]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mmzone.h
change zonelist order: zonelist order selection logic
[mirror_ubuntu-bionic-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
18
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26
27 struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30 };
31
32 struct pglist_data;
33
34 /*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40 #if defined(CONFIG_SMP)
41 struct zone_padding {
42 char x[0];
43 } ____cacheline_internodealigned_in_smp;
44 #define ZONE_PADDING(name) struct zone_padding name;
45 #else
46 #define ZONE_PADDING(name)
47 #endif
48
49 enum zone_stat_item {
50 /* First 128 byte cacheline (assuming 64 bit words) */
51 NR_FREE_PAGES,
52 NR_INACTIVE,
53 NR_ACTIVE,
54 NR_ANON_PAGES, /* Mapped anonymous pages */
55 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
56 only modified from process context */
57 NR_FILE_PAGES,
58 NR_FILE_DIRTY,
59 NR_WRITEBACK,
60 /* Second 128 byte cacheline */
61 NR_SLAB_RECLAIMABLE,
62 NR_SLAB_UNRECLAIMABLE,
63 NR_PAGETABLE, /* used for pagetables */
64 NR_UNSTABLE_NFS, /* NFS unstable pages */
65 NR_BOUNCE,
66 NR_VMSCAN_WRITE,
67 #ifdef CONFIG_NUMA
68 NUMA_HIT, /* allocated in intended node */
69 NUMA_MISS, /* allocated in non intended node */
70 NUMA_FOREIGN, /* was intended here, hit elsewhere */
71 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
72 NUMA_LOCAL, /* allocation from local node */
73 NUMA_OTHER, /* allocation from other node */
74 #endif
75 NR_VM_ZONE_STAT_ITEMS };
76
77 struct per_cpu_pages {
78 int count; /* number of pages in the list */
79 int high; /* high watermark, emptying needed */
80 int batch; /* chunk size for buddy add/remove */
81 struct list_head list; /* the list of pages */
82 };
83
84 struct per_cpu_pageset {
85 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
86 #ifdef CONFIG_NUMA
87 s8 expire;
88 #endif
89 #ifdef CONFIG_SMP
90 s8 stat_threshold;
91 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
92 #endif
93 } ____cacheline_aligned_in_smp;
94
95 #ifdef CONFIG_NUMA
96 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
97 #else
98 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
99 #endif
100
101 enum zone_type {
102 #ifdef CONFIG_ZONE_DMA
103 /*
104 * ZONE_DMA is used when there are devices that are not able
105 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
106 * carve out the portion of memory that is needed for these devices.
107 * The range is arch specific.
108 *
109 * Some examples
110 *
111 * Architecture Limit
112 * ---------------------------
113 * parisc, ia64, sparc <4G
114 * s390 <2G
115 * arm26 <48M
116 * arm Various
117 * alpha Unlimited or 0-16MB.
118 *
119 * i386, x86_64 and multiple other arches
120 * <16M.
121 */
122 ZONE_DMA,
123 #endif
124 #ifdef CONFIG_ZONE_DMA32
125 /*
126 * x86_64 needs two ZONE_DMAs because it supports devices that are
127 * only able to do DMA to the lower 16M but also 32 bit devices that
128 * can only do DMA areas below 4G.
129 */
130 ZONE_DMA32,
131 #endif
132 /*
133 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
134 * performed on pages in ZONE_NORMAL if the DMA devices support
135 * transfers to all addressable memory.
136 */
137 ZONE_NORMAL,
138 #ifdef CONFIG_HIGHMEM
139 /*
140 * A memory area that is only addressable by the kernel through
141 * mapping portions into its own address space. This is for example
142 * used by i386 to allow the kernel to address the memory beyond
143 * 900MB. The kernel will set up special mappings (page
144 * table entries on i386) for each page that the kernel needs to
145 * access.
146 */
147 ZONE_HIGHMEM,
148 #endif
149 MAX_NR_ZONES
150 };
151
152 /*
153 * When a memory allocation must conform to specific limitations (such
154 * as being suitable for DMA) the caller will pass in hints to the
155 * allocator in the gfp_mask, in the zone modifier bits. These bits
156 * are used to select a priority ordered list of memory zones which
157 * match the requested limits. See gfp_zone() in include/linux/gfp.h
158 */
159
160 /*
161 * Count the active zones. Note that the use of defined(X) outside
162 * #if and family is not necessarily defined so ensure we cannot use
163 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
164 */
165 #define __ZONE_COUNT ( \
166 defined(CONFIG_ZONE_DMA) \
167 + defined(CONFIG_ZONE_DMA32) \
168 + 1 \
169 + defined(CONFIG_HIGHMEM) \
170 )
171 #if __ZONE_COUNT < 2
172 #define ZONES_SHIFT 0
173 #elif __ZONE_COUNT <= 2
174 #define ZONES_SHIFT 1
175 #elif __ZONE_COUNT <= 4
176 #define ZONES_SHIFT 2
177 #else
178 #error ZONES_SHIFT -- too many zones configured adjust calculation
179 #endif
180 #undef __ZONE_COUNT
181
182 struct zone {
183 /* Fields commonly accessed by the page allocator */
184 unsigned long pages_min, pages_low, pages_high;
185 /*
186 * We don't know if the memory that we're going to allocate will be freeable
187 * or/and it will be released eventually, so to avoid totally wasting several
188 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
189 * to run OOM on the lower zones despite there's tons of freeable ram
190 * on the higher zones). This array is recalculated at runtime if the
191 * sysctl_lowmem_reserve_ratio sysctl changes.
192 */
193 unsigned long lowmem_reserve[MAX_NR_ZONES];
194
195 #ifdef CONFIG_NUMA
196 int node;
197 /*
198 * zone reclaim becomes active if more unmapped pages exist.
199 */
200 unsigned long min_unmapped_pages;
201 unsigned long min_slab_pages;
202 struct per_cpu_pageset *pageset[NR_CPUS];
203 #else
204 struct per_cpu_pageset pageset[NR_CPUS];
205 #endif
206 /*
207 * free areas of different sizes
208 */
209 spinlock_t lock;
210 #ifdef CONFIG_MEMORY_HOTPLUG
211 /* see spanned/present_pages for more description */
212 seqlock_t span_seqlock;
213 #endif
214 struct free_area free_area[MAX_ORDER];
215
216
217 ZONE_PADDING(_pad1_)
218
219 /* Fields commonly accessed by the page reclaim scanner */
220 spinlock_t lru_lock;
221 struct list_head active_list;
222 struct list_head inactive_list;
223 unsigned long nr_scan_active;
224 unsigned long nr_scan_inactive;
225 unsigned long pages_scanned; /* since last reclaim */
226 int all_unreclaimable; /* All pages pinned */
227
228 /* A count of how many reclaimers are scanning this zone */
229 atomic_t reclaim_in_progress;
230
231 /* Zone statistics */
232 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
233
234 /*
235 * prev_priority holds the scanning priority for this zone. It is
236 * defined as the scanning priority at which we achieved our reclaim
237 * target at the previous try_to_free_pages() or balance_pgdat()
238 * invokation.
239 *
240 * We use prev_priority as a measure of how much stress page reclaim is
241 * under - it drives the swappiness decision: whether to unmap mapped
242 * pages.
243 *
244 * Access to both this field is quite racy even on uniprocessor. But
245 * it is expected to average out OK.
246 */
247 int prev_priority;
248
249
250 ZONE_PADDING(_pad2_)
251 /* Rarely used or read-mostly fields */
252
253 /*
254 * wait_table -- the array holding the hash table
255 * wait_table_hash_nr_entries -- the size of the hash table array
256 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
257 *
258 * The purpose of all these is to keep track of the people
259 * waiting for a page to become available and make them
260 * runnable again when possible. The trouble is that this
261 * consumes a lot of space, especially when so few things
262 * wait on pages at a given time. So instead of using
263 * per-page waitqueues, we use a waitqueue hash table.
264 *
265 * The bucket discipline is to sleep on the same queue when
266 * colliding and wake all in that wait queue when removing.
267 * When something wakes, it must check to be sure its page is
268 * truly available, a la thundering herd. The cost of a
269 * collision is great, but given the expected load of the
270 * table, they should be so rare as to be outweighed by the
271 * benefits from the saved space.
272 *
273 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
274 * primary users of these fields, and in mm/page_alloc.c
275 * free_area_init_core() performs the initialization of them.
276 */
277 wait_queue_head_t * wait_table;
278 unsigned long wait_table_hash_nr_entries;
279 unsigned long wait_table_bits;
280
281 /*
282 * Discontig memory support fields.
283 */
284 struct pglist_data *zone_pgdat;
285 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
286 unsigned long zone_start_pfn;
287
288 /*
289 * zone_start_pfn, spanned_pages and present_pages are all
290 * protected by span_seqlock. It is a seqlock because it has
291 * to be read outside of zone->lock, and it is done in the main
292 * allocator path. But, it is written quite infrequently.
293 *
294 * The lock is declared along with zone->lock because it is
295 * frequently read in proximity to zone->lock. It's good to
296 * give them a chance of being in the same cacheline.
297 */
298 unsigned long spanned_pages; /* total size, including holes */
299 unsigned long present_pages; /* amount of memory (excluding holes) */
300
301 /*
302 * rarely used fields:
303 */
304 const char *name;
305 } ____cacheline_internodealigned_in_smp;
306
307 /*
308 * The "priority" of VM scanning is how much of the queues we will scan in one
309 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
310 * queues ("queue_length >> 12") during an aging round.
311 */
312 #define DEF_PRIORITY 12
313
314 /* Maximum number of zones on a zonelist */
315 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
316
317 #ifdef CONFIG_NUMA
318 /*
319 * We cache key information from each zonelist for smaller cache
320 * footprint when scanning for free pages in get_page_from_freelist().
321 *
322 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
323 * up short of free memory since the last time (last_fullzone_zap)
324 * we zero'd fullzones.
325 * 2) The array z_to_n[] maps each zone in the zonelist to its node
326 * id, so that we can efficiently evaluate whether that node is
327 * set in the current tasks mems_allowed.
328 *
329 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
330 * indexed by a zones offset in the zonelist zones[] array.
331 *
332 * The get_page_from_freelist() routine does two scans. During the
333 * first scan, we skip zones whose corresponding bit in 'fullzones'
334 * is set or whose corresponding node in current->mems_allowed (which
335 * comes from cpusets) is not set. During the second scan, we bypass
336 * this zonelist_cache, to ensure we look methodically at each zone.
337 *
338 * Once per second, we zero out (zap) fullzones, forcing us to
339 * reconsider nodes that might have regained more free memory.
340 * The field last_full_zap is the time we last zapped fullzones.
341 *
342 * This mechanism reduces the amount of time we waste repeatedly
343 * reexaming zones for free memory when they just came up low on
344 * memory momentarilly ago.
345 *
346 * The zonelist_cache struct members logically belong in struct
347 * zonelist. However, the mempolicy zonelists constructed for
348 * MPOL_BIND are intentionally variable length (and usually much
349 * shorter). A general purpose mechanism for handling structs with
350 * multiple variable length members is more mechanism than we want
351 * here. We resort to some special case hackery instead.
352 *
353 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
354 * part because they are shorter), so we put the fixed length stuff
355 * at the front of the zonelist struct, ending in a variable length
356 * zones[], as is needed by MPOL_BIND.
357 *
358 * Then we put the optional zonelist cache on the end of the zonelist
359 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
360 * the fixed length portion at the front of the struct. This pointer
361 * both enables us to find the zonelist cache, and in the case of
362 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
363 * to know that the zonelist cache is not there.
364 *
365 * The end result is that struct zonelists come in two flavors:
366 * 1) The full, fixed length version, shown below, and
367 * 2) The custom zonelists for MPOL_BIND.
368 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
369 *
370 * Even though there may be multiple CPU cores on a node modifying
371 * fullzones or last_full_zap in the same zonelist_cache at the same
372 * time, we don't lock it. This is just hint data - if it is wrong now
373 * and then, the allocator will still function, perhaps a bit slower.
374 */
375
376
377 struct zonelist_cache {
378 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
379 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
380 unsigned long last_full_zap; /* when last zap'd (jiffies) */
381 };
382 #else
383 struct zonelist_cache;
384 #endif
385
386 /*
387 * One allocation request operates on a zonelist. A zonelist
388 * is a list of zones, the first one is the 'goal' of the
389 * allocation, the other zones are fallback zones, in decreasing
390 * priority.
391 *
392 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
393 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
394 */
395
396 struct zonelist {
397 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
398 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
399 #ifdef CONFIG_NUMA
400 struct zonelist_cache zlcache; // optional ...
401 #endif
402 };
403
404 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
405 struct node_active_region {
406 unsigned long start_pfn;
407 unsigned long end_pfn;
408 int nid;
409 };
410 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
411
412 #ifndef CONFIG_DISCONTIGMEM
413 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
414 extern struct page *mem_map;
415 #endif
416
417 /*
418 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
419 * (mostly NUMA machines?) to denote a higher-level memory zone than the
420 * zone denotes.
421 *
422 * On NUMA machines, each NUMA node would have a pg_data_t to describe
423 * it's memory layout.
424 *
425 * Memory statistics and page replacement data structures are maintained on a
426 * per-zone basis.
427 */
428 struct bootmem_data;
429 typedef struct pglist_data {
430 struct zone node_zones[MAX_NR_ZONES];
431 struct zonelist node_zonelists[MAX_NR_ZONES];
432 int nr_zones;
433 #ifdef CONFIG_FLAT_NODE_MEM_MAP
434 struct page *node_mem_map;
435 #endif
436 struct bootmem_data *bdata;
437 #ifdef CONFIG_MEMORY_HOTPLUG
438 /*
439 * Must be held any time you expect node_start_pfn, node_present_pages
440 * or node_spanned_pages stay constant. Holding this will also
441 * guarantee that any pfn_valid() stays that way.
442 *
443 * Nests above zone->lock and zone->size_seqlock.
444 */
445 spinlock_t node_size_lock;
446 #endif
447 unsigned long node_start_pfn;
448 unsigned long node_present_pages; /* total number of physical pages */
449 unsigned long node_spanned_pages; /* total size of physical page
450 range, including holes */
451 int node_id;
452 wait_queue_head_t kswapd_wait;
453 struct task_struct *kswapd;
454 int kswapd_max_order;
455 } pg_data_t;
456
457 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
458 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
459 #ifdef CONFIG_FLAT_NODE_MEM_MAP
460 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
461 #else
462 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
463 #endif
464 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
465
466 #include <linux/memory_hotplug.h>
467
468 void get_zone_counts(unsigned long *active, unsigned long *inactive,
469 unsigned long *free);
470 void build_all_zonelists(void);
471 void wakeup_kswapd(struct zone *zone, int order);
472 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
473 int classzone_idx, int alloc_flags);
474 enum memmap_context {
475 MEMMAP_EARLY,
476 MEMMAP_HOTPLUG,
477 };
478 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
479 unsigned long size,
480 enum memmap_context context);
481
482 #ifdef CONFIG_HAVE_MEMORY_PRESENT
483 void memory_present(int nid, unsigned long start, unsigned long end);
484 #else
485 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
486 #endif
487
488 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
489 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
490 #endif
491
492 /*
493 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
494 */
495 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
496
497 static inline int populated_zone(struct zone *zone)
498 {
499 return (!!zone->present_pages);
500 }
501
502 static inline int is_highmem_idx(enum zone_type idx)
503 {
504 #ifdef CONFIG_HIGHMEM
505 return (idx == ZONE_HIGHMEM);
506 #else
507 return 0;
508 #endif
509 }
510
511 static inline int is_normal_idx(enum zone_type idx)
512 {
513 return (idx == ZONE_NORMAL);
514 }
515
516 /**
517 * is_highmem - helper function to quickly check if a struct zone is a
518 * highmem zone or not. This is an attempt to keep references
519 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
520 * @zone - pointer to struct zone variable
521 */
522 static inline int is_highmem(struct zone *zone)
523 {
524 #ifdef CONFIG_HIGHMEM
525 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
526 #else
527 return 0;
528 #endif
529 }
530
531 static inline int is_normal(struct zone *zone)
532 {
533 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
534 }
535
536 static inline int is_dma32(struct zone *zone)
537 {
538 #ifdef CONFIG_ZONE_DMA32
539 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
540 #else
541 return 0;
542 #endif
543 }
544
545 static inline int is_dma(struct zone *zone)
546 {
547 #ifdef CONFIG_ZONE_DMA
548 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
549 #else
550 return 0;
551 #endif
552 }
553
554 /* These two functions are used to setup the per zone pages min values */
555 struct ctl_table;
556 struct file;
557 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
558 void __user *, size_t *, loff_t *);
559 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
560 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
561 void __user *, size_t *, loff_t *);
562 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
563 void __user *, size_t *, loff_t *);
564 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
565 struct file *, void __user *, size_t *, loff_t *);
566 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
567 struct file *, void __user *, size_t *, loff_t *);
568
569 extern int numa_zonelist_order_handler(struct ctl_table *, int,
570 struct file *, void __user *, size_t *, loff_t *);
571 extern char numa_zonelist_order[];
572 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
573
574 #include <linux/topology.h>
575 /* Returns the number of the current Node. */
576 #ifndef numa_node_id
577 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
578 #endif
579
580 #ifndef CONFIG_NEED_MULTIPLE_NODES
581
582 extern struct pglist_data contig_page_data;
583 #define NODE_DATA(nid) (&contig_page_data)
584 #define NODE_MEM_MAP(nid) mem_map
585 #define MAX_NODES_SHIFT 1
586
587 #else /* CONFIG_NEED_MULTIPLE_NODES */
588
589 #include <asm/mmzone.h>
590
591 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
592
593 extern struct pglist_data *first_online_pgdat(void);
594 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
595 extern struct zone *next_zone(struct zone *zone);
596
597 /**
598 * for_each_pgdat - helper macro to iterate over all nodes
599 * @pgdat - pointer to a pg_data_t variable
600 */
601 #define for_each_online_pgdat(pgdat) \
602 for (pgdat = first_online_pgdat(); \
603 pgdat; \
604 pgdat = next_online_pgdat(pgdat))
605 /**
606 * for_each_zone - helper macro to iterate over all memory zones
607 * @zone - pointer to struct zone variable
608 *
609 * The user only needs to declare the zone variable, for_each_zone
610 * fills it in.
611 */
612 #define for_each_zone(zone) \
613 for (zone = (first_online_pgdat())->node_zones; \
614 zone; \
615 zone = next_zone(zone))
616
617 #ifdef CONFIG_SPARSEMEM
618 #include <asm/sparsemem.h>
619 #endif
620
621 #if BITS_PER_LONG == 32
622 /*
623 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
624 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
625 */
626 #define FLAGS_RESERVED 9
627
628 #elif BITS_PER_LONG == 64
629 /*
630 * with 64 bit flags field, there's plenty of room.
631 */
632 #define FLAGS_RESERVED 32
633
634 #else
635
636 #error BITS_PER_LONG not defined
637
638 #endif
639
640 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
641 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
642 #define early_pfn_to_nid(nid) (0UL)
643 #endif
644
645 #ifdef CONFIG_FLATMEM
646 #define pfn_to_nid(pfn) (0)
647 #endif
648
649 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
650 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
651
652 #ifdef CONFIG_SPARSEMEM
653
654 /*
655 * SECTION_SHIFT #bits space required to store a section #
656 *
657 * PA_SECTION_SHIFT physical address to/from section number
658 * PFN_SECTION_SHIFT pfn to/from section number
659 */
660 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
661
662 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
663 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
664
665 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
666
667 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
668 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
669
670 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
671 #error Allocator MAX_ORDER exceeds SECTION_SIZE
672 #endif
673
674 struct page;
675 struct mem_section {
676 /*
677 * This is, logically, a pointer to an array of struct
678 * pages. However, it is stored with some other magic.
679 * (see sparse.c::sparse_init_one_section())
680 *
681 * Additionally during early boot we encode node id of
682 * the location of the section here to guide allocation.
683 * (see sparse.c::memory_present())
684 *
685 * Making it a UL at least makes someone do a cast
686 * before using it wrong.
687 */
688 unsigned long section_mem_map;
689 };
690
691 #ifdef CONFIG_SPARSEMEM_EXTREME
692 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
693 #else
694 #define SECTIONS_PER_ROOT 1
695 #endif
696
697 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
698 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
699 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
700
701 #ifdef CONFIG_SPARSEMEM_EXTREME
702 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
703 #else
704 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
705 #endif
706
707 static inline struct mem_section *__nr_to_section(unsigned long nr)
708 {
709 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
710 return NULL;
711 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
712 }
713 extern int __section_nr(struct mem_section* ms);
714
715 /*
716 * We use the lower bits of the mem_map pointer to store
717 * a little bit of information. There should be at least
718 * 3 bits here due to 32-bit alignment.
719 */
720 #define SECTION_MARKED_PRESENT (1UL<<0)
721 #define SECTION_HAS_MEM_MAP (1UL<<1)
722 #define SECTION_MAP_LAST_BIT (1UL<<2)
723 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
724 #define SECTION_NID_SHIFT 2
725
726 static inline struct page *__section_mem_map_addr(struct mem_section *section)
727 {
728 unsigned long map = section->section_mem_map;
729 map &= SECTION_MAP_MASK;
730 return (struct page *)map;
731 }
732
733 static inline int valid_section(struct mem_section *section)
734 {
735 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
736 }
737
738 static inline int section_has_mem_map(struct mem_section *section)
739 {
740 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
741 }
742
743 static inline int valid_section_nr(unsigned long nr)
744 {
745 return valid_section(__nr_to_section(nr));
746 }
747
748 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
749 {
750 return __nr_to_section(pfn_to_section_nr(pfn));
751 }
752
753 static inline int pfn_valid(unsigned long pfn)
754 {
755 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
756 return 0;
757 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
758 }
759
760 /*
761 * These are _only_ used during initialisation, therefore they
762 * can use __initdata ... They could have names to indicate
763 * this restriction.
764 */
765 #ifdef CONFIG_NUMA
766 #define pfn_to_nid(pfn) \
767 ({ \
768 unsigned long __pfn_to_nid_pfn = (pfn); \
769 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
770 })
771 #else
772 #define pfn_to_nid(pfn) (0)
773 #endif
774
775 #define early_pfn_valid(pfn) pfn_valid(pfn)
776 void sparse_init(void);
777 #else
778 #define sparse_init() do {} while (0)
779 #define sparse_index_init(_sec, _nid) do {} while (0)
780 #endif /* CONFIG_SPARSEMEM */
781
782 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
783 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
784 #else
785 #define early_pfn_in_nid(pfn, nid) (1)
786 #endif
787
788 #ifndef early_pfn_valid
789 #define early_pfn_valid(pfn) (1)
790 #endif
791
792 void memory_present(int nid, unsigned long start, unsigned long end);
793 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
794
795 /*
796 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
797 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
798 * pfn_valid_within() should be used in this case; we optimise this away
799 * when we have no holes within a MAX_ORDER_NR_PAGES block.
800 */
801 #ifdef CONFIG_HOLES_IN_ZONE
802 #define pfn_valid_within(pfn) pfn_valid(pfn)
803 #else
804 #define pfn_valid_within(pfn) (1)
805 #endif
806
807 #endif /* !__ASSEMBLY__ */
808 #endif /* __KERNEL__ */
809 #endif /* _LINUX_MMZONE_H */