]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm.h
Merge branch 'linus' of master.kernel.org:/pub/scm/linux/kernel/git/perex/alsa
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/mutex.h>
14 #include <linux/debug_locks.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mm_types.h>
17
18 struct mempolicy;
19 struct anon_vma;
20 struct file_ra_state;
21 struct user_struct;
22 struct writeback_control;
23
24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
27
28 extern unsigned long num_physpages;
29 extern void * high_memory;
30 extern int page_cluster;
31
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
37
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44 /*
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
51 */
52
53 extern struct kmem_cache *vm_area_cachep;
54
55 /*
56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
57 * disabled, then there's a single shared list of VMAs maintained by the
58 * system, and mm's subscribe to these individually
59 */
60 struct vm_list_struct {
61 struct vm_list_struct *next;
62 struct vm_area_struct *vma;
63 };
64
65 #ifndef CONFIG_MMU
66 extern struct rb_root nommu_vma_tree;
67 extern struct rw_semaphore nommu_vma_sem;
68
69 extern unsigned int kobjsize(const void *objp);
70 #endif
71
72 /*
73 * vm_flags..
74 */
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_GROWSUP 0x00000200
88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90
91 #define VM_EXECUTABLE 0x00001000
92 #define VM_LOCKED 0x00002000
93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94
95 /* Used by sys_madvise() */
96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98
99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
105 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
106 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
107 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
108
109 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
110
111 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
113 #endif
114
115 #ifdef CONFIG_STACK_GROWSUP
116 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #else
118 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #endif
120
121 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
122 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
123 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
124 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
125 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
126
127 /*
128 * mapping from the currently active vm_flags protection bits (the
129 * low four bits) to a page protection mask..
130 */
131 extern pgprot_t protection_map[16];
132
133 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
134 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
135
136
137 /*
138 * vm_fault is filled by the the pagefault handler and passed to the vma's
139 * ->fault function. The vma's ->fault is responsible for returning a bitmask
140 * of VM_FAULT_xxx flags that give details about how the fault was handled.
141 *
142 * pgoff should be used in favour of virtual_address, if possible. If pgoff
143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
144 * mapping support.
145 */
146 struct vm_fault {
147 unsigned int flags; /* FAULT_FLAG_xxx flags */
148 pgoff_t pgoff; /* Logical page offset based on vma */
149 void __user *virtual_address; /* Faulting virtual address */
150
151 struct page *page; /* ->fault handlers should return a
152 * page here, unless VM_FAULT_NOPAGE
153 * is set (which is also implied by
154 * VM_FAULT_ERROR).
155 */
156 };
157
158 /*
159 * These are the virtual MM functions - opening of an area, closing and
160 * unmapping it (needed to keep files on disk up-to-date etc), pointer
161 * to the functions called when a no-page or a wp-page exception occurs.
162 */
163 struct vm_operations_struct {
164 void (*open)(struct vm_area_struct * area);
165 void (*close)(struct vm_area_struct * area);
166 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
167 struct page *(*nopage)(struct vm_area_struct *area,
168 unsigned long address, int *type);
169 unsigned long (*nopfn)(struct vm_area_struct *area,
170 unsigned long address);
171
172 /* notification that a previously read-only page is about to become
173 * writable, if an error is returned it will cause a SIGBUS */
174 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
175 #ifdef CONFIG_NUMA
176 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
177 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
178 unsigned long addr);
179 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
180 const nodemask_t *to, unsigned long flags);
181 #endif
182 };
183
184 struct mmu_gather;
185 struct inode;
186
187 #define page_private(page) ((page)->private)
188 #define set_page_private(page, v) ((page)->private = (v))
189
190 /*
191 * FIXME: take this include out, include page-flags.h in
192 * files which need it (119 of them)
193 */
194 #include <linux/page-flags.h>
195
196 #ifdef CONFIG_DEBUG_VM
197 #define VM_BUG_ON(cond) BUG_ON(cond)
198 #else
199 #define VM_BUG_ON(condition) do { } while(0)
200 #endif
201
202 /*
203 * Methods to modify the page usage count.
204 *
205 * What counts for a page usage:
206 * - cache mapping (page->mapping)
207 * - private data (page->private)
208 * - page mapped in a task's page tables, each mapping
209 * is counted separately
210 *
211 * Also, many kernel routines increase the page count before a critical
212 * routine so they can be sure the page doesn't go away from under them.
213 */
214
215 /*
216 * Drop a ref, return true if the refcount fell to zero (the page has no users)
217 */
218 static inline int put_page_testzero(struct page *page)
219 {
220 VM_BUG_ON(atomic_read(&page->_count) == 0);
221 return atomic_dec_and_test(&page->_count);
222 }
223
224 /*
225 * Try to grab a ref unless the page has a refcount of zero, return false if
226 * that is the case.
227 */
228 static inline int get_page_unless_zero(struct page *page)
229 {
230 VM_BUG_ON(PageCompound(page));
231 return atomic_inc_not_zero(&page->_count);
232 }
233
234 static inline struct page *compound_head(struct page *page)
235 {
236 if (unlikely(PageTail(page)))
237 return page->first_page;
238 return page;
239 }
240
241 static inline int page_count(struct page *page)
242 {
243 return atomic_read(&compound_head(page)->_count);
244 }
245
246 static inline void get_page(struct page *page)
247 {
248 page = compound_head(page);
249 VM_BUG_ON(atomic_read(&page->_count) == 0);
250 atomic_inc(&page->_count);
251 }
252
253 static inline struct page *virt_to_head_page(const void *x)
254 {
255 struct page *page = virt_to_page(x);
256 return compound_head(page);
257 }
258
259 /*
260 * Setup the page count before being freed into the page allocator for
261 * the first time (boot or memory hotplug)
262 */
263 static inline void init_page_count(struct page *page)
264 {
265 atomic_set(&page->_count, 1);
266 }
267
268 void put_page(struct page *page);
269 void put_pages_list(struct list_head *pages);
270
271 void split_page(struct page *page, unsigned int order);
272
273 /*
274 * Compound pages have a destructor function. Provide a
275 * prototype for that function and accessor functions.
276 * These are _only_ valid on the head of a PG_compound page.
277 */
278 typedef void compound_page_dtor(struct page *);
279
280 static inline void set_compound_page_dtor(struct page *page,
281 compound_page_dtor *dtor)
282 {
283 page[1].lru.next = (void *)dtor;
284 }
285
286 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
287 {
288 return (compound_page_dtor *)page[1].lru.next;
289 }
290
291 static inline int compound_order(struct page *page)
292 {
293 if (!PageHead(page))
294 return 0;
295 return (unsigned long)page[1].lru.prev;
296 }
297
298 static inline void set_compound_order(struct page *page, unsigned long order)
299 {
300 page[1].lru.prev = (void *)order;
301 }
302
303 /*
304 * Multiple processes may "see" the same page. E.g. for untouched
305 * mappings of /dev/null, all processes see the same page full of
306 * zeroes, and text pages of executables and shared libraries have
307 * only one copy in memory, at most, normally.
308 *
309 * For the non-reserved pages, page_count(page) denotes a reference count.
310 * page_count() == 0 means the page is free. page->lru is then used for
311 * freelist management in the buddy allocator.
312 * page_count() > 0 means the page has been allocated.
313 *
314 * Pages are allocated by the slab allocator in order to provide memory
315 * to kmalloc and kmem_cache_alloc. In this case, the management of the
316 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
317 * unless a particular usage is carefully commented. (the responsibility of
318 * freeing the kmalloc memory is the caller's, of course).
319 *
320 * A page may be used by anyone else who does a __get_free_page().
321 * In this case, page_count still tracks the references, and should only
322 * be used through the normal accessor functions. The top bits of page->flags
323 * and page->virtual store page management information, but all other fields
324 * are unused and could be used privately, carefully. The management of this
325 * page is the responsibility of the one who allocated it, and those who have
326 * subsequently been given references to it.
327 *
328 * The other pages (we may call them "pagecache pages") are completely
329 * managed by the Linux memory manager: I/O, buffers, swapping etc.
330 * The following discussion applies only to them.
331 *
332 * A pagecache page contains an opaque `private' member, which belongs to the
333 * page's address_space. Usually, this is the address of a circular list of
334 * the page's disk buffers. PG_private must be set to tell the VM to call
335 * into the filesystem to release these pages.
336 *
337 * A page may belong to an inode's memory mapping. In this case, page->mapping
338 * is the pointer to the inode, and page->index is the file offset of the page,
339 * in units of PAGE_CACHE_SIZE.
340 *
341 * If pagecache pages are not associated with an inode, they are said to be
342 * anonymous pages. These may become associated with the swapcache, and in that
343 * case PG_swapcache is set, and page->private is an offset into the swapcache.
344 *
345 * In either case (swapcache or inode backed), the pagecache itself holds one
346 * reference to the page. Setting PG_private should also increment the
347 * refcount. The each user mapping also has a reference to the page.
348 *
349 * The pagecache pages are stored in a per-mapping radix tree, which is
350 * rooted at mapping->page_tree, and indexed by offset.
351 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
352 * lists, we instead now tag pages as dirty/writeback in the radix tree.
353 *
354 * All pagecache pages may be subject to I/O:
355 * - inode pages may need to be read from disk,
356 * - inode pages which have been modified and are MAP_SHARED may need
357 * to be written back to the inode on disk,
358 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
359 * modified may need to be swapped out to swap space and (later) to be read
360 * back into memory.
361 */
362
363 /*
364 * The zone field is never updated after free_area_init_core()
365 * sets it, so none of the operations on it need to be atomic.
366 */
367
368
369 /*
370 * page->flags layout:
371 *
372 * There are three possibilities for how page->flags get
373 * laid out. The first is for the normal case, without
374 * sparsemem. The second is for sparsemem when there is
375 * plenty of space for node and section. The last is when
376 * we have run out of space and have to fall back to an
377 * alternate (slower) way of determining the node.
378 *
379 * No sparsemem: | NODE | ZONE | ... | FLAGS |
380 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
381 * no space for node: | SECTION | ZONE | ... | FLAGS |
382 */
383 #ifdef CONFIG_SPARSEMEM
384 #define SECTIONS_WIDTH SECTIONS_SHIFT
385 #else
386 #define SECTIONS_WIDTH 0
387 #endif
388
389 #define ZONES_WIDTH ZONES_SHIFT
390
391 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
392 #define NODES_WIDTH NODES_SHIFT
393 #else
394 #define NODES_WIDTH 0
395 #endif
396
397 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
398 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
399 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
400 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
401
402 /*
403 * We are going to use the flags for the page to node mapping if its in
404 * there. This includes the case where there is no node, so it is implicit.
405 */
406 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
407 #define NODE_NOT_IN_PAGE_FLAGS
408 #endif
409
410 #ifndef PFN_SECTION_SHIFT
411 #define PFN_SECTION_SHIFT 0
412 #endif
413
414 /*
415 * Define the bit shifts to access each section. For non-existant
416 * sections we define the shift as 0; that plus a 0 mask ensures
417 * the compiler will optimise away reference to them.
418 */
419 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
420 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
421 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
422
423 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
424 #ifdef NODE_NOT_IN_PAGEFLAGS
425 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
426 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
427 SECTIONS_PGOFF : ZONES_PGOFF)
428 #else
429 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
430 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
431 NODES_PGOFF : ZONES_PGOFF)
432 #endif
433
434 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
435
436 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
437 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
438 #endif
439
440 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
441 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
442 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
443 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
444
445 static inline enum zone_type page_zonenum(struct page *page)
446 {
447 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
448 }
449
450 /*
451 * The identification function is only used by the buddy allocator for
452 * determining if two pages could be buddies. We are not really
453 * identifying a zone since we could be using a the section number
454 * id if we have not node id available in page flags.
455 * We guarantee only that it will return the same value for two
456 * combinable pages in a zone.
457 */
458 static inline int page_zone_id(struct page *page)
459 {
460 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
461 }
462
463 static inline int zone_to_nid(struct zone *zone)
464 {
465 #ifdef CONFIG_NUMA
466 return zone->node;
467 #else
468 return 0;
469 #endif
470 }
471
472 #ifdef NODE_NOT_IN_PAGE_FLAGS
473 extern int page_to_nid(struct page *page);
474 #else
475 static inline int page_to_nid(struct page *page)
476 {
477 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
478 }
479 #endif
480
481 static inline struct zone *page_zone(struct page *page)
482 {
483 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
484 }
485
486 static inline unsigned long page_to_section(struct page *page)
487 {
488 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
489 }
490
491 static inline void set_page_zone(struct page *page, enum zone_type zone)
492 {
493 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
494 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
495 }
496
497 static inline void set_page_node(struct page *page, unsigned long node)
498 {
499 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
500 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
501 }
502
503 static inline void set_page_section(struct page *page, unsigned long section)
504 {
505 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
506 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
507 }
508
509 static inline void set_page_links(struct page *page, enum zone_type zone,
510 unsigned long node, unsigned long pfn)
511 {
512 set_page_zone(page, zone);
513 set_page_node(page, node);
514 set_page_section(page, pfn_to_section_nr(pfn));
515 }
516
517 /*
518 * Some inline functions in vmstat.h depend on page_zone()
519 */
520 #include <linux/vmstat.h>
521
522 static __always_inline void *lowmem_page_address(struct page *page)
523 {
524 return __va(page_to_pfn(page) << PAGE_SHIFT);
525 }
526
527 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
528 #define HASHED_PAGE_VIRTUAL
529 #endif
530
531 #if defined(WANT_PAGE_VIRTUAL)
532 #define page_address(page) ((page)->virtual)
533 #define set_page_address(page, address) \
534 do { \
535 (page)->virtual = (address); \
536 } while(0)
537 #define page_address_init() do { } while(0)
538 #endif
539
540 #if defined(HASHED_PAGE_VIRTUAL)
541 void *page_address(struct page *page);
542 void set_page_address(struct page *page, void *virtual);
543 void page_address_init(void);
544 #endif
545
546 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
547 #define page_address(page) lowmem_page_address(page)
548 #define set_page_address(page, address) do { } while(0)
549 #define page_address_init() do { } while(0)
550 #endif
551
552 /*
553 * On an anonymous page mapped into a user virtual memory area,
554 * page->mapping points to its anon_vma, not to a struct address_space;
555 * with the PAGE_MAPPING_ANON bit set to distinguish it.
556 *
557 * Please note that, confusingly, "page_mapping" refers to the inode
558 * address_space which maps the page from disk; whereas "page_mapped"
559 * refers to user virtual address space into which the page is mapped.
560 */
561 #define PAGE_MAPPING_ANON 1
562
563 extern struct address_space swapper_space;
564 static inline struct address_space *page_mapping(struct page *page)
565 {
566 struct address_space *mapping = page->mapping;
567
568 VM_BUG_ON(PageSlab(page));
569 if (unlikely(PageSwapCache(page)))
570 mapping = &swapper_space;
571 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
572 mapping = NULL;
573 return mapping;
574 }
575
576 static inline int PageAnon(struct page *page)
577 {
578 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
579 }
580
581 /*
582 * Return the pagecache index of the passed page. Regular pagecache pages
583 * use ->index whereas swapcache pages use ->private
584 */
585 static inline pgoff_t page_index(struct page *page)
586 {
587 if (unlikely(PageSwapCache(page)))
588 return page_private(page);
589 return page->index;
590 }
591
592 /*
593 * The atomic page->_mapcount, like _count, starts from -1:
594 * so that transitions both from it and to it can be tracked,
595 * using atomic_inc_and_test and atomic_add_negative(-1).
596 */
597 static inline void reset_page_mapcount(struct page *page)
598 {
599 atomic_set(&(page)->_mapcount, -1);
600 }
601
602 static inline int page_mapcount(struct page *page)
603 {
604 return atomic_read(&(page)->_mapcount) + 1;
605 }
606
607 /*
608 * Return true if this page is mapped into pagetables.
609 */
610 static inline int page_mapped(struct page *page)
611 {
612 return atomic_read(&(page)->_mapcount) >= 0;
613 }
614
615 /*
616 * Error return values for the *_nopage functions
617 */
618 #define NOPAGE_SIGBUS (NULL)
619 #define NOPAGE_OOM ((struct page *) (-1))
620
621 /*
622 * Error return values for the *_nopfn functions
623 */
624 #define NOPFN_SIGBUS ((unsigned long) -1)
625 #define NOPFN_OOM ((unsigned long) -2)
626 #define NOPFN_REFAULT ((unsigned long) -3)
627
628 /*
629 * Different kinds of faults, as returned by handle_mm_fault().
630 * Used to decide whether a process gets delivered SIGBUS or
631 * just gets major/minor fault counters bumped up.
632 */
633
634 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
635
636 #define VM_FAULT_OOM 0x0001
637 #define VM_FAULT_SIGBUS 0x0002
638 #define VM_FAULT_MAJOR 0x0004
639 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
640
641 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
642 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
643
644 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
645
646 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
647
648 extern void show_free_areas(void);
649
650 #ifdef CONFIG_SHMEM
651 int shmem_lock(struct file *file, int lock, struct user_struct *user);
652 #else
653 static inline int shmem_lock(struct file *file, int lock,
654 struct user_struct *user)
655 {
656 return 0;
657 }
658 #endif
659 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
660
661 int shmem_zero_setup(struct vm_area_struct *);
662
663 #ifndef CONFIG_MMU
664 extern unsigned long shmem_get_unmapped_area(struct file *file,
665 unsigned long addr,
666 unsigned long len,
667 unsigned long pgoff,
668 unsigned long flags);
669 #endif
670
671 extern int can_do_mlock(void);
672 extern int user_shm_lock(size_t, struct user_struct *);
673 extern void user_shm_unlock(size_t, struct user_struct *);
674
675 /*
676 * Parameter block passed down to zap_pte_range in exceptional cases.
677 */
678 struct zap_details {
679 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
680 struct address_space *check_mapping; /* Check page->mapping if set */
681 pgoff_t first_index; /* Lowest page->index to unmap */
682 pgoff_t last_index; /* Highest page->index to unmap */
683 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
684 unsigned long truncate_count; /* Compare vm_truncate_count */
685 };
686
687 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
688 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
689 unsigned long size, struct zap_details *);
690 unsigned long unmap_vmas(struct mmu_gather **tlb,
691 struct vm_area_struct *start_vma, unsigned long start_addr,
692 unsigned long end_addr, unsigned long *nr_accounted,
693 struct zap_details *);
694 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
695 unsigned long end, unsigned long floor, unsigned long ceiling);
696 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
697 unsigned long floor, unsigned long ceiling);
698 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
699 struct vm_area_struct *vma);
700 void unmap_mapping_range(struct address_space *mapping,
701 loff_t const holebegin, loff_t const holelen, int even_cows);
702
703 static inline void unmap_shared_mapping_range(struct address_space *mapping,
704 loff_t const holebegin, loff_t const holelen)
705 {
706 unmap_mapping_range(mapping, holebegin, holelen, 0);
707 }
708
709 extern int vmtruncate(struct inode * inode, loff_t offset);
710 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
711
712 #ifdef CONFIG_MMU
713 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
714 unsigned long address, int write_access);
715 #else
716 static inline int handle_mm_fault(struct mm_struct *mm,
717 struct vm_area_struct *vma, unsigned long address,
718 int write_access)
719 {
720 /* should never happen if there's no MMU */
721 BUG();
722 return VM_FAULT_SIGBUS;
723 }
724 #endif
725
726 extern int make_pages_present(unsigned long addr, unsigned long end);
727 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
728
729 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
730 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
731 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
732
733 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
734 extern void do_invalidatepage(struct page *page, unsigned long offset);
735
736 int __set_page_dirty_nobuffers(struct page *page);
737 int __set_page_dirty_no_writeback(struct page *page);
738 int redirty_page_for_writepage(struct writeback_control *wbc,
739 struct page *page);
740 int FASTCALL(set_page_dirty(struct page *page));
741 int set_page_dirty_lock(struct page *page);
742 int clear_page_dirty_for_io(struct page *page);
743
744 extern unsigned long move_page_tables(struct vm_area_struct *vma,
745 unsigned long old_addr, struct vm_area_struct *new_vma,
746 unsigned long new_addr, unsigned long len);
747 extern unsigned long do_mremap(unsigned long addr,
748 unsigned long old_len, unsigned long new_len,
749 unsigned long flags, unsigned long new_addr);
750 extern int mprotect_fixup(struct vm_area_struct *vma,
751 struct vm_area_struct **pprev, unsigned long start,
752 unsigned long end, unsigned long newflags);
753
754 /*
755 * A callback you can register to apply pressure to ageable caches.
756 *
757 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
758 * look through the least-recently-used 'nr_to_scan' entries and
759 * attempt to free them up. It should return the number of objects
760 * which remain in the cache. If it returns -1, it means it cannot do
761 * any scanning at this time (eg. there is a risk of deadlock).
762 *
763 * The 'gfpmask' refers to the allocation we are currently trying to
764 * fulfil.
765 *
766 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
767 * querying the cache size, so a fastpath for that case is appropriate.
768 */
769 struct shrinker {
770 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
771 int seeks; /* seeks to recreate an obj */
772
773 /* These are for internal use */
774 struct list_head list;
775 long nr; /* objs pending delete */
776 };
777 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
778 extern void register_shrinker(struct shrinker *);
779 extern void unregister_shrinker(struct shrinker *);
780
781 int vma_wants_writenotify(struct vm_area_struct *vma);
782
783 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
784
785 #ifdef __PAGETABLE_PUD_FOLDED
786 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
787 unsigned long address)
788 {
789 return 0;
790 }
791 #else
792 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
793 #endif
794
795 #ifdef __PAGETABLE_PMD_FOLDED
796 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
797 unsigned long address)
798 {
799 return 0;
800 }
801 #else
802 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
803 #endif
804
805 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
806 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
807
808 /*
809 * The following ifdef needed to get the 4level-fixup.h header to work.
810 * Remove it when 4level-fixup.h has been removed.
811 */
812 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
813 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
814 {
815 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
816 NULL: pud_offset(pgd, address);
817 }
818
819 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
820 {
821 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
822 NULL: pmd_offset(pud, address);
823 }
824 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
825
826 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
827 /*
828 * We tuck a spinlock to guard each pagetable page into its struct page,
829 * at page->private, with BUILD_BUG_ON to make sure that this will not
830 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
831 * When freeing, reset page->mapping so free_pages_check won't complain.
832 */
833 #define __pte_lockptr(page) &((page)->ptl)
834 #define pte_lock_init(_page) do { \
835 spin_lock_init(__pte_lockptr(_page)); \
836 } while (0)
837 #define pte_lock_deinit(page) ((page)->mapping = NULL)
838 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
839 #else
840 /*
841 * We use mm->page_table_lock to guard all pagetable pages of the mm.
842 */
843 #define pte_lock_init(page) do {} while (0)
844 #define pte_lock_deinit(page) do {} while (0)
845 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
846 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
847
848 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
849 ({ \
850 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
851 pte_t *__pte = pte_offset_map(pmd, address); \
852 *(ptlp) = __ptl; \
853 spin_lock(__ptl); \
854 __pte; \
855 })
856
857 #define pte_unmap_unlock(pte, ptl) do { \
858 spin_unlock(ptl); \
859 pte_unmap(pte); \
860 } while (0)
861
862 #define pte_alloc_map(mm, pmd, address) \
863 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
864 NULL: pte_offset_map(pmd, address))
865
866 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
867 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
868 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
869
870 #define pte_alloc_kernel(pmd, address) \
871 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
872 NULL: pte_offset_kernel(pmd, address))
873
874 extern void free_area_init(unsigned long * zones_size);
875 extern void free_area_init_node(int nid, pg_data_t *pgdat,
876 unsigned long * zones_size, unsigned long zone_start_pfn,
877 unsigned long *zholes_size);
878 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
879 /*
880 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
881 * zones, allocate the backing mem_map and account for memory holes in a more
882 * architecture independent manner. This is a substitute for creating the
883 * zone_sizes[] and zholes_size[] arrays and passing them to
884 * free_area_init_node()
885 *
886 * An architecture is expected to register range of page frames backed by
887 * physical memory with add_active_range() before calling
888 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
889 * usage, an architecture is expected to do something like
890 *
891 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
892 * max_highmem_pfn};
893 * for_each_valid_physical_page_range()
894 * add_active_range(node_id, start_pfn, end_pfn)
895 * free_area_init_nodes(max_zone_pfns);
896 *
897 * If the architecture guarantees that there are no holes in the ranges
898 * registered with add_active_range(), free_bootmem_active_regions()
899 * will call free_bootmem_node() for each registered physical page range.
900 * Similarly sparse_memory_present_with_active_regions() calls
901 * memory_present() for each range when SPARSEMEM is enabled.
902 *
903 * See mm/page_alloc.c for more information on each function exposed by
904 * CONFIG_ARCH_POPULATES_NODE_MAP
905 */
906 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
907 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
908 unsigned long end_pfn);
909 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
910 unsigned long new_end_pfn);
911 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
912 unsigned long end_pfn);
913 extern void remove_all_active_ranges(void);
914 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
915 unsigned long end_pfn);
916 extern void get_pfn_range_for_nid(unsigned int nid,
917 unsigned long *start_pfn, unsigned long *end_pfn);
918 extern unsigned long find_min_pfn_with_active_regions(void);
919 extern unsigned long find_max_pfn_with_active_regions(void);
920 extern void free_bootmem_with_active_regions(int nid,
921 unsigned long max_low_pfn);
922 extern void sparse_memory_present_with_active_regions(int nid);
923 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
924 extern int early_pfn_to_nid(unsigned long pfn);
925 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
926 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
927 extern void set_dma_reserve(unsigned long new_dma_reserve);
928 extern void memmap_init_zone(unsigned long, int, unsigned long,
929 unsigned long, enum memmap_context);
930 extern void setup_per_zone_pages_min(void);
931 extern void mem_init(void);
932 extern void show_mem(void);
933 extern void si_meminfo(struct sysinfo * val);
934 extern void si_meminfo_node(struct sysinfo *val, int nid);
935
936 #ifdef CONFIG_NUMA
937 extern void setup_per_cpu_pageset(void);
938 #else
939 static inline void setup_per_cpu_pageset(void) {}
940 #endif
941
942 /* prio_tree.c */
943 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
944 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
945 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
946 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
947 struct prio_tree_iter *iter);
948
949 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
950 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
951 (vma = vma_prio_tree_next(vma, iter)); )
952
953 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
954 struct list_head *list)
955 {
956 vma->shared.vm_set.parent = NULL;
957 list_add_tail(&vma->shared.vm_set.list, list);
958 }
959
960 /* mmap.c */
961 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
962 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
963 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
964 extern struct vm_area_struct *vma_merge(struct mm_struct *,
965 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
966 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
967 struct mempolicy *);
968 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
969 extern int split_vma(struct mm_struct *,
970 struct vm_area_struct *, unsigned long addr, int new_below);
971 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
972 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
973 struct rb_node **, struct rb_node *);
974 extern void unlink_file_vma(struct vm_area_struct *);
975 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
976 unsigned long addr, unsigned long len, pgoff_t pgoff);
977 extern void exit_mmap(struct mm_struct *);
978 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
979 extern int install_special_mapping(struct mm_struct *mm,
980 unsigned long addr, unsigned long len,
981 unsigned long flags, struct page **pages);
982
983 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
984
985 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
986 unsigned long len, unsigned long prot,
987 unsigned long flag, unsigned long pgoff);
988 extern unsigned long mmap_region(struct file *file, unsigned long addr,
989 unsigned long len, unsigned long flags,
990 unsigned int vm_flags, unsigned long pgoff,
991 int accountable);
992
993 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
994 unsigned long len, unsigned long prot,
995 unsigned long flag, unsigned long offset)
996 {
997 unsigned long ret = -EINVAL;
998 if ((offset + PAGE_ALIGN(len)) < offset)
999 goto out;
1000 if (!(offset & ~PAGE_MASK))
1001 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1002 out:
1003 return ret;
1004 }
1005
1006 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1007
1008 extern unsigned long do_brk(unsigned long, unsigned long);
1009
1010 /* filemap.c */
1011 extern unsigned long page_unuse(struct page *);
1012 extern void truncate_inode_pages(struct address_space *, loff_t);
1013 extern void truncate_inode_pages_range(struct address_space *,
1014 loff_t lstart, loff_t lend);
1015
1016 /* generic vm_area_ops exported for stackable file systems */
1017 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1018
1019 /* mm/page-writeback.c */
1020 int write_one_page(struct page *page, int wait);
1021
1022 /* readahead.c */
1023 #define VM_MAX_READAHEAD 128 /* kbytes */
1024 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1025
1026 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1027 pgoff_t offset, unsigned long nr_to_read);
1028 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1029 pgoff_t offset, unsigned long nr_to_read);
1030
1031 void page_cache_sync_readahead(struct address_space *mapping,
1032 struct file_ra_state *ra,
1033 struct file *filp,
1034 pgoff_t offset,
1035 unsigned long size);
1036
1037 void page_cache_async_readahead(struct address_space *mapping,
1038 struct file_ra_state *ra,
1039 struct file *filp,
1040 struct page *pg,
1041 pgoff_t offset,
1042 unsigned long size);
1043
1044 unsigned long max_sane_readahead(unsigned long nr);
1045
1046 /* Do stack extension */
1047 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1048 #ifdef CONFIG_IA64
1049 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1050 #endif
1051 extern int expand_stack_downwards(struct vm_area_struct *vma,
1052 unsigned long address);
1053
1054 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1055 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1056 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1057 struct vm_area_struct **pprev);
1058
1059 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1060 NULL if none. Assume start_addr < end_addr. */
1061 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1062 {
1063 struct vm_area_struct * vma = find_vma(mm,start_addr);
1064
1065 if (vma && end_addr <= vma->vm_start)
1066 vma = NULL;
1067 return vma;
1068 }
1069
1070 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1071 {
1072 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1073 }
1074
1075 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1076 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1077 struct page *vmalloc_to_page(void *addr);
1078 unsigned long vmalloc_to_pfn(void *addr);
1079 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1080 unsigned long pfn, unsigned long size, pgprot_t);
1081 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1082 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1083 unsigned long pfn);
1084
1085 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1086 unsigned int foll_flags);
1087 #define FOLL_WRITE 0x01 /* check pte is writable */
1088 #define FOLL_TOUCH 0x02 /* mark page accessed */
1089 #define FOLL_GET 0x04 /* do get_page on page */
1090 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1091
1092 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1093 void *data);
1094 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1095 unsigned long size, pte_fn_t fn, void *data);
1096
1097 #ifdef CONFIG_PROC_FS
1098 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1099 #else
1100 static inline void vm_stat_account(struct mm_struct *mm,
1101 unsigned long flags, struct file *file, long pages)
1102 {
1103 }
1104 #endif /* CONFIG_PROC_FS */
1105
1106 #ifndef CONFIG_DEBUG_PAGEALLOC
1107 static inline void
1108 kernel_map_pages(struct page *page, int numpages, int enable) {}
1109 #endif
1110
1111 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1112 #ifdef __HAVE_ARCH_GATE_AREA
1113 int in_gate_area_no_task(unsigned long addr);
1114 int in_gate_area(struct task_struct *task, unsigned long addr);
1115 #else
1116 int in_gate_area_no_task(unsigned long addr);
1117 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1118 #endif /* __HAVE_ARCH_GATE_AREA */
1119
1120 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1121 void __user *, size_t *, loff_t *);
1122 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1123 unsigned long lru_pages);
1124 void drop_pagecache(void);
1125 void drop_slab(void);
1126
1127 #ifndef CONFIG_MMU
1128 #define randomize_va_space 0
1129 #else
1130 extern int randomize_va_space;
1131 #endif
1132
1133 const char * arch_vma_name(struct vm_area_struct *vma);
1134
1135 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1136 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1137 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1138 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1139 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1140 void *vmemmap_alloc_block(unsigned long size, int node);
1141 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1142 int vmemmap_populate_basepages(struct page *start_page,
1143 unsigned long pages, int node);
1144 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1145
1146 #endif /* __KERNEL__ */
1147 #endif /* _LINUX_MM_H */