]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/mm_types.h
mm: align struct page more aesthetically
[mirror_ubuntu-jammy-kernel.git] / include / linux / mm_types.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4
5 #include <linux/mm_types_task.h>
6
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17
18 #include <asm/mmu.h>
19
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24
25 struct address_space;
26 struct mem_cgroup;
27 struct hmm;
28
29 /*
30 * Each physical page in the system has a struct page associated with
31 * it to keep track of whatever it is we are using the page for at the
32 * moment. Note that we have no way to track which tasks are using
33 * a page, though if it is a pagecache page, rmap structures can tell us
34 * who is mapping it.
35 *
36 * The objects in struct page are organized in double word blocks in
37 * order to allows us to use atomic double word operations on portions
38 * of struct page. That is currently only used by slub but the arrangement
39 * allows the use of atomic double word operations on the flags/mapping
40 * and lru list pointers also.
41 */
42 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
43 #define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
44 #else
45 #define _struct_page_alignment
46 #endif
47
48 struct page {
49 /* First double word block */
50 unsigned long flags; /* Atomic flags, some possibly
51 * updated asynchronously */
52 union {
53 struct address_space *mapping; /* If low bit clear, points to
54 * inode address_space, or NULL.
55 * If page mapped as anonymous
56 * memory, low bit is set, and
57 * it points to anon_vma object
58 * or KSM private structure. See
59 * PAGE_MAPPING_ANON and
60 * PAGE_MAPPING_KSM.
61 */
62 void *s_mem; /* slab first object */
63 atomic_t compound_mapcount; /* first tail page */
64 /* page_deferred_list().next -- second tail page */
65 };
66
67 /* Second double word */
68 union {
69 pgoff_t index; /* Our offset within mapping. */
70 void *freelist; /* sl[aou]b first free object */
71 /* page_deferred_list().prev -- second tail page */
72 };
73
74 union {
75 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
76 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
77 /* Used for cmpxchg_double in slub */
78 unsigned long counters;
79 #else
80 /*
81 * Keep _refcount separate from slub cmpxchg_double data.
82 * As the rest of the double word is protected by slab_lock
83 * but _refcount is not.
84 */
85 unsigned counters;
86 #endif
87 struct {
88
89 union {
90 /*
91 * Count of ptes mapped in mms, to show when
92 * page is mapped & limit reverse map searches.
93 *
94 * Extra information about page type may be
95 * stored here for pages that are never mapped,
96 * in which case the value MUST BE <= -2.
97 * See page-flags.h for more details.
98 */
99 atomic_t _mapcount;
100
101 unsigned int active; /* SLAB */
102 struct { /* SLUB */
103 unsigned inuse:16;
104 unsigned objects:15;
105 unsigned frozen:1;
106 };
107 int units; /* SLOB */
108 };
109 /*
110 * Usage count, *USE WRAPPER FUNCTION* when manual
111 * accounting. See page_ref.h
112 */
113 atomic_t _refcount;
114 };
115 };
116
117 /*
118 * Third double word block
119 *
120 * WARNING: bit 0 of the first word encode PageTail(). That means
121 * the rest users of the storage space MUST NOT use the bit to
122 * avoid collision and false-positive PageTail().
123 */
124 union {
125 struct list_head lru; /* Pageout list, eg. active_list
126 * protected by zone_lru_lock !
127 * Can be used as a generic list
128 * by the page owner.
129 */
130 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
131 * lru or handled by a slab
132 * allocator, this points to the
133 * hosting device page map.
134 */
135 struct { /* slub per cpu partial pages */
136 struct page *next; /* Next partial slab */
137 #ifdef CONFIG_64BIT
138 int pages; /* Nr of partial slabs left */
139 int pobjects; /* Approximate # of objects */
140 #else
141 short int pages;
142 short int pobjects;
143 #endif
144 };
145
146 struct rcu_head rcu_head; /* Used by SLAB
147 * when destroying via RCU
148 */
149 /* Tail pages of compound page */
150 struct {
151 unsigned long compound_head; /* If bit zero is set */
152
153 /* First tail page only */
154 #ifdef CONFIG_64BIT
155 /*
156 * On 64 bit system we have enough space in struct page
157 * to encode compound_dtor and compound_order with
158 * unsigned int. It can help compiler generate better or
159 * smaller code on some archtectures.
160 */
161 unsigned int compound_dtor;
162 unsigned int compound_order;
163 #else
164 unsigned short int compound_dtor;
165 unsigned short int compound_order;
166 #endif
167 };
168
169 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
170 struct {
171 unsigned long __pad; /* do not overlay pmd_huge_pte
172 * with compound_head to avoid
173 * possible bit 0 collision.
174 */
175 pgtable_t pmd_huge_pte; /* protected by page->ptl */
176 };
177 #endif
178 };
179
180 /* Remainder is not double word aligned */
181 union {
182 unsigned long private; /* Mapping-private opaque data:
183 * usually used for buffer_heads
184 * if PagePrivate set; used for
185 * swp_entry_t if PageSwapCache;
186 * indicates order in the buddy
187 * system if PG_buddy is set.
188 */
189 #if USE_SPLIT_PTE_PTLOCKS
190 #if ALLOC_SPLIT_PTLOCKS
191 spinlock_t *ptl;
192 #else
193 spinlock_t ptl;
194 #endif
195 #endif
196 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
197 };
198
199 #ifdef CONFIG_MEMCG
200 struct mem_cgroup *mem_cgroup;
201 #endif
202
203 /*
204 * On machines where all RAM is mapped into kernel address space,
205 * we can simply calculate the virtual address. On machines with
206 * highmem some memory is mapped into kernel virtual memory
207 * dynamically, so we need a place to store that address.
208 * Note that this field could be 16 bits on x86 ... ;)
209 *
210 * Architectures with slow multiplication can define
211 * WANT_PAGE_VIRTUAL in asm/page.h
212 */
213 #if defined(WANT_PAGE_VIRTUAL)
214 void *virtual; /* Kernel virtual address (NULL if
215 not kmapped, ie. highmem) */
216 #endif /* WANT_PAGE_VIRTUAL */
217
218 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
219 int _last_cpupid;
220 #endif
221 } _struct_page_alignment;
222
223 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
224 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
225
226 struct page_frag_cache {
227 void * va;
228 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
229 __u16 offset;
230 __u16 size;
231 #else
232 __u32 offset;
233 #endif
234 /* we maintain a pagecount bias, so that we dont dirty cache line
235 * containing page->_refcount every time we allocate a fragment.
236 */
237 unsigned int pagecnt_bias;
238 bool pfmemalloc;
239 };
240
241 typedef unsigned long vm_flags_t;
242
243 /*
244 * A region containing a mapping of a non-memory backed file under NOMMU
245 * conditions. These are held in a global tree and are pinned by the VMAs that
246 * map parts of them.
247 */
248 struct vm_region {
249 struct rb_node vm_rb; /* link in global region tree */
250 vm_flags_t vm_flags; /* VMA vm_flags */
251 unsigned long vm_start; /* start address of region */
252 unsigned long vm_end; /* region initialised to here */
253 unsigned long vm_top; /* region allocated to here */
254 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
255 struct file *vm_file; /* the backing file or NULL */
256
257 int vm_usage; /* region usage count (access under nommu_region_sem) */
258 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
259 * this region */
260 };
261
262 #ifdef CONFIG_USERFAULTFD
263 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
264 struct vm_userfaultfd_ctx {
265 struct userfaultfd_ctx *ctx;
266 };
267 #else /* CONFIG_USERFAULTFD */
268 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
269 struct vm_userfaultfd_ctx {};
270 #endif /* CONFIG_USERFAULTFD */
271
272 /*
273 * This struct defines a memory VMM memory area. There is one of these
274 * per VM-area/task. A VM area is any part of the process virtual memory
275 * space that has a special rule for the page-fault handlers (ie a shared
276 * library, the executable area etc).
277 */
278 struct vm_area_struct {
279 /* The first cache line has the info for VMA tree walking. */
280
281 unsigned long vm_start; /* Our start address within vm_mm. */
282 unsigned long vm_end; /* The first byte after our end address
283 within vm_mm. */
284
285 /* linked list of VM areas per task, sorted by address */
286 struct vm_area_struct *vm_next, *vm_prev;
287
288 struct rb_node vm_rb;
289
290 /*
291 * Largest free memory gap in bytes to the left of this VMA.
292 * Either between this VMA and vma->vm_prev, or between one of the
293 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
294 * get_unmapped_area find a free area of the right size.
295 */
296 unsigned long rb_subtree_gap;
297
298 /* Second cache line starts here. */
299
300 struct mm_struct *vm_mm; /* The address space we belong to. */
301 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
302 unsigned long vm_flags; /* Flags, see mm.h. */
303
304 /*
305 * For areas with an address space and backing store,
306 * linkage into the address_space->i_mmap interval tree.
307 */
308 struct {
309 struct rb_node rb;
310 unsigned long rb_subtree_last;
311 } shared;
312
313 /*
314 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
315 * list, after a COW of one of the file pages. A MAP_SHARED vma
316 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
317 * or brk vma (with NULL file) can only be in an anon_vma list.
318 */
319 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
320 * page_table_lock */
321 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
322
323 /* Function pointers to deal with this struct. */
324 const struct vm_operations_struct *vm_ops;
325
326 /* Information about our backing store: */
327 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
328 units */
329 struct file * vm_file; /* File we map to (can be NULL). */
330 void * vm_private_data; /* was vm_pte (shared mem) */
331
332 atomic_long_t swap_readahead_info;
333 #ifndef CONFIG_MMU
334 struct vm_region *vm_region; /* NOMMU mapping region */
335 #endif
336 #ifdef CONFIG_NUMA
337 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
338 #endif
339 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
340 } __randomize_layout;
341
342 struct core_thread {
343 struct task_struct *task;
344 struct core_thread *next;
345 };
346
347 struct core_state {
348 atomic_t nr_threads;
349 struct core_thread dumper;
350 struct completion startup;
351 };
352
353 struct kioctx_table;
354 struct mm_struct {
355 struct vm_area_struct *mmap; /* list of VMAs */
356 struct rb_root mm_rb;
357 u32 vmacache_seqnum; /* per-thread vmacache */
358 #ifdef CONFIG_MMU
359 unsigned long (*get_unmapped_area) (struct file *filp,
360 unsigned long addr, unsigned long len,
361 unsigned long pgoff, unsigned long flags);
362 #endif
363 unsigned long mmap_base; /* base of mmap area */
364 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
365 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
366 /* Base adresses for compatible mmap() */
367 unsigned long mmap_compat_base;
368 unsigned long mmap_compat_legacy_base;
369 #endif
370 unsigned long task_size; /* size of task vm space */
371 unsigned long highest_vm_end; /* highest vma end address */
372 pgd_t * pgd;
373
374 /**
375 * @mm_users: The number of users including userspace.
376 *
377 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
378 * to 0 (i.e. when the task exits and there are no other temporary
379 * reference holders), we also release a reference on @mm_count
380 * (which may then free the &struct mm_struct if @mm_count also
381 * drops to 0).
382 */
383 atomic_t mm_users;
384
385 /**
386 * @mm_count: The number of references to &struct mm_struct
387 * (@mm_users count as 1).
388 *
389 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
390 * &struct mm_struct is freed.
391 */
392 atomic_t mm_count;
393
394 #ifdef CONFIG_MMU
395 atomic_long_t pgtables_bytes; /* PTE page table pages */
396 #endif
397 int map_count; /* number of VMAs */
398
399 spinlock_t page_table_lock; /* Protects page tables and some counters */
400 struct rw_semaphore mmap_sem;
401
402 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
403 * together off init_mm.mmlist, and are protected
404 * by mmlist_lock
405 */
406
407
408 unsigned long hiwater_rss; /* High-watermark of RSS usage */
409 unsigned long hiwater_vm; /* High-water virtual memory usage */
410
411 unsigned long total_vm; /* Total pages mapped */
412 unsigned long locked_vm; /* Pages that have PG_mlocked set */
413 unsigned long pinned_vm; /* Refcount permanently increased */
414 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
415 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
416 unsigned long stack_vm; /* VM_STACK */
417 unsigned long def_flags;
418 unsigned long start_code, end_code, start_data, end_data;
419 unsigned long start_brk, brk, start_stack;
420 unsigned long arg_start, arg_end, env_start, env_end;
421
422 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
423
424 /*
425 * Special counters, in some configurations protected by the
426 * page_table_lock, in other configurations by being atomic.
427 */
428 struct mm_rss_stat rss_stat;
429
430 struct linux_binfmt *binfmt;
431
432 cpumask_var_t cpu_vm_mask_var;
433
434 /* Architecture-specific MM context */
435 mm_context_t context;
436
437 unsigned long flags; /* Must use atomic bitops to access the bits */
438
439 struct core_state *core_state; /* coredumping support */
440 #ifdef CONFIG_MEMBARRIER
441 atomic_t membarrier_state;
442 #endif
443 #ifdef CONFIG_AIO
444 spinlock_t ioctx_lock;
445 struct kioctx_table __rcu *ioctx_table;
446 #endif
447 #ifdef CONFIG_MEMCG
448 /*
449 * "owner" points to a task that is regarded as the canonical
450 * user/owner of this mm. All of the following must be true in
451 * order for it to be changed:
452 *
453 * current == mm->owner
454 * current->mm != mm
455 * new_owner->mm == mm
456 * new_owner->alloc_lock is held
457 */
458 struct task_struct __rcu *owner;
459 #endif
460 struct user_namespace *user_ns;
461
462 /* store ref to file /proc/<pid>/exe symlink points to */
463 struct file __rcu *exe_file;
464 #ifdef CONFIG_MMU_NOTIFIER
465 struct mmu_notifier_mm *mmu_notifier_mm;
466 #endif
467 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
468 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
469 #endif
470 #ifdef CONFIG_CPUMASK_OFFSTACK
471 struct cpumask cpumask_allocation;
472 #endif
473 #ifdef CONFIG_NUMA_BALANCING
474 /*
475 * numa_next_scan is the next time that the PTEs will be marked
476 * pte_numa. NUMA hinting faults will gather statistics and migrate
477 * pages to new nodes if necessary.
478 */
479 unsigned long numa_next_scan;
480
481 /* Restart point for scanning and setting pte_numa */
482 unsigned long numa_scan_offset;
483
484 /* numa_scan_seq prevents two threads setting pte_numa */
485 int numa_scan_seq;
486 #endif
487 /*
488 * An operation with batched TLB flushing is going on. Anything that
489 * can move process memory needs to flush the TLB when moving a
490 * PROT_NONE or PROT_NUMA mapped page.
491 */
492 atomic_t tlb_flush_pending;
493 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
494 /* See flush_tlb_batched_pending() */
495 bool tlb_flush_batched;
496 #endif
497 struct uprobes_state uprobes_state;
498 #ifdef CONFIG_HUGETLB_PAGE
499 atomic_long_t hugetlb_usage;
500 #endif
501 struct work_struct async_put_work;
502
503 #if IS_ENABLED(CONFIG_HMM)
504 /* HMM needs to track a few things per mm */
505 struct hmm *hmm;
506 #endif
507 } __randomize_layout;
508
509 extern struct mm_struct init_mm;
510
511 static inline void mm_init_cpumask(struct mm_struct *mm)
512 {
513 #ifdef CONFIG_CPUMASK_OFFSTACK
514 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
515 #endif
516 cpumask_clear(mm->cpu_vm_mask_var);
517 }
518
519 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
520 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
521 {
522 return mm->cpu_vm_mask_var;
523 }
524
525 struct mmu_gather;
526 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
527 unsigned long start, unsigned long end);
528 extern void tlb_finish_mmu(struct mmu_gather *tlb,
529 unsigned long start, unsigned long end);
530
531 static inline void init_tlb_flush_pending(struct mm_struct *mm)
532 {
533 atomic_set(&mm->tlb_flush_pending, 0);
534 }
535
536 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
537 {
538 atomic_inc(&mm->tlb_flush_pending);
539 /*
540 * The only time this value is relevant is when there are indeed pages
541 * to flush. And we'll only flush pages after changing them, which
542 * requires the PTL.
543 *
544 * So the ordering here is:
545 *
546 * atomic_inc(&mm->tlb_flush_pending);
547 * spin_lock(&ptl);
548 * ...
549 * set_pte_at();
550 * spin_unlock(&ptl);
551 *
552 * spin_lock(&ptl)
553 * mm_tlb_flush_pending();
554 * ....
555 * spin_unlock(&ptl);
556 *
557 * flush_tlb_range();
558 * atomic_dec(&mm->tlb_flush_pending);
559 *
560 * Where the increment if constrained by the PTL unlock, it thus
561 * ensures that the increment is visible if the PTE modification is
562 * visible. After all, if there is no PTE modification, nobody cares
563 * about TLB flushes either.
564 *
565 * This very much relies on users (mm_tlb_flush_pending() and
566 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
567 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
568 * locks (PPC) the unlock of one doesn't order against the lock of
569 * another PTL.
570 *
571 * The decrement is ordered by the flush_tlb_range(), such that
572 * mm_tlb_flush_pending() will not return false unless all flushes have
573 * completed.
574 */
575 }
576
577 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
578 {
579 /*
580 * See inc_tlb_flush_pending().
581 *
582 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
583 * not order against TLB invalidate completion, which is what we need.
584 *
585 * Therefore we must rely on tlb_flush_*() to guarantee order.
586 */
587 atomic_dec(&mm->tlb_flush_pending);
588 }
589
590 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
591 {
592 /*
593 * Must be called after having acquired the PTL; orders against that
594 * PTLs release and therefore ensures that if we observe the modified
595 * PTE we must also observe the increment from inc_tlb_flush_pending().
596 *
597 * That is, it only guarantees to return true if there is a flush
598 * pending for _this_ PTL.
599 */
600 return atomic_read(&mm->tlb_flush_pending);
601 }
602
603 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
604 {
605 /*
606 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
607 * for which there is a TLB flush pending in order to guarantee
608 * we've seen both that PTE modification and the increment.
609 *
610 * (no requirement on actually still holding the PTL, that is irrelevant)
611 */
612 return atomic_read(&mm->tlb_flush_pending) > 1;
613 }
614
615 struct vm_fault;
616
617 struct vm_special_mapping {
618 const char *name; /* The name, e.g. "[vdso]". */
619
620 /*
621 * If .fault is not provided, this points to a
622 * NULL-terminated array of pages that back the special mapping.
623 *
624 * This must not be NULL unless .fault is provided.
625 */
626 struct page **pages;
627
628 /*
629 * If non-NULL, then this is called to resolve page faults
630 * on the special mapping. If used, .pages is not checked.
631 */
632 int (*fault)(const struct vm_special_mapping *sm,
633 struct vm_area_struct *vma,
634 struct vm_fault *vmf);
635
636 int (*mremap)(const struct vm_special_mapping *sm,
637 struct vm_area_struct *new_vma);
638 };
639
640 enum tlb_flush_reason {
641 TLB_FLUSH_ON_TASK_SWITCH,
642 TLB_REMOTE_SHOOTDOWN,
643 TLB_LOCAL_SHOOTDOWN,
644 TLB_LOCAL_MM_SHOOTDOWN,
645 TLB_REMOTE_SEND_IPI,
646 NR_TLB_FLUSH_REASONS,
647 };
648
649 /*
650 * A swap entry has to fit into a "unsigned long", as the entry is hidden
651 * in the "index" field of the swapper address space.
652 */
653 typedef struct {
654 unsigned long val;
655 } swp_entry_t;
656
657 #endif /* _LINUX_MM_TYPES_H */