]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/mmu_notifier.h
mm: memcontrol: convert NR_ANON_THPS account to pages
[mirror_ubuntu-jammy-kernel.git] / include / linux / mmu_notifier.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4
5 #include <linux/list.h>
6 #include <linux/spinlock.h>
7 #include <linux/mm_types.h>
8 #include <linux/mmap_lock.h>
9 #include <linux/srcu.h>
10 #include <linux/interval_tree.h>
11
12 struct mmu_notifier_subscriptions;
13 struct mmu_notifier;
14 struct mmu_notifier_range;
15 struct mmu_interval_notifier;
16
17 /**
18 * enum mmu_notifier_event - reason for the mmu notifier callback
19 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
20 * move the range
21 *
22 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
23 * madvise() or replacing a page by another one, ...).
24 *
25 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
26 * ie using the vma access permission (vm_page_prot) to update the whole range
27 * is enough no need to inspect changes to the CPU page table (mprotect()
28 * syscall)
29 *
30 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
31 * pages in the range so to mirror those changes the user must inspect the CPU
32 * page table (from the end callback).
33 *
34 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
35 * access flags). User should soft dirty the page in the end callback to make
36 * sure that anyone relying on soft dirtyness catch pages that might be written
37 * through non CPU mappings.
38 *
39 * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal
40 * that the mm refcount is zero and the range is no longer accessible.
41 *
42 * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal
43 * a device driver to possibly ignore the invalidation if the
44 * migrate_pgmap_owner field matches the driver's device private pgmap owner.
45 */
46 enum mmu_notifier_event {
47 MMU_NOTIFY_UNMAP = 0,
48 MMU_NOTIFY_CLEAR,
49 MMU_NOTIFY_PROTECTION_VMA,
50 MMU_NOTIFY_PROTECTION_PAGE,
51 MMU_NOTIFY_SOFT_DIRTY,
52 MMU_NOTIFY_RELEASE,
53 MMU_NOTIFY_MIGRATE,
54 };
55
56 #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
57
58 struct mmu_notifier_ops {
59 /*
60 * Called either by mmu_notifier_unregister or when the mm is
61 * being destroyed by exit_mmap, always before all pages are
62 * freed. This can run concurrently with other mmu notifier
63 * methods (the ones invoked outside the mm context) and it
64 * should tear down all secondary mmu mappings and freeze the
65 * secondary mmu. If this method isn't implemented you've to
66 * be sure that nothing could possibly write to the pages
67 * through the secondary mmu by the time the last thread with
68 * tsk->mm == mm exits.
69 *
70 * As side note: the pages freed after ->release returns could
71 * be immediately reallocated by the gart at an alias physical
72 * address with a different cache model, so if ->release isn't
73 * implemented because all _software_ driven memory accesses
74 * through the secondary mmu are terminated by the time the
75 * last thread of this mm quits, you've also to be sure that
76 * speculative _hardware_ operations can't allocate dirty
77 * cachelines in the cpu that could not be snooped and made
78 * coherent with the other read and write operations happening
79 * through the gart alias address, so leading to memory
80 * corruption.
81 */
82 void (*release)(struct mmu_notifier *subscription,
83 struct mm_struct *mm);
84
85 /*
86 * clear_flush_young is called after the VM is
87 * test-and-clearing the young/accessed bitflag in the
88 * pte. This way the VM will provide proper aging to the
89 * accesses to the page through the secondary MMUs and not
90 * only to the ones through the Linux pte.
91 * Start-end is necessary in case the secondary MMU is mapping the page
92 * at a smaller granularity than the primary MMU.
93 */
94 int (*clear_flush_young)(struct mmu_notifier *subscription,
95 struct mm_struct *mm,
96 unsigned long start,
97 unsigned long end);
98
99 /*
100 * clear_young is a lightweight version of clear_flush_young. Like the
101 * latter, it is supposed to test-and-clear the young/accessed bitflag
102 * in the secondary pte, but it may omit flushing the secondary tlb.
103 */
104 int (*clear_young)(struct mmu_notifier *subscription,
105 struct mm_struct *mm,
106 unsigned long start,
107 unsigned long end);
108
109 /*
110 * test_young is called to check the young/accessed bitflag in
111 * the secondary pte. This is used to know if the page is
112 * frequently used without actually clearing the flag or tearing
113 * down the secondary mapping on the page.
114 */
115 int (*test_young)(struct mmu_notifier *subscription,
116 struct mm_struct *mm,
117 unsigned long address);
118
119 /*
120 * change_pte is called in cases that pte mapping to page is changed:
121 * for example, when ksm remaps pte to point to a new shared page.
122 */
123 void (*change_pte)(struct mmu_notifier *subscription,
124 struct mm_struct *mm,
125 unsigned long address,
126 pte_t pte);
127
128 /*
129 * invalidate_range_start() and invalidate_range_end() must be
130 * paired and are called only when the mmap_lock and/or the
131 * locks protecting the reverse maps are held. If the subsystem
132 * can't guarantee that no additional references are taken to
133 * the pages in the range, it has to implement the
134 * invalidate_range() notifier to remove any references taken
135 * after invalidate_range_start().
136 *
137 * Invalidation of multiple concurrent ranges may be
138 * optionally permitted by the driver. Either way the
139 * establishment of sptes is forbidden in the range passed to
140 * invalidate_range_begin/end for the whole duration of the
141 * invalidate_range_begin/end critical section.
142 *
143 * invalidate_range_start() is called when all pages in the
144 * range are still mapped and have at least a refcount of one.
145 *
146 * invalidate_range_end() is called when all pages in the
147 * range have been unmapped and the pages have been freed by
148 * the VM.
149 *
150 * The VM will remove the page table entries and potentially
151 * the page between invalidate_range_start() and
152 * invalidate_range_end(). If the page must not be freed
153 * because of pending I/O or other circumstances then the
154 * invalidate_range_start() callback (or the initial mapping
155 * by the driver) must make sure that the refcount is kept
156 * elevated.
157 *
158 * If the driver increases the refcount when the pages are
159 * initially mapped into an address space then either
160 * invalidate_range_start() or invalidate_range_end() may
161 * decrease the refcount. If the refcount is decreased on
162 * invalidate_range_start() then the VM can free pages as page
163 * table entries are removed. If the refcount is only
164 * droppped on invalidate_range_end() then the driver itself
165 * will drop the last refcount but it must take care to flush
166 * any secondary tlb before doing the final free on the
167 * page. Pages will no longer be referenced by the linux
168 * address space but may still be referenced by sptes until
169 * the last refcount is dropped.
170 *
171 * If blockable argument is set to false then the callback cannot
172 * sleep and has to return with -EAGAIN. 0 should be returned
173 * otherwise. Please note that if invalidate_range_start approves
174 * a non-blocking behavior then the same applies to
175 * invalidate_range_end.
176 *
177 */
178 int (*invalidate_range_start)(struct mmu_notifier *subscription,
179 const struct mmu_notifier_range *range);
180 void (*invalidate_range_end)(struct mmu_notifier *subscription,
181 const struct mmu_notifier_range *range);
182
183 /*
184 * invalidate_range() is either called between
185 * invalidate_range_start() and invalidate_range_end() when the
186 * VM has to free pages that where unmapped, but before the
187 * pages are actually freed, or outside of _start()/_end() when
188 * a (remote) TLB is necessary.
189 *
190 * If invalidate_range() is used to manage a non-CPU TLB with
191 * shared page-tables, it not necessary to implement the
192 * invalidate_range_start()/end() notifiers, as
193 * invalidate_range() alread catches the points in time when an
194 * external TLB range needs to be flushed. For more in depth
195 * discussion on this see Documentation/vm/mmu_notifier.rst
196 *
197 * Note that this function might be called with just a sub-range
198 * of what was passed to invalidate_range_start()/end(), if
199 * called between those functions.
200 */
201 void (*invalidate_range)(struct mmu_notifier *subscription,
202 struct mm_struct *mm,
203 unsigned long start,
204 unsigned long end);
205
206 /*
207 * These callbacks are used with the get/put interface to manage the
208 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new
209 * notifier for use with the mm.
210 *
211 * free_notifier() is only called after the mmu_notifier has been
212 * fully put, calls to any ops callback are prevented and no ops
213 * callbacks are currently running. It is called from a SRCU callback
214 * and cannot sleep.
215 */
216 struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm);
217 void (*free_notifier)(struct mmu_notifier *subscription);
218 };
219
220 /*
221 * The notifier chains are protected by mmap_lock and/or the reverse map
222 * semaphores. Notifier chains are only changed when all reverse maps and
223 * the mmap_lock locks are taken.
224 *
225 * Therefore notifier chains can only be traversed when either
226 *
227 * 1. mmap_lock is held.
228 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
229 * 3. No other concurrent thread can access the list (release)
230 */
231 struct mmu_notifier {
232 struct hlist_node hlist;
233 const struct mmu_notifier_ops *ops;
234 struct mm_struct *mm;
235 struct rcu_head rcu;
236 unsigned int users;
237 };
238
239 /**
240 * struct mmu_interval_notifier_ops
241 * @invalidate: Upon return the caller must stop using any SPTEs within this
242 * range. This function can sleep. Return false only if sleeping
243 * was required but mmu_notifier_range_blockable(range) is false.
244 */
245 struct mmu_interval_notifier_ops {
246 bool (*invalidate)(struct mmu_interval_notifier *interval_sub,
247 const struct mmu_notifier_range *range,
248 unsigned long cur_seq);
249 };
250
251 struct mmu_interval_notifier {
252 struct interval_tree_node interval_tree;
253 const struct mmu_interval_notifier_ops *ops;
254 struct mm_struct *mm;
255 struct hlist_node deferred_item;
256 unsigned long invalidate_seq;
257 };
258
259 #ifdef CONFIG_MMU_NOTIFIER
260
261 #ifdef CONFIG_LOCKDEP
262 extern struct lockdep_map __mmu_notifier_invalidate_range_start_map;
263 #endif
264
265 struct mmu_notifier_range {
266 struct vm_area_struct *vma;
267 struct mm_struct *mm;
268 unsigned long start;
269 unsigned long end;
270 unsigned flags;
271 enum mmu_notifier_event event;
272 void *migrate_pgmap_owner;
273 };
274
275 static inline int mm_has_notifiers(struct mm_struct *mm)
276 {
277 return unlikely(mm->notifier_subscriptions);
278 }
279
280 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
281 struct mm_struct *mm);
282 static inline struct mmu_notifier *
283 mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm)
284 {
285 struct mmu_notifier *ret;
286
287 mmap_write_lock(mm);
288 ret = mmu_notifier_get_locked(ops, mm);
289 mmap_write_unlock(mm);
290 return ret;
291 }
292 void mmu_notifier_put(struct mmu_notifier *subscription);
293 void mmu_notifier_synchronize(void);
294
295 extern int mmu_notifier_register(struct mmu_notifier *subscription,
296 struct mm_struct *mm);
297 extern int __mmu_notifier_register(struct mmu_notifier *subscription,
298 struct mm_struct *mm);
299 extern void mmu_notifier_unregister(struct mmu_notifier *subscription,
300 struct mm_struct *mm);
301
302 unsigned long
303 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub);
304 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
305 struct mm_struct *mm, unsigned long start,
306 unsigned long length,
307 const struct mmu_interval_notifier_ops *ops);
308 int mmu_interval_notifier_insert_locked(
309 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
310 unsigned long start, unsigned long length,
311 const struct mmu_interval_notifier_ops *ops);
312 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub);
313
314 /**
315 * mmu_interval_set_seq - Save the invalidation sequence
316 * @interval_sub - The subscription passed to invalidate
317 * @cur_seq - The cur_seq passed to the invalidate() callback
318 *
319 * This must be called unconditionally from the invalidate callback of a
320 * struct mmu_interval_notifier_ops under the same lock that is used to call
321 * mmu_interval_read_retry(). It updates the sequence number for later use by
322 * mmu_interval_read_retry(). The provided cur_seq will always be odd.
323 *
324 * If the caller does not call mmu_interval_read_begin() or
325 * mmu_interval_read_retry() then this call is not required.
326 */
327 static inline void
328 mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub,
329 unsigned long cur_seq)
330 {
331 WRITE_ONCE(interval_sub->invalidate_seq, cur_seq);
332 }
333
334 /**
335 * mmu_interval_read_retry - End a read side critical section against a VA range
336 * interval_sub: The subscription
337 * seq: The return of the paired mmu_interval_read_begin()
338 *
339 * This MUST be called under a user provided lock that is also held
340 * unconditionally by op->invalidate() when it calls mmu_interval_set_seq().
341 *
342 * Each call should be paired with a single mmu_interval_read_begin() and
343 * should be used to conclude the read side.
344 *
345 * Returns true if an invalidation collided with this critical section, and
346 * the caller should retry.
347 */
348 static inline bool
349 mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub,
350 unsigned long seq)
351 {
352 return interval_sub->invalidate_seq != seq;
353 }
354
355 /**
356 * mmu_interval_check_retry - Test if a collision has occurred
357 * interval_sub: The subscription
358 * seq: The return of the matching mmu_interval_read_begin()
359 *
360 * This can be used in the critical section between mmu_interval_read_begin()
361 * and mmu_interval_read_retry(). A return of true indicates an invalidation
362 * has collided with this critical region and a future
363 * mmu_interval_read_retry() will return true.
364 *
365 * False is not reliable and only suggests a collision may not have
366 * occured. It can be called many times and does not have to hold the user
367 * provided lock.
368 *
369 * This call can be used as part of loops and other expensive operations to
370 * expedite a retry.
371 */
372 static inline bool
373 mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub,
374 unsigned long seq)
375 {
376 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
377 return READ_ONCE(interval_sub->invalidate_seq) != seq;
378 }
379
380 extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm);
381 extern void __mmu_notifier_release(struct mm_struct *mm);
382 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
383 unsigned long start,
384 unsigned long end);
385 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
386 unsigned long start,
387 unsigned long end);
388 extern int __mmu_notifier_test_young(struct mm_struct *mm,
389 unsigned long address);
390 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
391 unsigned long address, pte_t pte);
392 extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
393 extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
394 bool only_end);
395 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
396 unsigned long start, unsigned long end);
397 extern bool
398 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
399
400 static inline bool
401 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
402 {
403 return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
404 }
405
406 static inline void mmu_notifier_release(struct mm_struct *mm)
407 {
408 if (mm_has_notifiers(mm))
409 __mmu_notifier_release(mm);
410 }
411
412 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
413 unsigned long start,
414 unsigned long end)
415 {
416 if (mm_has_notifiers(mm))
417 return __mmu_notifier_clear_flush_young(mm, start, end);
418 return 0;
419 }
420
421 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
422 unsigned long start,
423 unsigned long end)
424 {
425 if (mm_has_notifiers(mm))
426 return __mmu_notifier_clear_young(mm, start, end);
427 return 0;
428 }
429
430 static inline int mmu_notifier_test_young(struct mm_struct *mm,
431 unsigned long address)
432 {
433 if (mm_has_notifiers(mm))
434 return __mmu_notifier_test_young(mm, address);
435 return 0;
436 }
437
438 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
439 unsigned long address, pte_t pte)
440 {
441 if (mm_has_notifiers(mm))
442 __mmu_notifier_change_pte(mm, address, pte);
443 }
444
445 static inline void
446 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
447 {
448 might_sleep();
449
450 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
451 if (mm_has_notifiers(range->mm)) {
452 range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
453 __mmu_notifier_invalidate_range_start(range);
454 }
455 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
456 }
457
458 static inline int
459 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
460 {
461 int ret = 0;
462
463 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
464 if (mm_has_notifiers(range->mm)) {
465 range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
466 ret = __mmu_notifier_invalidate_range_start(range);
467 }
468 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
469 return ret;
470 }
471
472 static inline void
473 mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
474 {
475 if (mmu_notifier_range_blockable(range))
476 might_sleep();
477
478 if (mm_has_notifiers(range->mm))
479 __mmu_notifier_invalidate_range_end(range, false);
480 }
481
482 static inline void
483 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
484 {
485 if (mm_has_notifiers(range->mm))
486 __mmu_notifier_invalidate_range_end(range, true);
487 }
488
489 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
490 unsigned long start, unsigned long end)
491 {
492 if (mm_has_notifiers(mm))
493 __mmu_notifier_invalidate_range(mm, start, end);
494 }
495
496 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
497 {
498 mm->notifier_subscriptions = NULL;
499 }
500
501 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
502 {
503 if (mm_has_notifiers(mm))
504 __mmu_notifier_subscriptions_destroy(mm);
505 }
506
507
508 static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
509 enum mmu_notifier_event event,
510 unsigned flags,
511 struct vm_area_struct *vma,
512 struct mm_struct *mm,
513 unsigned long start,
514 unsigned long end)
515 {
516 range->vma = vma;
517 range->event = event;
518 range->mm = mm;
519 range->start = start;
520 range->end = end;
521 range->flags = flags;
522 }
523
524 static inline void mmu_notifier_range_init_migrate(
525 struct mmu_notifier_range *range, unsigned int flags,
526 struct vm_area_struct *vma, struct mm_struct *mm,
527 unsigned long start, unsigned long end, void *pgmap)
528 {
529 mmu_notifier_range_init(range, MMU_NOTIFY_MIGRATE, flags, vma, mm,
530 start, end);
531 range->migrate_pgmap_owner = pgmap;
532 }
533
534 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
535 ({ \
536 int __young; \
537 struct vm_area_struct *___vma = __vma; \
538 unsigned long ___address = __address; \
539 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
540 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
541 ___address, \
542 ___address + \
543 PAGE_SIZE); \
544 __young; \
545 })
546
547 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
548 ({ \
549 int __young; \
550 struct vm_area_struct *___vma = __vma; \
551 unsigned long ___address = __address; \
552 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
553 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
554 ___address, \
555 ___address + \
556 PMD_SIZE); \
557 __young; \
558 })
559
560 #define ptep_clear_young_notify(__vma, __address, __ptep) \
561 ({ \
562 int __young; \
563 struct vm_area_struct *___vma = __vma; \
564 unsigned long ___address = __address; \
565 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
566 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
567 ___address + PAGE_SIZE); \
568 __young; \
569 })
570
571 #define pmdp_clear_young_notify(__vma, __address, __pmdp) \
572 ({ \
573 int __young; \
574 struct vm_area_struct *___vma = __vma; \
575 unsigned long ___address = __address; \
576 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
577 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
578 ___address + PMD_SIZE); \
579 __young; \
580 })
581
582 #define ptep_clear_flush_notify(__vma, __address, __ptep) \
583 ({ \
584 unsigned long ___addr = __address & PAGE_MASK; \
585 struct mm_struct *___mm = (__vma)->vm_mm; \
586 pte_t ___pte; \
587 \
588 ___pte = ptep_clear_flush(__vma, __address, __ptep); \
589 mmu_notifier_invalidate_range(___mm, ___addr, \
590 ___addr + PAGE_SIZE); \
591 \
592 ___pte; \
593 })
594
595 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \
596 ({ \
597 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \
598 struct mm_struct *___mm = (__vma)->vm_mm; \
599 pmd_t ___pmd; \
600 \
601 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \
602 mmu_notifier_invalidate_range(___mm, ___haddr, \
603 ___haddr + HPAGE_PMD_SIZE); \
604 \
605 ___pmd; \
606 })
607
608 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \
609 ({ \
610 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \
611 struct mm_struct *___mm = (__vma)->vm_mm; \
612 pud_t ___pud; \
613 \
614 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \
615 mmu_notifier_invalidate_range(___mm, ___haddr, \
616 ___haddr + HPAGE_PUD_SIZE); \
617 \
618 ___pud; \
619 })
620
621 /*
622 * set_pte_at_notify() sets the pte _after_ running the notifier.
623 * This is safe to start by updating the secondary MMUs, because the primary MMU
624 * pte invalidate must have already happened with a ptep_clear_flush() before
625 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
626 * required when we change both the protection of the mapping from read-only to
627 * read-write and the pfn (like during copy on write page faults). Otherwise the
628 * old page would remain mapped readonly in the secondary MMUs after the new
629 * page is already writable by some CPU through the primary MMU.
630 */
631 #define set_pte_at_notify(__mm, __address, __ptep, __pte) \
632 ({ \
633 struct mm_struct *___mm = __mm; \
634 unsigned long ___address = __address; \
635 pte_t ___pte = __pte; \
636 \
637 mmu_notifier_change_pte(___mm, ___address, ___pte); \
638 set_pte_at(___mm, ___address, __ptep, ___pte); \
639 })
640
641 #else /* CONFIG_MMU_NOTIFIER */
642
643 struct mmu_notifier_range {
644 unsigned long start;
645 unsigned long end;
646 };
647
648 static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
649 unsigned long start,
650 unsigned long end)
651 {
652 range->start = start;
653 range->end = end;
654 }
655
656 #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \
657 _mmu_notifier_range_init(range, start, end)
658 #define mmu_notifier_range_init_migrate(range, flags, vma, mm, start, end, \
659 pgmap) \
660 _mmu_notifier_range_init(range, start, end)
661
662 static inline bool
663 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
664 {
665 return true;
666 }
667
668 static inline int mm_has_notifiers(struct mm_struct *mm)
669 {
670 return 0;
671 }
672
673 static inline void mmu_notifier_release(struct mm_struct *mm)
674 {
675 }
676
677 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
678 unsigned long start,
679 unsigned long end)
680 {
681 return 0;
682 }
683
684 static inline int mmu_notifier_test_young(struct mm_struct *mm,
685 unsigned long address)
686 {
687 return 0;
688 }
689
690 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
691 unsigned long address, pte_t pte)
692 {
693 }
694
695 static inline void
696 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
697 {
698 }
699
700 static inline int
701 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
702 {
703 return 0;
704 }
705
706 static inline
707 void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
708 {
709 }
710
711 static inline void
712 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
713 {
714 }
715
716 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
717 unsigned long start, unsigned long end)
718 {
719 }
720
721 static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
722 {
723 }
724
725 static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
726 {
727 }
728
729 #define mmu_notifier_range_update_to_read_only(r) false
730
731 #define ptep_clear_flush_young_notify ptep_clear_flush_young
732 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
733 #define ptep_clear_young_notify ptep_test_and_clear_young
734 #define pmdp_clear_young_notify pmdp_test_and_clear_young
735 #define ptep_clear_flush_notify ptep_clear_flush
736 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
737 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
738 #define set_pte_at_notify set_pte_at
739
740 static inline void mmu_notifier_synchronize(void)
741 {
742 }
743
744 #endif /* CONFIG_MMU_NOTIFIER */
745
746 #endif /* _LINUX_MMU_NOTIFIER_H */