val);
1075 extern void si_meminfo_node(struct sysinfo *val, int nid);
1076
1077 #ifdef CONFIG_NUMA
1078 extern void setup_per_cpu_pageset(void);
1079 #else
1080 static inline void setup_per_cpu_pageset(void) {}
1081 #endif
1082
1083 /* prio_tree.c */
1084 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1085 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1086 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1087 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1088 struct prio_tree_iter *iter);
1089
1090 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1091 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1092 (vma = vma_prio_tree_next(vma, iter)); )
1093
1094 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1095 struct list_head *list)
1096 {
1097 vma->shared.vm_set.parent = NULL;
1098 list_add_tail(&vma->shared.vm_set.list, list);
1099 }
1100
1101 /* mmap.c */
1102 extern int __vm_enough_memory(long pages, int cap_sys_admin);
1103 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1104 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1105 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1106 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1107 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1108 struct mempolicy *);
1109 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1110 extern int split_vma(struct mm_struct *,
1111 struct vm_area_struct *, unsigned long addr, int new_below);
1112 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1113 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1114 struct rb_node **, struct rb_node *);
1115 extern void unlink_file_vma(struct vm_area_struct *);
1116 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1117 unsigned long addr, unsigned long len, pgoff_t pgoff);
1118 extern void exit_mmap(struct mm_struct *);
1119 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1120 extern int install_special_mapping(struct mm_struct *mm,
1121 unsigned long addr, unsigned long len,
1122 unsigned long flags, struct page **pages);
1123
1124 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1125
1126 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1127 unsigned long len, unsigned long prot,
1128 unsigned long flag, unsigned long pgoff);
1129 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1130 unsigned long len, unsigned long flags,
1131 unsigned int vm_flags, unsigned long pgoff,
1132 int accountable);
1133
1134 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1135 unsigned long len, unsigned long prot,
1136 unsigned long flag, unsigned long offset)
1137 {
1138 unsigned long ret = -EINVAL;
1139 if ((offset + PAGE_ALIGN(len)) < offset)
1140 goto out;
1141 if (!(offset & ~PAGE_MASK))
1142 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1143 out:
1144 return ret;
1145 }
1146
1147 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1148
1149 extern unsigned long do_brk(unsigned long, unsigned long);
1150
1151 /* filemap.c */
1152 extern unsigned long page_unuse(struct page *);
1153 extern void truncate_inode_pages(struct address_space *, loff_t);
1154 extern void truncate_inode_pages_range(struct address_space *,
1155 loff_t lstart, loff_t lend);
1156
1157 /* generic vm_area_ops exported for stackable file systems */
1158 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1159
1160 /* mm/page-writeback.c */
1161 int write_one_page(struct page *page, int wait);
1162
1163 /* readahead.c */
1164 #define VM_MAX_READAHEAD 128 /* kbytes */
1165 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1166 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1167 * turning readahead off */
1168
1169 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1170 pgoff_t offset, unsigned long nr_to_read);
1171 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1172 pgoff_t offset, unsigned long nr_to_read);
1173 unsigned long page_cache_readahead(struct address_space *mapping,
1174 struct file_ra_state *ra,
1175 struct file *filp,
1176 pgoff_t offset,
1177 unsigned long size);
1178 void handle_ra_miss(struct address_space *mapping,
1179 struct file_ra_state *ra, pgoff_t offset);
1180 unsigned long max_sane_readahead(unsigned long nr);
1181
1182 /* Do stack extension */
1183 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1184 #ifdef CONFIG_IA64
1185 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1186 #endif
1187
1188 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1189 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1190 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1191 struct vm_area_struct **pprev);
1192
1193 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1194 NULL if none. Assume start_addr < end_addr. */
1195 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1196 {
1197 struct vm_area_struct * vma = find_vma(mm,start_addr);
1198
1199 if (vma && end_addr <= vma->vm_start)
1200 vma = NULL;
1201 return vma;
1202 }
1203
1204 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1205 {
1206 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1207 }
1208
1209 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1210 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1211 struct page *vmalloc_to_page(void *addr);
1212 unsigned long vmalloc_to_pfn(void *addr);
1213 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1214 unsigned long pfn, unsigned long size, pgprot_t);
1215 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1216 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1217 unsigned long pfn);
1218
1219 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1220 unsigned int foll_flags);
1221 #define FOLL_WRITE 0x01 /* check pte is writable */
1222 #define FOLL_TOUCH 0x02 /* mark page accessed */
1223 #define FOLL_GET 0x04 /* do get_page on page */
1224 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1225
1226 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1227 void *data);
1228 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1229 unsigned long size, pte_fn_t fn, void *data);
1230
1231 #ifdef CONFIG_PROC_FS
1232 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1233 #else
1234 static inline void vm_stat_account(struct mm_struct *mm,
1235 unsigned long flags, struct file *file, long pages)
1236 {
1237 }
1238 #endif /* CONFIG_PROC_FS */
1239
1240 #ifndef CONFIG_DEBUG_PAGEALLOC
1241 static inline void
1242 kernel_map_pages(struct page *page, int numpages, int enable) {}
1243 #endif
1244
1245 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1246 #ifdef __HAVE_ARCH_GATE_AREA
1247 int in_gate_area_no_task(unsigned long addr);
1248 int in_gate_area(struct task_struct *task, unsigned long addr);
1249 #else
1250 int in_gate_area_no_task(unsigned long addr);
1251 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1252 #endif /* __HAVE_ARCH_GATE_AREA */
1253
1254 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1255 void __user *, size_t *, loff_t *);
1256 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1257 unsigned long lru_pages);
1258 void drop_pagecache(void);
1259 void drop_slab(void);
1260
1261 #ifndef CONFIG_MMU
1262 #define randomize_va_space 0
1263 #else
1264 extern int randomize_va_space;
1265 #endif
1266
1267 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
1268
1269 #endif /* __KERNEL__ */
1270 #endif /* _LINUX_MM_H */