]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - include/linux/mmu_notifier.h
Merge tag 'csky-for-linus-5.2-fixup-gcc-unwind' of git://github.com/c-sky/csky-linux
[mirror_ubuntu-eoan-kernel.git] / include / linux / mmu_notifier.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4
5 #include <linux/list.h>
6 #include <linux/spinlock.h>
7 #include <linux/mm_types.h>
8 #include <linux/srcu.h>
9
10 struct mmu_notifier;
11 struct mmu_notifier_ops;
12
13 /**
14 * enum mmu_notifier_event - reason for the mmu notifier callback
15 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
16 * move the range
17 *
18 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
19 * madvise() or replacing a page by another one, ...).
20 *
21 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
22 * ie using the vma access permission (vm_page_prot) to update the whole range
23 * is enough no need to inspect changes to the CPU page table (mprotect()
24 * syscall)
25 *
26 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
27 * pages in the range so to mirror those changes the user must inspect the CPU
28 * page table (from the end callback).
29 *
30 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
31 * access flags). User should soft dirty the page in the end callback to make
32 * sure that anyone relying on soft dirtyness catch pages that might be written
33 * through non CPU mappings.
34 */
35 enum mmu_notifier_event {
36 MMU_NOTIFY_UNMAP = 0,
37 MMU_NOTIFY_CLEAR,
38 MMU_NOTIFY_PROTECTION_VMA,
39 MMU_NOTIFY_PROTECTION_PAGE,
40 MMU_NOTIFY_SOFT_DIRTY,
41 };
42
43 #ifdef CONFIG_MMU_NOTIFIER
44
45 /*
46 * The mmu notifier_mm structure is allocated and installed in
47 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
48 * critical section and it's released only when mm_count reaches zero
49 * in mmdrop().
50 */
51 struct mmu_notifier_mm {
52 /* all mmu notifiers registerd in this mm are queued in this list */
53 struct hlist_head list;
54 /* to serialize the list modifications and hlist_unhashed */
55 spinlock_t lock;
56 };
57
58 #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
59
60 struct mmu_notifier_range {
61 struct vm_area_struct *vma;
62 struct mm_struct *mm;
63 unsigned long start;
64 unsigned long end;
65 unsigned flags;
66 enum mmu_notifier_event event;
67 };
68
69 struct mmu_notifier_ops {
70 /*
71 * Called either by mmu_notifier_unregister or when the mm is
72 * being destroyed by exit_mmap, always before all pages are
73 * freed. This can run concurrently with other mmu notifier
74 * methods (the ones invoked outside the mm context) and it
75 * should tear down all secondary mmu mappings and freeze the
76 * secondary mmu. If this method isn't implemented you've to
77 * be sure that nothing could possibly write to the pages
78 * through the secondary mmu by the time the last thread with
79 * tsk->mm == mm exits.
80 *
81 * As side note: the pages freed after ->release returns could
82 * be immediately reallocated by the gart at an alias physical
83 * address with a different cache model, so if ->release isn't
84 * implemented because all _software_ driven memory accesses
85 * through the secondary mmu are terminated by the time the
86 * last thread of this mm quits, you've also to be sure that
87 * speculative _hardware_ operations can't allocate dirty
88 * cachelines in the cpu that could not be snooped and made
89 * coherent with the other read and write operations happening
90 * through the gart alias address, so leading to memory
91 * corruption.
92 */
93 void (*release)(struct mmu_notifier *mn,
94 struct mm_struct *mm);
95
96 /*
97 * clear_flush_young is called after the VM is
98 * test-and-clearing the young/accessed bitflag in the
99 * pte. This way the VM will provide proper aging to the
100 * accesses to the page through the secondary MMUs and not
101 * only to the ones through the Linux pte.
102 * Start-end is necessary in case the secondary MMU is mapping the page
103 * at a smaller granularity than the primary MMU.
104 */
105 int (*clear_flush_young)(struct mmu_notifier *mn,
106 struct mm_struct *mm,
107 unsigned long start,
108 unsigned long end);
109
110 /*
111 * clear_young is a lightweight version of clear_flush_young. Like the
112 * latter, it is supposed to test-and-clear the young/accessed bitflag
113 * in the secondary pte, but it may omit flushing the secondary tlb.
114 */
115 int (*clear_young)(struct mmu_notifier *mn,
116 struct mm_struct *mm,
117 unsigned long start,
118 unsigned long end);
119
120 /*
121 * test_young is called to check the young/accessed bitflag in
122 * the secondary pte. This is used to know if the page is
123 * frequently used without actually clearing the flag or tearing
124 * down the secondary mapping on the page.
125 */
126 int (*test_young)(struct mmu_notifier *mn,
127 struct mm_struct *mm,
128 unsigned long address);
129
130 /*
131 * change_pte is called in cases that pte mapping to page is changed:
132 * for example, when ksm remaps pte to point to a new shared page.
133 */
134 void (*change_pte)(struct mmu_notifier *mn,
135 struct mm_struct *mm,
136 unsigned long address,
137 pte_t pte);
138
139 /*
140 * invalidate_range_start() and invalidate_range_end() must be
141 * paired and are called only when the mmap_sem and/or the
142 * locks protecting the reverse maps are held. If the subsystem
143 * can't guarantee that no additional references are taken to
144 * the pages in the range, it has to implement the
145 * invalidate_range() notifier to remove any references taken
146 * after invalidate_range_start().
147 *
148 * Invalidation of multiple concurrent ranges may be
149 * optionally permitted by the driver. Either way the
150 * establishment of sptes is forbidden in the range passed to
151 * invalidate_range_begin/end for the whole duration of the
152 * invalidate_range_begin/end critical section.
153 *
154 * invalidate_range_start() is called when all pages in the
155 * range are still mapped and have at least a refcount of one.
156 *
157 * invalidate_range_end() is called when all pages in the
158 * range have been unmapped and the pages have been freed by
159 * the VM.
160 *
161 * The VM will remove the page table entries and potentially
162 * the page between invalidate_range_start() and
163 * invalidate_range_end(). If the page must not be freed
164 * because of pending I/O or other circumstances then the
165 * invalidate_range_start() callback (or the initial mapping
166 * by the driver) must make sure that the refcount is kept
167 * elevated.
168 *
169 * If the driver increases the refcount when the pages are
170 * initially mapped into an address space then either
171 * invalidate_range_start() or invalidate_range_end() may
172 * decrease the refcount. If the refcount is decreased on
173 * invalidate_range_start() then the VM can free pages as page
174 * table entries are removed. If the refcount is only
175 * droppped on invalidate_range_end() then the driver itself
176 * will drop the last refcount but it must take care to flush
177 * any secondary tlb before doing the final free on the
178 * page. Pages will no longer be referenced by the linux
179 * address space but may still be referenced by sptes until
180 * the last refcount is dropped.
181 *
182 * If blockable argument is set to false then the callback cannot
183 * sleep and has to return with -EAGAIN. 0 should be returned
184 * otherwise. Please note that if invalidate_range_start approves
185 * a non-blocking behavior then the same applies to
186 * invalidate_range_end.
187 *
188 */
189 int (*invalidate_range_start)(struct mmu_notifier *mn,
190 const struct mmu_notifier_range *range);
191 void (*invalidate_range_end)(struct mmu_notifier *mn,
192 const struct mmu_notifier_range *range);
193
194 /*
195 * invalidate_range() is either called between
196 * invalidate_range_start() and invalidate_range_end() when the
197 * VM has to free pages that where unmapped, but before the
198 * pages are actually freed, or outside of _start()/_end() when
199 * a (remote) TLB is necessary.
200 *
201 * If invalidate_range() is used to manage a non-CPU TLB with
202 * shared page-tables, it not necessary to implement the
203 * invalidate_range_start()/end() notifiers, as
204 * invalidate_range() alread catches the points in time when an
205 * external TLB range needs to be flushed. For more in depth
206 * discussion on this see Documentation/vm/mmu_notifier.rst
207 *
208 * Note that this function might be called with just a sub-range
209 * of what was passed to invalidate_range_start()/end(), if
210 * called between those functions.
211 */
212 void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
213 unsigned long start, unsigned long end);
214 };
215
216 /*
217 * The notifier chains are protected by mmap_sem and/or the reverse map
218 * semaphores. Notifier chains are only changed when all reverse maps and
219 * the mmap_sem locks are taken.
220 *
221 * Therefore notifier chains can only be traversed when either
222 *
223 * 1. mmap_sem is held.
224 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
225 * 3. No other concurrent thread can access the list (release)
226 */
227 struct mmu_notifier {
228 struct hlist_node hlist;
229 const struct mmu_notifier_ops *ops;
230 };
231
232 static inline int mm_has_notifiers(struct mm_struct *mm)
233 {
234 return unlikely(mm->mmu_notifier_mm);
235 }
236
237 extern int mmu_notifier_register(struct mmu_notifier *mn,
238 struct mm_struct *mm);
239 extern int __mmu_notifier_register(struct mmu_notifier *mn,
240 struct mm_struct *mm);
241 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
242 struct mm_struct *mm);
243 extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
244 struct mm_struct *mm);
245 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
246 extern void __mmu_notifier_release(struct mm_struct *mm);
247 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
248 unsigned long start,
249 unsigned long end);
250 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
251 unsigned long start,
252 unsigned long end);
253 extern int __mmu_notifier_test_young(struct mm_struct *mm,
254 unsigned long address);
255 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
256 unsigned long address, pte_t pte);
257 extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
258 extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
259 bool only_end);
260 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
261 unsigned long start, unsigned long end);
262 extern bool
263 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
264
265 static inline bool
266 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
267 {
268 return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
269 }
270
271 static inline void mmu_notifier_release(struct mm_struct *mm)
272 {
273 if (mm_has_notifiers(mm))
274 __mmu_notifier_release(mm);
275 }
276
277 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
278 unsigned long start,
279 unsigned long end)
280 {
281 if (mm_has_notifiers(mm))
282 return __mmu_notifier_clear_flush_young(mm, start, end);
283 return 0;
284 }
285
286 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
287 unsigned long start,
288 unsigned long end)
289 {
290 if (mm_has_notifiers(mm))
291 return __mmu_notifier_clear_young(mm, start, end);
292 return 0;
293 }
294
295 static inline int mmu_notifier_test_young(struct mm_struct *mm,
296 unsigned long address)
297 {
298 if (mm_has_notifiers(mm))
299 return __mmu_notifier_test_young(mm, address);
300 return 0;
301 }
302
303 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
304 unsigned long address, pte_t pte)
305 {
306 if (mm_has_notifiers(mm))
307 __mmu_notifier_change_pte(mm, address, pte);
308 }
309
310 static inline void
311 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
312 {
313 if (mm_has_notifiers(range->mm)) {
314 range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
315 __mmu_notifier_invalidate_range_start(range);
316 }
317 }
318
319 static inline int
320 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
321 {
322 if (mm_has_notifiers(range->mm)) {
323 range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
324 return __mmu_notifier_invalidate_range_start(range);
325 }
326 return 0;
327 }
328
329 static inline void
330 mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
331 {
332 if (mm_has_notifiers(range->mm))
333 __mmu_notifier_invalidate_range_end(range, false);
334 }
335
336 static inline void
337 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
338 {
339 if (mm_has_notifiers(range->mm))
340 __mmu_notifier_invalidate_range_end(range, true);
341 }
342
343 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
344 unsigned long start, unsigned long end)
345 {
346 if (mm_has_notifiers(mm))
347 __mmu_notifier_invalidate_range(mm, start, end);
348 }
349
350 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
351 {
352 mm->mmu_notifier_mm = NULL;
353 }
354
355 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
356 {
357 if (mm_has_notifiers(mm))
358 __mmu_notifier_mm_destroy(mm);
359 }
360
361
362 static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
363 enum mmu_notifier_event event,
364 unsigned flags,
365 struct vm_area_struct *vma,
366 struct mm_struct *mm,
367 unsigned long start,
368 unsigned long end)
369 {
370 range->vma = vma;
371 range->event = event;
372 range->mm = mm;
373 range->start = start;
374 range->end = end;
375 range->flags = flags;
376 }
377
378 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
379 ({ \
380 int __young; \
381 struct vm_area_struct *___vma = __vma; \
382 unsigned long ___address = __address; \
383 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
384 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
385 ___address, \
386 ___address + \
387 PAGE_SIZE); \
388 __young; \
389 })
390
391 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
392 ({ \
393 int __young; \
394 struct vm_area_struct *___vma = __vma; \
395 unsigned long ___address = __address; \
396 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
397 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
398 ___address, \
399 ___address + \
400 PMD_SIZE); \
401 __young; \
402 })
403
404 #define ptep_clear_young_notify(__vma, __address, __ptep) \
405 ({ \
406 int __young; \
407 struct vm_area_struct *___vma = __vma; \
408 unsigned long ___address = __address; \
409 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
410 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
411 ___address + PAGE_SIZE); \
412 __young; \
413 })
414
415 #define pmdp_clear_young_notify(__vma, __address, __pmdp) \
416 ({ \
417 int __young; \
418 struct vm_area_struct *___vma = __vma; \
419 unsigned long ___address = __address; \
420 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
421 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
422 ___address + PMD_SIZE); \
423 __young; \
424 })
425
426 #define ptep_clear_flush_notify(__vma, __address, __ptep) \
427 ({ \
428 unsigned long ___addr = __address & PAGE_MASK; \
429 struct mm_struct *___mm = (__vma)->vm_mm; \
430 pte_t ___pte; \
431 \
432 ___pte = ptep_clear_flush(__vma, __address, __ptep); \
433 mmu_notifier_invalidate_range(___mm, ___addr, \
434 ___addr + PAGE_SIZE); \
435 \
436 ___pte; \
437 })
438
439 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \
440 ({ \
441 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \
442 struct mm_struct *___mm = (__vma)->vm_mm; \
443 pmd_t ___pmd; \
444 \
445 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \
446 mmu_notifier_invalidate_range(___mm, ___haddr, \
447 ___haddr + HPAGE_PMD_SIZE); \
448 \
449 ___pmd; \
450 })
451
452 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \
453 ({ \
454 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \
455 struct mm_struct *___mm = (__vma)->vm_mm; \
456 pud_t ___pud; \
457 \
458 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \
459 mmu_notifier_invalidate_range(___mm, ___haddr, \
460 ___haddr + HPAGE_PUD_SIZE); \
461 \
462 ___pud; \
463 })
464
465 /*
466 * set_pte_at_notify() sets the pte _after_ running the notifier.
467 * This is safe to start by updating the secondary MMUs, because the primary MMU
468 * pte invalidate must have already happened with a ptep_clear_flush() before
469 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
470 * required when we change both the protection of the mapping from read-only to
471 * read-write and the pfn (like during copy on write page faults). Otherwise the
472 * old page would remain mapped readonly in the secondary MMUs after the new
473 * page is already writable by some CPU through the primary MMU.
474 */
475 #define set_pte_at_notify(__mm, __address, __ptep, __pte) \
476 ({ \
477 struct mm_struct *___mm = __mm; \
478 unsigned long ___address = __address; \
479 pte_t ___pte = __pte; \
480 \
481 mmu_notifier_change_pte(___mm, ___address, ___pte); \
482 set_pte_at(___mm, ___address, __ptep, ___pte); \
483 })
484
485 extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
486 void (*func)(struct rcu_head *rcu));
487
488 #else /* CONFIG_MMU_NOTIFIER */
489
490 struct mmu_notifier_range {
491 unsigned long start;
492 unsigned long end;
493 };
494
495 static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
496 unsigned long start,
497 unsigned long end)
498 {
499 range->start = start;
500 range->end = end;
501 }
502
503 #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \
504 _mmu_notifier_range_init(range, start, end)
505
506 static inline bool
507 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
508 {
509 return true;
510 }
511
512 static inline int mm_has_notifiers(struct mm_struct *mm)
513 {
514 return 0;
515 }
516
517 static inline void mmu_notifier_release(struct mm_struct *mm)
518 {
519 }
520
521 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
522 unsigned long start,
523 unsigned long end)
524 {
525 return 0;
526 }
527
528 static inline int mmu_notifier_test_young(struct mm_struct *mm,
529 unsigned long address)
530 {
531 return 0;
532 }
533
534 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
535 unsigned long address, pte_t pte)
536 {
537 }
538
539 static inline void
540 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
541 {
542 }
543
544 static inline int
545 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
546 {
547 return 0;
548 }
549
550 static inline
551 void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
552 {
553 }
554
555 static inline void
556 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
557 {
558 }
559
560 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
561 unsigned long start, unsigned long end)
562 {
563 }
564
565 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
566 {
567 }
568
569 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
570 {
571 }
572
573 #define mmu_notifier_range_update_to_read_only(r) false
574
575 #define ptep_clear_flush_young_notify ptep_clear_flush_young
576 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
577 #define ptep_clear_young_notify ptep_test_and_clear_young
578 #define pmdp_clear_young_notify pmdp_test_and_clear_young
579 #define ptep_clear_flush_notify ptep_clear_flush
580 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
581 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
582 #define set_pte_at_notify set_pte_at
583
584 #endif /* CONFIG_MMU_NOTIFIER */
585
586 #endif /* _LINUX_MMU_NOTIFIER_H */