]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm_types.h
UBUNTU: SAUCE: Import aufs driver
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm_types.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4
5 #include <linux/mm_types_task.h>
6
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17
18 #include <asm/mmu.h>
19
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24
25 struct address_space;
26 struct mem_cgroup;
27 struct hmm;
28
29 /*
30 * Each physical page in the system has a struct page associated with
31 * it to keep track of whatever it is we are using the page for at the
32 * moment. Note that we have no way to track which tasks are using
33 * a page, though if it is a pagecache page, rmap structures can tell us
34 * who is mapping it.
35 *
36 * The objects in struct page are organized in double word blocks in
37 * order to allows us to use atomic double word operations on portions
38 * of struct page. That is currently only used by slub but the arrangement
39 * allows the use of atomic double word operations on the flags/mapping
40 * and lru list pointers also.
41 */
42 struct page {
43 /* First double word block */
44 unsigned long flags; /* Atomic flags, some possibly
45 * updated asynchronously */
46 union {
47 struct address_space *mapping; /* If low bit clear, points to
48 * inode address_space, or NULL.
49 * If page mapped as anonymous
50 * memory, low bit is set, and
51 * it points to anon_vma object
52 * or KSM private structure. See
53 * PAGE_MAPPING_ANON and
54 * PAGE_MAPPING_KSM.
55 */
56 void *s_mem; /* slab first object */
57 atomic_t compound_mapcount; /* first tail page */
58 /* page_deferred_list().next -- second tail page */
59 };
60
61 /* Second double word */
62 union {
63 pgoff_t index; /* Our offset within mapping. */
64 void *freelist; /* sl[aou]b first free object */
65 /* page_deferred_list().prev -- second tail page */
66 };
67
68 union {
69 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
70 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
71 /* Used for cmpxchg_double in slub */
72 unsigned long counters;
73 #else
74 /*
75 * Keep _refcount separate from slub cmpxchg_double data.
76 * As the rest of the double word is protected by slab_lock
77 * but _refcount is not.
78 */
79 unsigned counters;
80 #endif
81 struct {
82
83 union {
84 /*
85 * Count of ptes mapped in mms, to show when
86 * page is mapped & limit reverse map searches.
87 *
88 * Extra information about page type may be
89 * stored here for pages that are never mapped,
90 * in which case the value MUST BE <= -2.
91 * See page-flags.h for more details.
92 */
93 atomic_t _mapcount;
94
95 unsigned int active; /* SLAB */
96 struct { /* SLUB */
97 unsigned inuse:16;
98 unsigned objects:15;
99 unsigned frozen:1;
100 };
101 int units; /* SLOB */
102 };
103 /*
104 * Usage count, *USE WRAPPER FUNCTION* when manual
105 * accounting. See page_ref.h
106 */
107 atomic_t _refcount;
108 };
109 };
110
111 /*
112 * Third double word block
113 *
114 * WARNING: bit 0 of the first word encode PageTail(). That means
115 * the rest users of the storage space MUST NOT use the bit to
116 * avoid collision and false-positive PageTail().
117 */
118 union {
119 struct list_head lru; /* Pageout list, eg. active_list
120 * protected by zone_lru_lock !
121 * Can be used as a generic list
122 * by the page owner.
123 */
124 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
125 * lru or handled by a slab
126 * allocator, this points to the
127 * hosting device page map.
128 */
129 struct { /* slub per cpu partial pages */
130 struct page *next; /* Next partial slab */
131 #ifdef CONFIG_64BIT
132 int pages; /* Nr of partial slabs left */
133 int pobjects; /* Approximate # of objects */
134 #else
135 short int pages;
136 short int pobjects;
137 #endif
138 };
139
140 struct rcu_head rcu_head; /* Used by SLAB
141 * when destroying via RCU
142 */
143 /* Tail pages of compound page */
144 struct {
145 unsigned long compound_head; /* If bit zero is set */
146
147 /* First tail page only */
148 #ifdef CONFIG_64BIT
149 /*
150 * On 64 bit system we have enough space in struct page
151 * to encode compound_dtor and compound_order with
152 * unsigned int. It can help compiler generate better or
153 * smaller code on some archtectures.
154 */
155 unsigned int compound_dtor;
156 unsigned int compound_order;
157 #else
158 unsigned short int compound_dtor;
159 unsigned short int compound_order;
160 #endif
161 };
162
163 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
164 struct {
165 unsigned long __pad; /* do not overlay pmd_huge_pte
166 * with compound_head to avoid
167 * possible bit 0 collision.
168 */
169 pgtable_t pmd_huge_pte; /* protected by page->ptl */
170 };
171 #endif
172 };
173
174 /* Remainder is not double word aligned */
175 union {
176 unsigned long private; /* Mapping-private opaque data:
177 * usually used for buffer_heads
178 * if PagePrivate set; used for
179 * swp_entry_t if PageSwapCache;
180 * indicates order in the buddy
181 * system if PG_buddy is set.
182 */
183 #if USE_SPLIT_PTE_PTLOCKS
184 #if ALLOC_SPLIT_PTLOCKS
185 spinlock_t *ptl;
186 #else
187 spinlock_t ptl;
188 #endif
189 #endif
190 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
191 };
192
193 #ifdef CONFIG_MEMCG
194 struct mem_cgroup *mem_cgroup;
195 #endif
196
197 /*
198 * On machines where all RAM is mapped into kernel address space,
199 * we can simply calculate the virtual address. On machines with
200 * highmem some memory is mapped into kernel virtual memory
201 * dynamically, so we need a place to store that address.
202 * Note that this field could be 16 bits on x86 ... ;)
203 *
204 * Architectures with slow multiplication can define
205 * WANT_PAGE_VIRTUAL in asm/page.h
206 */
207 #if defined(WANT_PAGE_VIRTUAL)
208 void *virtual; /* Kernel virtual address (NULL if
209 not kmapped, ie. highmem) */
210 #endif /* WANT_PAGE_VIRTUAL */
211
212 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
213 int _last_cpupid;
214 #endif
215 }
216 /*
217 * The struct page can be forced to be double word aligned so that atomic ops
218 * on double words work. The SLUB allocator can make use of such a feature.
219 */
220 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
221 __aligned(2 * sizeof(unsigned long))
222 #endif
223 ;
224
225 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
226 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
227
228 struct page_frag_cache {
229 void * va;
230 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
231 __u16 offset;
232 __u16 size;
233 #else
234 __u32 offset;
235 #endif
236 /* we maintain a pagecount bias, so that we dont dirty cache line
237 * containing page->_refcount every time we allocate a fragment.
238 */
239 unsigned int pagecnt_bias;
240 bool pfmemalloc;
241 };
242
243 typedef unsigned long vm_flags_t;
244
245 /*
246 * A region containing a mapping of a non-memory backed file under NOMMU
247 * conditions. These are held in a global tree and are pinned by the VMAs that
248 * map parts of them.
249 */
250 struct vm_region {
251 struct rb_node vm_rb; /* link in global region tree */
252 vm_flags_t vm_flags; /* VMA vm_flags */
253 unsigned long vm_start; /* start address of region */
254 unsigned long vm_end; /* region initialised to here */
255 unsigned long vm_top; /* region allocated to here */
256 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
257 struct file *vm_file; /* the backing file or NULL */
258 struct file *vm_prfile; /* the virtual backing file or NULL */
259
260 int vm_usage; /* region usage count (access under nommu_region_sem) */
261 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
262 * this region */
263 };
264
265 #ifdef CONFIG_USERFAULTFD
266 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
267 struct vm_userfaultfd_ctx {
268 struct userfaultfd_ctx *ctx;
269 };
270 #else /* CONFIG_USERFAULTFD */
271 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
272 struct vm_userfaultfd_ctx {};
273 #endif /* CONFIG_USERFAULTFD */
274
275 /*
276 * This struct defines a memory VMM memory area. There is one of these
277 * per VM-area/task. A VM area is any part of the process virtual memory
278 * space that has a special rule for the page-fault handlers (ie a shared
279 * library, the executable area etc).
280 */
281 struct vm_area_struct {
282 /* The first cache line has the info for VMA tree walking. */
283
284 unsigned long vm_start; /* Our start address within vm_mm. */
285 unsigned long vm_end; /* The first byte after our end address
286 within vm_mm. */
287
288 /* linked list of VM areas per task, sorted by address */
289 struct vm_area_struct *vm_next, *vm_prev;
290
291 struct rb_node vm_rb;
292
293 /*
294 * Largest free memory gap in bytes to the left of this VMA.
295 * Either between this VMA and vma->vm_prev, or between one of the
296 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
297 * get_unmapped_area find a free area of the right size.
298 */
299 unsigned long rb_subtree_gap;
300
301 /* Second cache line starts here. */
302
303 struct mm_struct *vm_mm; /* The address space we belong to. */
304 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
305 unsigned long vm_flags; /* Flags, see mm.h. */
306
307 /*
308 * For areas with an address space and backing store,
309 * linkage into the address_space->i_mmap interval tree.
310 */
311 struct {
312 struct rb_node rb;
313 unsigned long rb_subtree_last;
314 } shared;
315
316 /*
317 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
318 * list, after a COW of one of the file pages. A MAP_SHARED vma
319 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
320 * or brk vma (with NULL file) can only be in an anon_vma list.
321 */
322 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
323 * page_table_lock */
324 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
325
326 /* Function pointers to deal with this struct. */
327 const struct vm_operations_struct *vm_ops;
328
329 /* Information about our backing store: */
330 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
331 units */
332 struct file * vm_file; /* File we map to (can be NULL). */
333 struct file *vm_prfile; /* shadow of vm_file */
334 void * vm_private_data; /* was vm_pte (shared mem) */
335
336 atomic_long_t swap_readahead_info;
337 #ifndef CONFIG_MMU
338 struct vm_region *vm_region; /* NOMMU mapping region */
339 #endif
340 #ifdef CONFIG_NUMA
341 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
342 #endif
343 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
344 } __randomize_layout;
345
346 struct core_thread {
347 struct task_struct *task;
348 struct core_thread *next;
349 };
350
351 struct core_state {
352 atomic_t nr_threads;
353 struct core_thread dumper;
354 struct completion startup;
355 };
356
357 struct kioctx_table;
358 struct mm_struct {
359 struct vm_area_struct *mmap; /* list of VMAs */
360 struct rb_root mm_rb;
361 u32 vmacache_seqnum; /* per-thread vmacache */
362 #ifdef CONFIG_MMU
363 unsigned long (*get_unmapped_area) (struct file *filp,
364 unsigned long addr, unsigned long len,
365 unsigned long pgoff, unsigned long flags);
366 #endif
367 unsigned long mmap_base; /* base of mmap area */
368 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
369 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
370 /* Base adresses for compatible mmap() */
371 unsigned long mmap_compat_base;
372 unsigned long mmap_compat_legacy_base;
373 #endif
374 unsigned long task_size; /* size of task vm space */
375 unsigned long highest_vm_end; /* highest vma end address */
376 pgd_t * pgd;
377
378 /**
379 * @mm_users: The number of users including userspace.
380 *
381 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
382 * to 0 (i.e. when the task exits and there are no other temporary
383 * reference holders), we also release a reference on @mm_count
384 * (which may then free the &struct mm_struct if @mm_count also
385 * drops to 0).
386 */
387 atomic_t mm_users;
388
389 /**
390 * @mm_count: The number of references to &struct mm_struct
391 * (@mm_users count as 1).
392 *
393 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
394 * &struct mm_struct is freed.
395 */
396 atomic_t mm_count;
397
398 #ifdef CONFIG_MMU
399 atomic_long_t pgtables_bytes; /* PTE page table pages */
400 #endif
401 int map_count; /* number of VMAs */
402
403 spinlock_t page_table_lock; /* Protects page tables and some counters */
404 struct rw_semaphore mmap_sem;
405
406 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
407 * together off init_mm.mmlist, and are protected
408 * by mmlist_lock
409 */
410
411
412 unsigned long hiwater_rss; /* High-watermark of RSS usage */
413 unsigned long hiwater_vm; /* High-water virtual memory usage */
414
415 unsigned long total_vm; /* Total pages mapped */
416 unsigned long locked_vm; /* Pages that have PG_mlocked set */
417 unsigned long pinned_vm; /* Refcount permanently increased */
418 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
419 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
420 unsigned long stack_vm; /* VM_STACK */
421 unsigned long def_flags;
422 unsigned long start_code, end_code, start_data, end_data;
423 unsigned long start_brk, brk, start_stack;
424 unsigned long arg_start, arg_end, env_start, env_end;
425
426 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
427
428 /*
429 * Special counters, in some configurations protected by the
430 * page_table_lock, in other configurations by being atomic.
431 */
432 struct mm_rss_stat rss_stat;
433
434 struct linux_binfmt *binfmt;
435
436 cpumask_var_t cpu_vm_mask_var;
437
438 /* Architecture-specific MM context */
439 mm_context_t context;
440
441 unsigned long flags; /* Must use atomic bitops to access the bits */
442
443 struct core_state *core_state; /* coredumping support */
444 #ifdef CONFIG_MEMBARRIER
445 atomic_t membarrier_state;
446 #endif
447 #ifdef CONFIG_AIO
448 spinlock_t ioctx_lock;
449 struct kioctx_table __rcu *ioctx_table;
450 #endif
451 #ifdef CONFIG_MEMCG
452 /*
453 * "owner" points to a task that is regarded as the canonical
454 * user/owner of this mm. All of the following must be true in
455 * order for it to be changed:
456 *
457 * current == mm->owner
458 * current->mm != mm
459 * new_owner->mm == mm
460 * new_owner->alloc_lock is held
461 */
462 struct task_struct __rcu *owner;
463 #endif
464 struct user_namespace *user_ns;
465
466 /* store ref to file /proc/<pid>/exe symlink points to */
467 struct file __rcu *exe_file;
468 #ifdef CONFIG_MMU_NOTIFIER
469 struct mmu_notifier_mm *mmu_notifier_mm;
470 #endif
471 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
472 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
473 #endif
474 #ifdef CONFIG_CPUMASK_OFFSTACK
475 struct cpumask cpumask_allocation;
476 #endif
477 #ifdef CONFIG_NUMA_BALANCING
478 /*
479 * numa_next_scan is the next time that the PTEs will be marked
480 * pte_numa. NUMA hinting faults will gather statistics and migrate
481 * pages to new nodes if necessary.
482 */
483 unsigned long numa_next_scan;
484
485 /* Restart point for scanning and setting pte_numa */
486 unsigned long numa_scan_offset;
487
488 /* numa_scan_seq prevents two threads setting pte_numa */
489 int numa_scan_seq;
490 #endif
491 /*
492 * An operation with batched TLB flushing is going on. Anything that
493 * can move process memory needs to flush the TLB when moving a
494 * PROT_NONE or PROT_NUMA mapped page.
495 */
496 atomic_t tlb_flush_pending;
497 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
498 /* See flush_tlb_batched_pending() */
499 bool tlb_flush_batched;
500 #endif
501 struct uprobes_state uprobes_state;
502 #ifdef CONFIG_HUGETLB_PAGE
503 atomic_long_t hugetlb_usage;
504 #endif
505 struct work_struct async_put_work;
506
507 #if IS_ENABLED(CONFIG_HMM)
508 /* HMM needs to track a few things per mm */
509 struct hmm *hmm;
510 #endif
511 } __randomize_layout;
512
513 extern struct mm_struct init_mm;
514
515 static inline void mm_init_cpumask(struct mm_struct *mm)
516 {
517 #ifdef CONFIG_CPUMASK_OFFSTACK
518 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
519 #endif
520 cpumask_clear(mm->cpu_vm_mask_var);
521 }
522
523 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
524 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
525 {
526 return mm->cpu_vm_mask_var;
527 }
528
529 struct mmu_gather;
530 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
531 unsigned long start, unsigned long end);
532 extern void tlb_finish_mmu(struct mmu_gather *tlb,
533 unsigned long start, unsigned long end);
534
535 static inline void init_tlb_flush_pending(struct mm_struct *mm)
536 {
537 atomic_set(&mm->tlb_flush_pending, 0);
538 }
539
540 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
541 {
542 atomic_inc(&mm->tlb_flush_pending);
543 /*
544 * The only time this value is relevant is when there are indeed pages
545 * to flush. And we'll only flush pages after changing them, which
546 * requires the PTL.
547 *
548 * So the ordering here is:
549 *
550 * atomic_inc(&mm->tlb_flush_pending);
551 * spin_lock(&ptl);
552 * ...
553 * set_pte_at();
554 * spin_unlock(&ptl);
555 *
556 * spin_lock(&ptl)
557 * mm_tlb_flush_pending();
558 * ....
559 * spin_unlock(&ptl);
560 *
561 * flush_tlb_range();
562 * atomic_dec(&mm->tlb_flush_pending);
563 *
564 * Where the increment if constrained by the PTL unlock, it thus
565 * ensures that the increment is visible if the PTE modification is
566 * visible. After all, if there is no PTE modification, nobody cares
567 * about TLB flushes either.
568 *
569 * This very much relies on users (mm_tlb_flush_pending() and
570 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
571 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
572 * locks (PPC) the unlock of one doesn't order against the lock of
573 * another PTL.
574 *
575 * The decrement is ordered by the flush_tlb_range(), such that
576 * mm_tlb_flush_pending() will not return false unless all flushes have
577 * completed.
578 */
579 }
580
581 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
582 {
583 /*
584 * See inc_tlb_flush_pending().
585 *
586 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
587 * not order against TLB invalidate completion, which is what we need.
588 *
589 * Therefore we must rely on tlb_flush_*() to guarantee order.
590 */
591 atomic_dec(&mm->tlb_flush_pending);
592 }
593
594 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
595 {
596 /*
597 * Must be called after having acquired the PTL; orders against that
598 * PTLs release and therefore ensures that if we observe the modified
599 * PTE we must also observe the increment from inc_tlb_flush_pending().
600 *
601 * That is, it only guarantees to return true if there is a flush
602 * pending for _this_ PTL.
603 */
604 return atomic_read(&mm->tlb_flush_pending);
605 }
606
607 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
608 {
609 /*
610 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
611 * for which there is a TLB flush pending in order to guarantee
612 * we've seen both that PTE modification and the increment.
613 *
614 * (no requirement on actually still holding the PTL, that is irrelevant)
615 */
616 return atomic_read(&mm->tlb_flush_pending) > 1;
617 }
618
619 struct vm_fault;
620
621 struct vm_special_mapping {
622 const char *name; /* The name, e.g. "[vdso]". */
623
624 /*
625 * If .fault is not provided, this points to a
626 * NULL-terminated array of pages that back the special mapping.
627 *
628 * This must not be NULL unless .fault is provided.
629 */
630 struct page **pages;
631
632 /*
633 * If non-NULL, then this is called to resolve page faults
634 * on the special mapping. If used, .pages is not checked.
635 */
636 int (*fault)(const struct vm_special_mapping *sm,
637 struct vm_area_struct *vma,
638 struct vm_fault *vmf);
639
640 int (*mremap)(const struct vm_special_mapping *sm,
641 struct vm_area_struct *new_vma);
642 };
643
644 enum tlb_flush_reason {
645 TLB_FLUSH_ON_TASK_SWITCH,
646 TLB_REMOTE_SHOOTDOWN,
647 TLB_LOCAL_SHOOTDOWN,
648 TLB_LOCAL_MM_SHOOTDOWN,
649 TLB_REMOTE_SEND_IPI,
650 NR_TLB_FLUSH_REASONS,
651 };
652
653 /*
654 * A swap entry has to fit into a "unsigned long", as the entry is hidden
655 * in the "index" field of the swapper address space.
656 */
657 typedef struct {
658 unsigned long val;
659 } swp_entry_t;
660
661 #endif /* _LINUX_MM_TYPES_H */