]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mmu_notifier.h
seccomp: Add filter flag to opt-out of SSB mitigation
[mirror_ubuntu-artful-kernel.git] / include / linux / mmu_notifier.h
1 #ifndef _LINUX_MMU_NOTIFIER_H
2 #define _LINUX_MMU_NOTIFIER_H
3
4 #include <linux/list.h>
5 #include <linux/spinlock.h>
6 #include <linux/mm_types.h>
7 #include <linux/srcu.h>
8
9 struct mmu_notifier;
10 struct mmu_notifier_ops;
11
12 #ifdef CONFIG_MMU_NOTIFIER
13
14 /*
15 * The mmu notifier_mm structure is allocated and installed in
16 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
17 * critical section and it's released only when mm_count reaches zero
18 * in mmdrop().
19 */
20 struct mmu_notifier_mm {
21 /* all mmu notifiers registerd in this mm are queued in this list */
22 struct hlist_head list;
23 /* to serialize the list modifications and hlist_unhashed */
24 spinlock_t lock;
25 };
26
27 struct mmu_notifier_ops {
28 /*
29 * Called either by mmu_notifier_unregister or when the mm is
30 * being destroyed by exit_mmap, always before all pages are
31 * freed. This can run concurrently with other mmu notifier
32 * methods (the ones invoked outside the mm context) and it
33 * should tear down all secondary mmu mappings and freeze the
34 * secondary mmu. If this method isn't implemented you've to
35 * be sure that nothing could possibly write to the pages
36 * through the secondary mmu by the time the last thread with
37 * tsk->mm == mm exits.
38 *
39 * As side note: the pages freed after ->release returns could
40 * be immediately reallocated by the gart at an alias physical
41 * address with a different cache model, so if ->release isn't
42 * implemented because all _software_ driven memory accesses
43 * through the secondary mmu are terminated by the time the
44 * last thread of this mm quits, you've also to be sure that
45 * speculative _hardware_ operations can't allocate dirty
46 * cachelines in the cpu that could not be snooped and made
47 * coherent with the other read and write operations happening
48 * through the gart alias address, so leading to memory
49 * corruption.
50 */
51 void (*release)(struct mmu_notifier *mn,
52 struct mm_struct *mm);
53
54 /*
55 * clear_flush_young is called after the VM is
56 * test-and-clearing the young/accessed bitflag in the
57 * pte. This way the VM will provide proper aging to the
58 * accesses to the page through the secondary MMUs and not
59 * only to the ones through the Linux pte.
60 * Start-end is necessary in case the secondary MMU is mapping the page
61 * at a smaller granularity than the primary MMU.
62 */
63 int (*clear_flush_young)(struct mmu_notifier *mn,
64 struct mm_struct *mm,
65 unsigned long start,
66 unsigned long end);
67
68 /*
69 * clear_young is a lightweight version of clear_flush_young. Like the
70 * latter, it is supposed to test-and-clear the young/accessed bitflag
71 * in the secondary pte, but it may omit flushing the secondary tlb.
72 */
73 int (*clear_young)(struct mmu_notifier *mn,
74 struct mm_struct *mm,
75 unsigned long start,
76 unsigned long end);
77
78 /*
79 * test_young is called to check the young/accessed bitflag in
80 * the secondary pte. This is used to know if the page is
81 * frequently used without actually clearing the flag or tearing
82 * down the secondary mapping on the page.
83 */
84 int (*test_young)(struct mmu_notifier *mn,
85 struct mm_struct *mm,
86 unsigned long address);
87
88 /*
89 * change_pte is called in cases that pte mapping to page is changed:
90 * for example, when ksm remaps pte to point to a new shared page.
91 */
92 void (*change_pte)(struct mmu_notifier *mn,
93 struct mm_struct *mm,
94 unsigned long address,
95 pte_t pte);
96
97 /*
98 * invalidate_range_start() and invalidate_range_end() must be
99 * paired and are called only when the mmap_sem and/or the
100 * locks protecting the reverse maps are held. If the subsystem
101 * can't guarantee that no additional references are taken to
102 * the pages in the range, it has to implement the
103 * invalidate_range() notifier to remove any references taken
104 * after invalidate_range_start().
105 *
106 * Invalidation of multiple concurrent ranges may be
107 * optionally permitted by the driver. Either way the
108 * establishment of sptes is forbidden in the range passed to
109 * invalidate_range_begin/end for the whole duration of the
110 * invalidate_range_begin/end critical section.
111 *
112 * invalidate_range_start() is called when all pages in the
113 * range are still mapped and have at least a refcount of one.
114 *
115 * invalidate_range_end() is called when all pages in the
116 * range have been unmapped and the pages have been freed by
117 * the VM.
118 *
119 * The VM will remove the page table entries and potentially
120 * the page between invalidate_range_start() and
121 * invalidate_range_end(). If the page must not be freed
122 * because of pending I/O or other circumstances then the
123 * invalidate_range_start() callback (or the initial mapping
124 * by the driver) must make sure that the refcount is kept
125 * elevated.
126 *
127 * If the driver increases the refcount when the pages are
128 * initially mapped into an address space then either
129 * invalidate_range_start() or invalidate_range_end() may
130 * decrease the refcount. If the refcount is decreased on
131 * invalidate_range_start() then the VM can free pages as page
132 * table entries are removed. If the refcount is only
133 * droppped on invalidate_range_end() then the driver itself
134 * will drop the last refcount but it must take care to flush
135 * any secondary tlb before doing the final free on the
136 * page. Pages will no longer be referenced by the linux
137 * address space but may still be referenced by sptes until
138 * the last refcount is dropped.
139 */
140 void (*invalidate_range_start)(struct mmu_notifier *mn,
141 struct mm_struct *mm,
142 unsigned long start, unsigned long end);
143 void (*invalidate_range_end)(struct mmu_notifier *mn,
144 struct mm_struct *mm,
145 unsigned long start, unsigned long end);
146
147 /*
148 * invalidate_range() is either called between
149 * invalidate_range_start() and invalidate_range_end() when the
150 * VM has to free pages that where unmapped, but before the
151 * pages are actually freed, or outside of _start()/_end() when
152 * a (remote) TLB is necessary.
153 *
154 * If invalidate_range() is used to manage a non-CPU TLB with
155 * shared page-tables, it not necessary to implement the
156 * invalidate_range_start()/end() notifiers, as
157 * invalidate_range() alread catches the points in time when an
158 * external TLB range needs to be flushed.
159 *
160 * The invalidate_range() function is called under the ptl
161 * spin-lock and not allowed to sleep.
162 *
163 * Note that this function might be called with just a sub-range
164 * of what was passed to invalidate_range_start()/end(), if
165 * called between those functions.
166 */
167 void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
168 unsigned long start, unsigned long end);
169 };
170
171 /*
172 * The notifier chains are protected by mmap_sem and/or the reverse map
173 * semaphores. Notifier chains are only changed when all reverse maps and
174 * the mmap_sem locks are taken.
175 *
176 * Therefore notifier chains can only be traversed when either
177 *
178 * 1. mmap_sem is held.
179 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
180 * 3. No other concurrent thread can access the list (release)
181 */
182 struct mmu_notifier {
183 struct hlist_node hlist;
184 const struct mmu_notifier_ops *ops;
185 };
186
187 static inline int mm_has_notifiers(struct mm_struct *mm)
188 {
189 return unlikely(mm->mmu_notifier_mm);
190 }
191
192 extern int mmu_notifier_register(struct mmu_notifier *mn,
193 struct mm_struct *mm);
194 extern int __mmu_notifier_register(struct mmu_notifier *mn,
195 struct mm_struct *mm);
196 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
197 struct mm_struct *mm);
198 extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
199 struct mm_struct *mm);
200 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
201 extern void __mmu_notifier_release(struct mm_struct *mm);
202 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
203 unsigned long start,
204 unsigned long end);
205 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
206 unsigned long start,
207 unsigned long end);
208 extern int __mmu_notifier_test_young(struct mm_struct *mm,
209 unsigned long address);
210 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
211 unsigned long address, pte_t pte);
212 extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
213 unsigned long start, unsigned long end);
214 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
215 unsigned long start, unsigned long end);
216 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
217 unsigned long start, unsigned long end);
218
219 static inline void mmu_notifier_release(struct mm_struct *mm)
220 {
221 if (mm_has_notifiers(mm))
222 __mmu_notifier_release(mm);
223 }
224
225 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
226 unsigned long start,
227 unsigned long end)
228 {
229 if (mm_has_notifiers(mm))
230 return __mmu_notifier_clear_flush_young(mm, start, end);
231 return 0;
232 }
233
234 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
235 unsigned long start,
236 unsigned long end)
237 {
238 if (mm_has_notifiers(mm))
239 return __mmu_notifier_clear_young(mm, start, end);
240 return 0;
241 }
242
243 static inline int mmu_notifier_test_young(struct mm_struct *mm,
244 unsigned long address)
245 {
246 if (mm_has_notifiers(mm))
247 return __mmu_notifier_test_young(mm, address);
248 return 0;
249 }
250
251 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
252 unsigned long address, pte_t pte)
253 {
254 if (mm_has_notifiers(mm))
255 __mmu_notifier_change_pte(mm, address, pte);
256 }
257
258 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
259 unsigned long start, unsigned long end)
260 {
261 if (mm_has_notifiers(mm))
262 __mmu_notifier_invalidate_range_start(mm, start, end);
263 }
264
265 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
266 unsigned long start, unsigned long end)
267 {
268 if (mm_has_notifiers(mm))
269 __mmu_notifier_invalidate_range_end(mm, start, end);
270 }
271
272 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
273 unsigned long start, unsigned long end)
274 {
275 if (mm_has_notifiers(mm))
276 __mmu_notifier_invalidate_range(mm, start, end);
277 }
278
279 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
280 {
281 mm->mmu_notifier_mm = NULL;
282 }
283
284 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
285 {
286 if (mm_has_notifiers(mm))
287 __mmu_notifier_mm_destroy(mm);
288 }
289
290 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
291 ({ \
292 int __young; \
293 struct vm_area_struct *___vma = __vma; \
294 unsigned long ___address = __address; \
295 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
296 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
297 ___address, \
298 ___address + \
299 PAGE_SIZE); \
300 __young; \
301 })
302
303 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
304 ({ \
305 int __young; \
306 struct vm_area_struct *___vma = __vma; \
307 unsigned long ___address = __address; \
308 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
309 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
310 ___address, \
311 ___address + \
312 PMD_SIZE); \
313 __young; \
314 })
315
316 #define ptep_clear_young_notify(__vma, __address, __ptep) \
317 ({ \
318 int __young; \
319 struct vm_area_struct *___vma = __vma; \
320 unsigned long ___address = __address; \
321 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
322 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
323 ___address + PAGE_SIZE); \
324 __young; \
325 })
326
327 #define pmdp_clear_young_notify(__vma, __address, __pmdp) \
328 ({ \
329 int __young; \
330 struct vm_area_struct *___vma = __vma; \
331 unsigned long ___address = __address; \
332 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
333 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
334 ___address + PMD_SIZE); \
335 __young; \
336 })
337
338 #define ptep_clear_flush_notify(__vma, __address, __ptep) \
339 ({ \
340 unsigned long ___addr = __address & PAGE_MASK; \
341 struct mm_struct *___mm = (__vma)->vm_mm; \
342 pte_t ___pte; \
343 \
344 ___pte = ptep_clear_flush(__vma, __address, __ptep); \
345 mmu_notifier_invalidate_range(___mm, ___addr, \
346 ___addr + PAGE_SIZE); \
347 \
348 ___pte; \
349 })
350
351 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \
352 ({ \
353 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \
354 struct mm_struct *___mm = (__vma)->vm_mm; \
355 pmd_t ___pmd; \
356 \
357 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \
358 mmu_notifier_invalidate_range(___mm, ___haddr, \
359 ___haddr + HPAGE_PMD_SIZE); \
360 \
361 ___pmd; \
362 })
363
364 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \
365 ({ \
366 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \
367 struct mm_struct *___mm = (__vma)->vm_mm; \
368 pud_t ___pud; \
369 \
370 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \
371 mmu_notifier_invalidate_range(___mm, ___haddr, \
372 ___haddr + HPAGE_PUD_SIZE); \
373 \
374 ___pud; \
375 })
376
377 /*
378 * set_pte_at_notify() sets the pte _after_ running the notifier.
379 * This is safe to start by updating the secondary MMUs, because the primary MMU
380 * pte invalidate must have already happened with a ptep_clear_flush() before
381 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
382 * required when we change both the protection of the mapping from read-only to
383 * read-write and the pfn (like during copy on write page faults). Otherwise the
384 * old page would remain mapped readonly in the secondary MMUs after the new
385 * page is already writable by some CPU through the primary MMU.
386 */
387 #define set_pte_at_notify(__mm, __address, __ptep, __pte) \
388 ({ \
389 struct mm_struct *___mm = __mm; \
390 unsigned long ___address = __address; \
391 pte_t ___pte = __pte; \
392 \
393 mmu_notifier_change_pte(___mm, ___address, ___pte); \
394 set_pte_at(___mm, ___address, __ptep, ___pte); \
395 })
396
397 extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
398 void (*func)(struct rcu_head *rcu));
399 extern void mmu_notifier_synchronize(void);
400
401 #else /* CONFIG_MMU_NOTIFIER */
402
403 static inline int mm_has_notifiers(struct mm_struct *mm)
404 {
405 return 0;
406 }
407
408 static inline void mmu_notifier_release(struct mm_struct *mm)
409 {
410 }
411
412 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
413 unsigned long start,
414 unsigned long end)
415 {
416 return 0;
417 }
418
419 static inline int mmu_notifier_test_young(struct mm_struct *mm,
420 unsigned long address)
421 {
422 return 0;
423 }
424
425 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
426 unsigned long address, pte_t pte)
427 {
428 }
429
430 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
431 unsigned long start, unsigned long end)
432 {
433 }
434
435 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
436 unsigned long start, unsigned long end)
437 {
438 }
439
440 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
441 unsigned long start, unsigned long end)
442 {
443 }
444
445 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
446 {
447 }
448
449 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
450 {
451 }
452
453 #define ptep_clear_flush_young_notify ptep_clear_flush_young
454 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
455 #define ptep_clear_young_notify ptep_test_and_clear_young
456 #define pmdp_clear_young_notify pmdp_test_and_clear_young
457 #define ptep_clear_flush_notify ptep_clear_flush
458 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
459 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
460 #define set_pte_at_notify set_pte_at
461
462 #endif /* CONFIG_MMU_NOTIFIER */
463
464 #endif /* _LINUX_MMU_NOTIFIER_H */