]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/mmu_notifier.h
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-kernels.git] / include / linux / mmu_notifier.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4
5 #include <linux/list.h>
6 #include <linux/spinlock.h>
7 #include <linux/mm_types.h>
8 #include <linux/srcu.h>
9
10 struct mmu_notifier;
11 struct mmu_notifier_ops;
12
13 #ifdef CONFIG_MMU_NOTIFIER
14
15 /*
16 * The mmu notifier_mm structure is allocated and installed in
17 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
18 * critical section and it's released only when mm_count reaches zero
19 * in mmdrop().
20 */
21 struct mmu_notifier_mm {
22 /* all mmu notifiers registerd in this mm are queued in this list */
23 struct hlist_head list;
24 /* to serialize the list modifications and hlist_unhashed */
25 spinlock_t lock;
26 };
27
28 struct mmu_notifier_ops {
29 /*
30 * Called either by mmu_notifier_unregister or when the mm is
31 * being destroyed by exit_mmap, always before all pages are
32 * freed. This can run concurrently with other mmu notifier
33 * methods (the ones invoked outside the mm context) and it
34 * should tear down all secondary mmu mappings and freeze the
35 * secondary mmu. If this method isn't implemented you've to
36 * be sure that nothing could possibly write to the pages
37 * through the secondary mmu by the time the last thread with
38 * tsk->mm == mm exits.
39 *
40 * As side note: the pages freed after ->release returns could
41 * be immediately reallocated by the gart at an alias physical
42 * address with a different cache model, so if ->release isn't
43 * implemented because all _software_ driven memory accesses
44 * through the secondary mmu are terminated by the time the
45 * last thread of this mm quits, you've also to be sure that
46 * speculative _hardware_ operations can't allocate dirty
47 * cachelines in the cpu that could not be snooped and made
48 * coherent with the other read and write operations happening
49 * through the gart alias address, so leading to memory
50 * corruption.
51 */
52 void (*release)(struct mmu_notifier *mn,
53 struct mm_struct *mm);
54
55 /*
56 * clear_flush_young is called after the VM is
57 * test-and-clearing the young/accessed bitflag in the
58 * pte. This way the VM will provide proper aging to the
59 * accesses to the page through the secondary MMUs and not
60 * only to the ones through the Linux pte.
61 * Start-end is necessary in case the secondary MMU is mapping the page
62 * at a smaller granularity than the primary MMU.
63 */
64 int (*clear_flush_young)(struct mmu_notifier *mn,
65 struct mm_struct *mm,
66 unsigned long start,
67 unsigned long end);
68
69 /*
70 * clear_young is a lightweight version of clear_flush_young. Like the
71 * latter, it is supposed to test-and-clear the young/accessed bitflag
72 * in the secondary pte, but it may omit flushing the secondary tlb.
73 */
74 int (*clear_young)(struct mmu_notifier *mn,
75 struct mm_struct *mm,
76 unsigned long start,
77 unsigned long end);
78
79 /*
80 * test_young is called to check the young/accessed bitflag in
81 * the secondary pte. This is used to know if the page is
82 * frequently used without actually clearing the flag or tearing
83 * down the secondary mapping on the page.
84 */
85 int (*test_young)(struct mmu_notifier *mn,
86 struct mm_struct *mm,
87 unsigned long address);
88
89 /*
90 * change_pte is called in cases that pte mapping to page is changed:
91 * for example, when ksm remaps pte to point to a new shared page.
92 */
93 void (*change_pte)(struct mmu_notifier *mn,
94 struct mm_struct *mm,
95 unsigned long address,
96 pte_t pte);
97
98 /*
99 * invalidate_range_start() and invalidate_range_end() must be
100 * paired and are called only when the mmap_sem and/or the
101 * locks protecting the reverse maps are held. If the subsystem
102 * can't guarantee that no additional references are taken to
103 * the pages in the range, it has to implement the
104 * invalidate_range() notifier to remove any references taken
105 * after invalidate_range_start().
106 *
107 * Invalidation of multiple concurrent ranges may be
108 * optionally permitted by the driver. Either way the
109 * establishment of sptes is forbidden in the range passed to
110 * invalidate_range_begin/end for the whole duration of the
111 * invalidate_range_begin/end critical section.
112 *
113 * invalidate_range_start() is called when all pages in the
114 * range are still mapped and have at least a refcount of one.
115 *
116 * invalidate_range_end() is called when all pages in the
117 * range have been unmapped and the pages have been freed by
118 * the VM.
119 *
120 * The VM will remove the page table entries and potentially
121 * the page between invalidate_range_start() and
122 * invalidate_range_end(). If the page must not be freed
123 * because of pending I/O or other circumstances then the
124 * invalidate_range_start() callback (or the initial mapping
125 * by the driver) must make sure that the refcount is kept
126 * elevated.
127 *
128 * If the driver increases the refcount when the pages are
129 * initially mapped into an address space then either
130 * invalidate_range_start() or invalidate_range_end() may
131 * decrease the refcount. If the refcount is decreased on
132 * invalidate_range_start() then the VM can free pages as page
133 * table entries are removed. If the refcount is only
134 * droppped on invalidate_range_end() then the driver itself
135 * will drop the last refcount but it must take care to flush
136 * any secondary tlb before doing the final free on the
137 * page. Pages will no longer be referenced by the linux
138 * address space but may still be referenced by sptes until
139 * the last refcount is dropped.
140 */
141 void (*invalidate_range_start)(struct mmu_notifier *mn,
142 struct mm_struct *mm,
143 unsigned long start, unsigned long end);
144 void (*invalidate_range_end)(struct mmu_notifier *mn,
145 struct mm_struct *mm,
146 unsigned long start, unsigned long end);
147
148 /*
149 * invalidate_range() is either called between
150 * invalidate_range_start() and invalidate_range_end() when the
151 * VM has to free pages that where unmapped, but before the
152 * pages are actually freed, or outside of _start()/_end() when
153 * a (remote) TLB is necessary.
154 *
155 * If invalidate_range() is used to manage a non-CPU TLB with
156 * shared page-tables, it not necessary to implement the
157 * invalidate_range_start()/end() notifiers, as
158 * invalidate_range() alread catches the points in time when an
159 * external TLB range needs to be flushed.
160 *
161 * The invalidate_range() function is called under the ptl
162 * spin-lock and not allowed to sleep.
163 *
164 * Note that this function might be called with just a sub-range
165 * of what was passed to invalidate_range_start()/end(), if
166 * called between those functions.
167 */
168 void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
169 unsigned long start, unsigned long end);
170 };
171
172 /*
173 * The notifier chains are protected by mmap_sem and/or the reverse map
174 * semaphores. Notifier chains are only changed when all reverse maps and
175 * the mmap_sem locks are taken.
176 *
177 * Therefore notifier chains can only be traversed when either
178 *
179 * 1. mmap_sem is held.
180 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
181 * 3. No other concurrent thread can access the list (release)
182 */
183 struct mmu_notifier {
184 struct hlist_node hlist;
185 const struct mmu_notifier_ops *ops;
186 };
187
188 static inline int mm_has_notifiers(struct mm_struct *mm)
189 {
190 return unlikely(mm->mmu_notifier_mm);
191 }
192
193 extern int mmu_notifier_register(struct mmu_notifier *mn,
194 struct mm_struct *mm);
195 extern int __mmu_notifier_register(struct mmu_notifier *mn,
196 struct mm_struct *mm);
197 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
198 struct mm_struct *mm);
199 extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
200 struct mm_struct *mm);
201 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
202 extern void __mmu_notifier_release(struct mm_struct *mm);
203 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
204 unsigned long start,
205 unsigned long end);
206 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
207 unsigned long start,
208 unsigned long end);
209 extern int __mmu_notifier_test_young(struct mm_struct *mm,
210 unsigned long address);
211 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
212 unsigned long address, pte_t pte);
213 extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
214 unsigned long start, unsigned long end);
215 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
216 unsigned long start, unsigned long end);
217 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
218 unsigned long start, unsigned long end);
219
220 static inline void mmu_notifier_release(struct mm_struct *mm)
221 {
222 if (mm_has_notifiers(mm))
223 __mmu_notifier_release(mm);
224 }
225
226 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
227 unsigned long start,
228 unsigned long end)
229 {
230 if (mm_has_notifiers(mm))
231 return __mmu_notifier_clear_flush_young(mm, start, end);
232 return 0;
233 }
234
235 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
236 unsigned long start,
237 unsigned long end)
238 {
239 if (mm_has_notifiers(mm))
240 return __mmu_notifier_clear_young(mm, start, end);
241 return 0;
242 }
243
244 static inline int mmu_notifier_test_young(struct mm_struct *mm,
245 unsigned long address)
246 {
247 if (mm_has_notifiers(mm))
248 return __mmu_notifier_test_young(mm, address);
249 return 0;
250 }
251
252 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
253 unsigned long address, pte_t pte)
254 {
255 if (mm_has_notifiers(mm))
256 __mmu_notifier_change_pte(mm, address, pte);
257 }
258
259 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
260 unsigned long start, unsigned long end)
261 {
262 if (mm_has_notifiers(mm))
263 __mmu_notifier_invalidate_range_start(mm, start, end);
264 }
265
266 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
267 unsigned long start, unsigned long end)
268 {
269 if (mm_has_notifiers(mm))
270 __mmu_notifier_invalidate_range_end(mm, start, end);
271 }
272
273 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
274 unsigned long start, unsigned long end)
275 {
276 if (mm_has_notifiers(mm))
277 __mmu_notifier_invalidate_range(mm, start, end);
278 }
279
280 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
281 {
282 mm->mmu_notifier_mm = NULL;
283 }
284
285 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
286 {
287 if (mm_has_notifiers(mm))
288 __mmu_notifier_mm_destroy(mm);
289 }
290
291 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
292 ({ \
293 int __young; \
294 struct vm_area_struct *___vma = __vma; \
295 unsigned long ___address = __address; \
296 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
297 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
298 ___address, \
299 ___address + \
300 PAGE_SIZE); \
301 __young; \
302 })
303
304 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
305 ({ \
306 int __young; \
307 struct vm_area_struct *___vma = __vma; \
308 unsigned long ___address = __address; \
309 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
310 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
311 ___address, \
312 ___address + \
313 PMD_SIZE); \
314 __young; \
315 })
316
317 #define ptep_clear_young_notify(__vma, __address, __ptep) \
318 ({ \
319 int __young; \
320 struct vm_area_struct *___vma = __vma; \
321 unsigned long ___address = __address; \
322 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
323 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
324 ___address + PAGE_SIZE); \
325 __young; \
326 })
327
328 #define pmdp_clear_young_notify(__vma, __address, __pmdp) \
329 ({ \
330 int __young; \
331 struct vm_area_struct *___vma = __vma; \
332 unsigned long ___address = __address; \
333 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
334 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
335 ___address + PMD_SIZE); \
336 __young; \
337 })
338
339 #define ptep_clear_flush_notify(__vma, __address, __ptep) \
340 ({ \
341 unsigned long ___addr = __address & PAGE_MASK; \
342 struct mm_struct *___mm = (__vma)->vm_mm; \
343 pte_t ___pte; \
344 \
345 ___pte = ptep_clear_flush(__vma, __address, __ptep); \
346 mmu_notifier_invalidate_range(___mm, ___addr, \
347 ___addr + PAGE_SIZE); \
348 \
349 ___pte; \
350 })
351
352 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \
353 ({ \
354 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \
355 struct mm_struct *___mm = (__vma)->vm_mm; \
356 pmd_t ___pmd; \
357 \
358 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \
359 mmu_notifier_invalidate_range(___mm, ___haddr, \
360 ___haddr + HPAGE_PMD_SIZE); \
361 \
362 ___pmd; \
363 })
364
365 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \
366 ({ \
367 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \
368 struct mm_struct *___mm = (__vma)->vm_mm; \
369 pud_t ___pud; \
370 \
371 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \
372 mmu_notifier_invalidate_range(___mm, ___haddr, \
373 ___haddr + HPAGE_PUD_SIZE); \
374 \
375 ___pud; \
376 })
377
378 /*
379 * set_pte_at_notify() sets the pte _after_ running the notifier.
380 * This is safe to start by updating the secondary MMUs, because the primary MMU
381 * pte invalidate must have already happened with a ptep_clear_flush() before
382 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
383 * required when we change both the protection of the mapping from read-only to
384 * read-write and the pfn (like during copy on write page faults). Otherwise the
385 * old page would remain mapped readonly in the secondary MMUs after the new
386 * page is already writable by some CPU through the primary MMU.
387 */
388 #define set_pte_at_notify(__mm, __address, __ptep, __pte) \
389 ({ \
390 struct mm_struct *___mm = __mm; \
391 unsigned long ___address = __address; \
392 pte_t ___pte = __pte; \
393 \
394 mmu_notifier_change_pte(___mm, ___address, ___pte); \
395 set_pte_at(___mm, ___address, __ptep, ___pte); \
396 })
397
398 extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
399 void (*func)(struct rcu_head *rcu));
400 extern void mmu_notifier_synchronize(void);
401
402 #else /* CONFIG_MMU_NOTIFIER */
403
404 static inline int mm_has_notifiers(struct mm_struct *mm)
405 {
406 return 0;
407 }
408
409 static inline void mmu_notifier_release(struct mm_struct *mm)
410 {
411 }
412
413 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
414 unsigned long start,
415 unsigned long end)
416 {
417 return 0;
418 }
419
420 static inline int mmu_notifier_test_young(struct mm_struct *mm,
421 unsigned long address)
422 {
423 return 0;
424 }
425
426 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
427 unsigned long address, pte_t pte)
428 {
429 }
430
431 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
432 unsigned long start, unsigned long end)
433 {
434 }
435
436 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
437 unsigned long start, unsigned long end)
438 {
439 }
440
441 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
442 unsigned long start, unsigned long end)
443 {
444 }
445
446 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
447 {
448 }
449
450 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
451 {
452 }
453
454 #define ptep_clear_flush_young_notify ptep_clear_flush_young
455 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
456 #define ptep_clear_young_notify ptep_test_and_clear_young
457 #define pmdp_clear_young_notify pmdp_test_and_clear_young
458 #define ptep_clear_flush_notify ptep_clear_flush
459 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
460 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
461 #define set_pte_at_notify set_pte_at
462
463 #endif /* CONFIG_MMU_NOTIFIER */
464
465 #endif /* _LINUX_MMU_NOTIFIER_H */