]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/mmzone.h
Merge tag 'mlx5-fixes-2021-06-16' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / include / linux / mmzone.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24
25 /* Free memory management - zoned buddy allocator. */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33 /*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40
41 enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger than
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65 #endif
66 MIGRATE_TYPES
67 };
68
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71
72 #ifdef CONFIG_CMA
73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 # define is_migrate_cma(migratetype) false
77 # define is_migrate_cma_page(_page) false
78 #endif
79
80 static inline bool is_migrate_movable(int mt)
81 {
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84
85 #define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89 extern int page_group_by_mobility_disabled;
90
91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92
93 #define get_pageblock_migratetype(page) \
94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95
96 struct free_area {
97 struct list_head free_list[MIGRATE_TYPES];
98 unsigned long nr_free;
99 };
100
101 static inline struct page *get_page_from_free_area(struct free_area *area,
102 int migratetype)
103 {
104 return list_first_entry_or_null(&area->free_list[migratetype],
105 struct page, lru);
106 }
107
108 static inline bool free_area_empty(struct free_area *area, int migratetype)
109 {
110 return list_empty(&area->free_list[migratetype]);
111 }
112
113 struct pglist_data;
114
115 /*
116 * Add a wild amount of padding here to ensure datas fall into separate
117 * cachelines. There are very few zone structures in the machine, so space
118 * consumption is not a concern here.
119 */
120 #if defined(CONFIG_SMP)
121 struct zone_padding {
122 char x[0];
123 } ____cacheline_internodealigned_in_smp;
124 #define ZONE_PADDING(name) struct zone_padding name;
125 #else
126 #define ZONE_PADDING(name)
127 #endif
128
129 #ifdef CONFIG_NUMA
130 enum numa_stat_item {
131 NUMA_HIT, /* allocated in intended node */
132 NUMA_MISS, /* allocated in non intended node */
133 NUMA_FOREIGN, /* was intended here, hit elsewhere */
134 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
135 NUMA_LOCAL, /* allocation from local node */
136 NUMA_OTHER, /* allocation from other node */
137 NR_VM_NUMA_STAT_ITEMS
138 };
139 #else
140 #define NR_VM_NUMA_STAT_ITEMS 0
141 #endif
142
143 enum zone_stat_item {
144 /* First 128 byte cacheline (assuming 64 bit words) */
145 NR_FREE_PAGES,
146 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
147 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
148 NR_ZONE_ACTIVE_ANON,
149 NR_ZONE_INACTIVE_FILE,
150 NR_ZONE_ACTIVE_FILE,
151 NR_ZONE_UNEVICTABLE,
152 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
153 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
154 /* Second 128 byte cacheline */
155 NR_BOUNCE,
156 #if IS_ENABLED(CONFIG_ZSMALLOC)
157 NR_ZSPAGES, /* allocated in zsmalloc */
158 #endif
159 NR_FREE_CMA_PAGES,
160 NR_VM_ZONE_STAT_ITEMS };
161
162 enum node_stat_item {
163 NR_LRU_BASE,
164 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
165 NR_ACTIVE_ANON, /* " " " " " */
166 NR_INACTIVE_FILE, /* " " " " " */
167 NR_ACTIVE_FILE, /* " " " " " */
168 NR_UNEVICTABLE, /* " " " " " */
169 NR_SLAB_RECLAIMABLE_B,
170 NR_SLAB_UNRECLAIMABLE_B,
171 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
172 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
173 WORKINGSET_NODES,
174 WORKINGSET_REFAULT_BASE,
175 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
176 WORKINGSET_REFAULT_FILE,
177 WORKINGSET_ACTIVATE_BASE,
178 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
179 WORKINGSET_ACTIVATE_FILE,
180 WORKINGSET_RESTORE_BASE,
181 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
182 WORKINGSET_RESTORE_FILE,
183 WORKINGSET_NODERECLAIM,
184 NR_ANON_MAPPED, /* Mapped anonymous pages */
185 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
186 only modified from process context */
187 NR_FILE_PAGES,
188 NR_FILE_DIRTY,
189 NR_WRITEBACK,
190 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
191 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
192 NR_SHMEM_THPS,
193 NR_SHMEM_PMDMAPPED,
194 NR_FILE_THPS,
195 NR_FILE_PMDMAPPED,
196 NR_ANON_THPS,
197 NR_VMSCAN_WRITE,
198 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
199 NR_DIRTIED, /* page dirtyings since bootup */
200 NR_WRITTEN, /* page writings since bootup */
201 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
202 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
203 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
204 NR_KERNEL_STACK_KB, /* measured in KiB */
205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
206 NR_KERNEL_SCS_KB, /* measured in KiB */
207 #endif
208 NR_PAGETABLE, /* used for pagetables */
209 #ifdef CONFIG_SWAP
210 NR_SWAPCACHE,
211 #endif
212 NR_VM_NODE_STAT_ITEMS
213 };
214
215 /*
216 * Returns true if the item should be printed in THPs (/proc/vmstat
217 * currently prints number of anon, file and shmem THPs. But the item
218 * is charged in pages).
219 */
220 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
221 {
222 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
223 return false;
224
225 return item == NR_ANON_THPS ||
226 item == NR_FILE_THPS ||
227 item == NR_SHMEM_THPS ||
228 item == NR_SHMEM_PMDMAPPED ||
229 item == NR_FILE_PMDMAPPED;
230 }
231
232 /*
233 * Returns true if the value is measured in bytes (most vmstat values are
234 * measured in pages). This defines the API part, the internal representation
235 * might be different.
236 */
237 static __always_inline bool vmstat_item_in_bytes(int idx)
238 {
239 /*
240 * Global and per-node slab counters track slab pages.
241 * It's expected that changes are multiples of PAGE_SIZE.
242 * Internally values are stored in pages.
243 *
244 * Per-memcg and per-lruvec counters track memory, consumed
245 * by individual slab objects. These counters are actually
246 * byte-precise.
247 */
248 return (idx == NR_SLAB_RECLAIMABLE_B ||
249 idx == NR_SLAB_UNRECLAIMABLE_B);
250 }
251
252 /*
253 * We do arithmetic on the LRU lists in various places in the code,
254 * so it is important to keep the active lists LRU_ACTIVE higher in
255 * the array than the corresponding inactive lists, and to keep
256 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
257 *
258 * This has to be kept in sync with the statistics in zone_stat_item
259 * above and the descriptions in vmstat_text in mm/vmstat.c
260 */
261 #define LRU_BASE 0
262 #define LRU_ACTIVE 1
263 #define LRU_FILE 2
264
265 enum lru_list {
266 LRU_INACTIVE_ANON = LRU_BASE,
267 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
268 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
269 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
270 LRU_UNEVICTABLE,
271 NR_LRU_LISTS
272 };
273
274 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
275
276 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
277
278 static inline bool is_file_lru(enum lru_list lru)
279 {
280 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
281 }
282
283 static inline bool is_active_lru(enum lru_list lru)
284 {
285 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
286 }
287
288 #define ANON_AND_FILE 2
289
290 enum lruvec_flags {
291 LRUVEC_CONGESTED, /* lruvec has many dirty pages
292 * backed by a congested BDI
293 */
294 };
295
296 struct lruvec {
297 struct list_head lists[NR_LRU_LISTS];
298 /* per lruvec lru_lock for memcg */
299 spinlock_t lru_lock;
300 /*
301 * These track the cost of reclaiming one LRU - file or anon -
302 * over the other. As the observed cost of reclaiming one LRU
303 * increases, the reclaim scan balance tips toward the other.
304 */
305 unsigned long anon_cost;
306 unsigned long file_cost;
307 /* Non-resident age, driven by LRU movement */
308 atomic_long_t nonresident_age;
309 /* Refaults at the time of last reclaim cycle */
310 unsigned long refaults[ANON_AND_FILE];
311 /* Various lruvec state flags (enum lruvec_flags) */
312 unsigned long flags;
313 #ifdef CONFIG_MEMCG
314 struct pglist_data *pgdat;
315 #endif
316 };
317
318 /* Isolate unmapped pages */
319 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
320 /* Isolate for asynchronous migration */
321 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
322 /* Isolate unevictable pages */
323 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
324
325 /* LRU Isolation modes. */
326 typedef unsigned __bitwise isolate_mode_t;
327
328 enum zone_watermarks {
329 WMARK_MIN,
330 WMARK_LOW,
331 WMARK_HIGH,
332 NR_WMARK
333 };
334
335 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
336 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
337 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
338 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
339
340 struct per_cpu_pages {
341 int count; /* number of pages in the list */
342 int high; /* high watermark, emptying needed */
343 int batch; /* chunk size for buddy add/remove */
344
345 /* Lists of pages, one per migrate type stored on the pcp-lists */
346 struct list_head lists[MIGRATE_PCPTYPES];
347 };
348
349 struct per_cpu_pageset {
350 struct per_cpu_pages pcp;
351 #ifdef CONFIG_NUMA
352 s8 expire;
353 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
354 #endif
355 #ifdef CONFIG_SMP
356 s8 stat_threshold;
357 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
358 #endif
359 };
360
361 struct per_cpu_nodestat {
362 s8 stat_threshold;
363 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
364 };
365
366 #endif /* !__GENERATING_BOUNDS.H */
367
368 enum zone_type {
369 /*
370 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
371 * to DMA to all of the addressable memory (ZONE_NORMAL).
372 * On architectures where this area covers the whole 32 bit address
373 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
374 * DMA addressing constraints. This distinction is important as a 32bit
375 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
376 * platforms may need both zones as they support peripherals with
377 * different DMA addressing limitations.
378 */
379 #ifdef CONFIG_ZONE_DMA
380 ZONE_DMA,
381 #endif
382 #ifdef CONFIG_ZONE_DMA32
383 ZONE_DMA32,
384 #endif
385 /*
386 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
387 * performed on pages in ZONE_NORMAL if the DMA devices support
388 * transfers to all addressable memory.
389 */
390 ZONE_NORMAL,
391 #ifdef CONFIG_HIGHMEM
392 /*
393 * A memory area that is only addressable by the kernel through
394 * mapping portions into its own address space. This is for example
395 * used by i386 to allow the kernel to address the memory beyond
396 * 900MB. The kernel will set up special mappings (page
397 * table entries on i386) for each page that the kernel needs to
398 * access.
399 */
400 ZONE_HIGHMEM,
401 #endif
402 /*
403 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
404 * movable pages with few exceptional cases described below. Main use
405 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
406 * likely to succeed, and to locally limit unmovable allocations - e.g.,
407 * to increase the number of THP/huge pages. Notable special cases are:
408 *
409 * 1. Pinned pages: (long-term) pinning of movable pages might
410 * essentially turn such pages unmovable. Therefore, we do not allow
411 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
412 * faulted, they come from the right zone right away. However, it is
413 * still possible that address space already has pages in
414 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
415 * touches that memory before pinning). In such case we migrate them
416 * to a different zone. When migration fails - pinning fails.
417 * 2. memblock allocations: kernelcore/movablecore setups might create
418 * situations where ZONE_MOVABLE contains unmovable allocations
419 * after boot. Memory offlining and allocations fail early.
420 * 3. Memory holes: kernelcore/movablecore setups might create very rare
421 * situations where ZONE_MOVABLE contains memory holes after boot,
422 * for example, if we have sections that are only partially
423 * populated. Memory offlining and allocations fail early.
424 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
425 * memory offlining, such pages cannot be allocated.
426 * 5. Unmovable PG_offline pages: in paravirtualized environments,
427 * hotplugged memory blocks might only partially be managed by the
428 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
429 * parts not manged by the buddy are unmovable PG_offline pages. In
430 * some cases (virtio-mem), such pages can be skipped during
431 * memory offlining, however, cannot be moved/allocated. These
432 * techniques might use alloc_contig_range() to hide previously
433 * exposed pages from the buddy again (e.g., to implement some sort
434 * of memory unplug in virtio-mem).
435 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
436 * situations where ZERO_PAGE(0) which is allocated differently
437 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
438 * cannot be migrated.
439 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
440 * memory to the MOVABLE zone, the vmemmap pages are also placed in
441 * such zone. Such pages cannot be really moved around as they are
442 * self-stored in the range, but they are treated as movable when
443 * the range they describe is about to be offlined.
444 *
445 * In general, no unmovable allocations that degrade memory offlining
446 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
447 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
448 * if has_unmovable_pages() states that there are no unmovable pages,
449 * there can be false negatives).
450 */
451 ZONE_MOVABLE,
452 #ifdef CONFIG_ZONE_DEVICE
453 ZONE_DEVICE,
454 #endif
455 __MAX_NR_ZONES
456
457 };
458
459 #ifndef __GENERATING_BOUNDS_H
460
461 #define ASYNC_AND_SYNC 2
462
463 struct zone {
464 /* Read-mostly fields */
465
466 /* zone watermarks, access with *_wmark_pages(zone) macros */
467 unsigned long _watermark[NR_WMARK];
468 unsigned long watermark_boost;
469
470 unsigned long nr_reserved_highatomic;
471
472 /*
473 * We don't know if the memory that we're going to allocate will be
474 * freeable or/and it will be released eventually, so to avoid totally
475 * wasting several GB of ram we must reserve some of the lower zone
476 * memory (otherwise we risk to run OOM on the lower zones despite
477 * there being tons of freeable ram on the higher zones). This array is
478 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
479 * changes.
480 */
481 long lowmem_reserve[MAX_NR_ZONES];
482
483 #ifdef CONFIG_NUMA
484 int node;
485 #endif
486 struct pglist_data *zone_pgdat;
487 struct per_cpu_pageset __percpu *pageset;
488 /*
489 * the high and batch values are copied to individual pagesets for
490 * faster access
491 */
492 int pageset_high;
493 int pageset_batch;
494
495 #ifndef CONFIG_SPARSEMEM
496 /*
497 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
498 * In SPARSEMEM, this map is stored in struct mem_section
499 */
500 unsigned long *pageblock_flags;
501 #endif /* CONFIG_SPARSEMEM */
502
503 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
504 unsigned long zone_start_pfn;
505
506 /*
507 * spanned_pages is the total pages spanned by the zone, including
508 * holes, which is calculated as:
509 * spanned_pages = zone_end_pfn - zone_start_pfn;
510 *
511 * present_pages is physical pages existing within the zone, which
512 * is calculated as:
513 * present_pages = spanned_pages - absent_pages(pages in holes);
514 *
515 * managed_pages is present pages managed by the buddy system, which
516 * is calculated as (reserved_pages includes pages allocated by the
517 * bootmem allocator):
518 * managed_pages = present_pages - reserved_pages;
519 *
520 * cma pages is present pages that are assigned for CMA use
521 * (MIGRATE_CMA).
522 *
523 * So present_pages may be used by memory hotplug or memory power
524 * management logic to figure out unmanaged pages by checking
525 * (present_pages - managed_pages). And managed_pages should be used
526 * by page allocator and vm scanner to calculate all kinds of watermarks
527 * and thresholds.
528 *
529 * Locking rules:
530 *
531 * zone_start_pfn and spanned_pages are protected by span_seqlock.
532 * It is a seqlock because it has to be read outside of zone->lock,
533 * and it is done in the main allocator path. But, it is written
534 * quite infrequently.
535 *
536 * The span_seq lock is declared along with zone->lock because it is
537 * frequently read in proximity to zone->lock. It's good to
538 * give them a chance of being in the same cacheline.
539 *
540 * Write access to present_pages at runtime should be protected by
541 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
542 * present_pages should get_online_mems() to get a stable value.
543 */
544 atomic_long_t managed_pages;
545 unsigned long spanned_pages;
546 unsigned long present_pages;
547 #ifdef CONFIG_CMA
548 unsigned long cma_pages;
549 #endif
550
551 const char *name;
552
553 #ifdef CONFIG_MEMORY_ISOLATION
554 /*
555 * Number of isolated pageblock. It is used to solve incorrect
556 * freepage counting problem due to racy retrieving migratetype
557 * of pageblock. Protected by zone->lock.
558 */
559 unsigned long nr_isolate_pageblock;
560 #endif
561
562 #ifdef CONFIG_MEMORY_HOTPLUG
563 /* see spanned/present_pages for more description */
564 seqlock_t span_seqlock;
565 #endif
566
567 int initialized;
568
569 /* Write-intensive fields used from the page allocator */
570 ZONE_PADDING(_pad1_)
571
572 /* free areas of different sizes */
573 struct free_area free_area[MAX_ORDER];
574
575 /* zone flags, see below */
576 unsigned long flags;
577
578 /* Primarily protects free_area */
579 spinlock_t lock;
580
581 /* Write-intensive fields used by compaction and vmstats. */
582 ZONE_PADDING(_pad2_)
583
584 /*
585 * When free pages are below this point, additional steps are taken
586 * when reading the number of free pages to avoid per-cpu counter
587 * drift allowing watermarks to be breached
588 */
589 unsigned long percpu_drift_mark;
590
591 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
592 /* pfn where compaction free scanner should start */
593 unsigned long compact_cached_free_pfn;
594 /* pfn where compaction migration scanner should start */
595 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
596 unsigned long compact_init_migrate_pfn;
597 unsigned long compact_init_free_pfn;
598 #endif
599
600 #ifdef CONFIG_COMPACTION
601 /*
602 * On compaction failure, 1<<compact_defer_shift compactions
603 * are skipped before trying again. The number attempted since
604 * last failure is tracked with compact_considered.
605 * compact_order_failed is the minimum compaction failed order.
606 */
607 unsigned int compact_considered;
608 unsigned int compact_defer_shift;
609 int compact_order_failed;
610 #endif
611
612 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
613 /* Set to true when the PG_migrate_skip bits should be cleared */
614 bool compact_blockskip_flush;
615 #endif
616
617 bool contiguous;
618
619 ZONE_PADDING(_pad3_)
620 /* Zone statistics */
621 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
622 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
623 } ____cacheline_internodealigned_in_smp;
624
625 enum pgdat_flags {
626 PGDAT_DIRTY, /* reclaim scanning has recently found
627 * many dirty file pages at the tail
628 * of the LRU.
629 */
630 PGDAT_WRITEBACK, /* reclaim scanning has recently found
631 * many pages under writeback
632 */
633 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
634 };
635
636 enum zone_flags {
637 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
638 * Cleared when kswapd is woken.
639 */
640 };
641
642 static inline unsigned long zone_managed_pages(struct zone *zone)
643 {
644 return (unsigned long)atomic_long_read(&zone->managed_pages);
645 }
646
647 static inline unsigned long zone_cma_pages(struct zone *zone)
648 {
649 #ifdef CONFIG_CMA
650 return zone->cma_pages;
651 #else
652 return 0;
653 #endif
654 }
655
656 static inline unsigned long zone_end_pfn(const struct zone *zone)
657 {
658 return zone->zone_start_pfn + zone->spanned_pages;
659 }
660
661 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
662 {
663 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
664 }
665
666 static inline bool zone_is_initialized(struct zone *zone)
667 {
668 return zone->initialized;
669 }
670
671 static inline bool zone_is_empty(struct zone *zone)
672 {
673 return zone->spanned_pages == 0;
674 }
675
676 /*
677 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
678 * intersection with the given zone
679 */
680 static inline bool zone_intersects(struct zone *zone,
681 unsigned long start_pfn, unsigned long nr_pages)
682 {
683 if (zone_is_empty(zone))
684 return false;
685 if (start_pfn >= zone_end_pfn(zone) ||
686 start_pfn + nr_pages <= zone->zone_start_pfn)
687 return false;
688
689 return true;
690 }
691
692 /*
693 * The "priority" of VM scanning is how much of the queues we will scan in one
694 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
695 * queues ("queue_length >> 12") during an aging round.
696 */
697 #define DEF_PRIORITY 12
698
699 /* Maximum number of zones on a zonelist */
700 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
701
702 enum {
703 ZONELIST_FALLBACK, /* zonelist with fallback */
704 #ifdef CONFIG_NUMA
705 /*
706 * The NUMA zonelists are doubled because we need zonelists that
707 * restrict the allocations to a single node for __GFP_THISNODE.
708 */
709 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
710 #endif
711 MAX_ZONELISTS
712 };
713
714 /*
715 * This struct contains information about a zone in a zonelist. It is stored
716 * here to avoid dereferences into large structures and lookups of tables
717 */
718 struct zoneref {
719 struct zone *zone; /* Pointer to actual zone */
720 int zone_idx; /* zone_idx(zoneref->zone) */
721 };
722
723 /*
724 * One allocation request operates on a zonelist. A zonelist
725 * is a list of zones, the first one is the 'goal' of the
726 * allocation, the other zones are fallback zones, in decreasing
727 * priority.
728 *
729 * To speed the reading of the zonelist, the zonerefs contain the zone index
730 * of the entry being read. Helper functions to access information given
731 * a struct zoneref are
732 *
733 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
734 * zonelist_zone_idx() - Return the index of the zone for an entry
735 * zonelist_node_idx() - Return the index of the node for an entry
736 */
737 struct zonelist {
738 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
739 };
740
741 #ifndef CONFIG_DISCONTIGMEM
742 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
743 extern struct page *mem_map;
744 #endif
745
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 struct deferred_split {
748 spinlock_t split_queue_lock;
749 struct list_head split_queue;
750 unsigned long split_queue_len;
751 };
752 #endif
753
754 /*
755 * On NUMA machines, each NUMA node would have a pg_data_t to describe
756 * it's memory layout. On UMA machines there is a single pglist_data which
757 * describes the whole memory.
758 *
759 * Memory statistics and page replacement data structures are maintained on a
760 * per-zone basis.
761 */
762 typedef struct pglist_data {
763 /*
764 * node_zones contains just the zones for THIS node. Not all of the
765 * zones may be populated, but it is the full list. It is referenced by
766 * this node's node_zonelists as well as other node's node_zonelists.
767 */
768 struct zone node_zones[MAX_NR_ZONES];
769
770 /*
771 * node_zonelists contains references to all zones in all nodes.
772 * Generally the first zones will be references to this node's
773 * node_zones.
774 */
775 struct zonelist node_zonelists[MAX_ZONELISTS];
776
777 int nr_zones; /* number of populated zones in this node */
778 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
779 struct page *node_mem_map;
780 #ifdef CONFIG_PAGE_EXTENSION
781 struct page_ext *node_page_ext;
782 #endif
783 #endif
784 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
785 /*
786 * Must be held any time you expect node_start_pfn,
787 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
788 * Also synchronizes pgdat->first_deferred_pfn during deferred page
789 * init.
790 *
791 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
792 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
793 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
794 *
795 * Nests above zone->lock and zone->span_seqlock
796 */
797 spinlock_t node_size_lock;
798 #endif
799 unsigned long node_start_pfn;
800 unsigned long node_present_pages; /* total number of physical pages */
801 unsigned long node_spanned_pages; /* total size of physical page
802 range, including holes */
803 int node_id;
804 wait_queue_head_t kswapd_wait;
805 wait_queue_head_t pfmemalloc_wait;
806 struct task_struct *kswapd; /* Protected by
807 mem_hotplug_begin/end() */
808 int kswapd_order;
809 enum zone_type kswapd_highest_zoneidx;
810
811 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
812
813 #ifdef CONFIG_COMPACTION
814 int kcompactd_max_order;
815 enum zone_type kcompactd_highest_zoneidx;
816 wait_queue_head_t kcompactd_wait;
817 struct task_struct *kcompactd;
818 #endif
819 /*
820 * This is a per-node reserve of pages that are not available
821 * to userspace allocations.
822 */
823 unsigned long totalreserve_pages;
824
825 #ifdef CONFIG_NUMA
826 /*
827 * node reclaim becomes active if more unmapped pages exist.
828 */
829 unsigned long min_unmapped_pages;
830 unsigned long min_slab_pages;
831 #endif /* CONFIG_NUMA */
832
833 /* Write-intensive fields used by page reclaim */
834 ZONE_PADDING(_pad1_)
835
836 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
837 /*
838 * If memory initialisation on large machines is deferred then this
839 * is the first PFN that needs to be initialised.
840 */
841 unsigned long first_deferred_pfn;
842 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
843
844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
845 struct deferred_split deferred_split_queue;
846 #endif
847
848 /* Fields commonly accessed by the page reclaim scanner */
849
850 /*
851 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
852 *
853 * Use mem_cgroup_lruvec() to look up lruvecs.
854 */
855 struct lruvec __lruvec;
856
857 unsigned long flags;
858
859 ZONE_PADDING(_pad2_)
860
861 /* Per-node vmstats */
862 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
863 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
864 } pg_data_t;
865
866 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
867 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
868 #ifdef CONFIG_FLAT_NODE_MEM_MAP
869 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
870 #else
871 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
872 #endif
873 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
874
875 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
876 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
877
878 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
879 {
880 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
881 }
882
883 static inline bool pgdat_is_empty(pg_data_t *pgdat)
884 {
885 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
886 }
887
888 #include <linux/memory_hotplug.h>
889
890 void build_all_zonelists(pg_data_t *pgdat);
891 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
892 enum zone_type highest_zoneidx);
893 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
894 int highest_zoneidx, unsigned int alloc_flags,
895 long free_pages);
896 bool zone_watermark_ok(struct zone *z, unsigned int order,
897 unsigned long mark, int highest_zoneidx,
898 unsigned int alloc_flags);
899 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
900 unsigned long mark, int highest_zoneidx);
901 /*
902 * Memory initialization context, use to differentiate memory added by
903 * the platform statically or via memory hotplug interface.
904 */
905 enum meminit_context {
906 MEMINIT_EARLY,
907 MEMINIT_HOTPLUG,
908 };
909
910 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
911 unsigned long size);
912
913 extern void lruvec_init(struct lruvec *lruvec);
914
915 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
916 {
917 #ifdef CONFIG_MEMCG
918 return lruvec->pgdat;
919 #else
920 return container_of(lruvec, struct pglist_data, __lruvec);
921 #endif
922 }
923
924 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
925 int local_memory_node(int node_id);
926 #else
927 static inline int local_memory_node(int node_id) { return node_id; };
928 #endif
929
930 /*
931 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
932 */
933 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
934
935 #ifdef CONFIG_ZONE_DEVICE
936 static inline bool zone_is_zone_device(struct zone *zone)
937 {
938 return zone_idx(zone) == ZONE_DEVICE;
939 }
940 #else
941 static inline bool zone_is_zone_device(struct zone *zone)
942 {
943 return false;
944 }
945 #endif
946
947 /*
948 * Returns true if a zone has pages managed by the buddy allocator.
949 * All the reclaim decisions have to use this function rather than
950 * populated_zone(). If the whole zone is reserved then we can easily
951 * end up with populated_zone() && !managed_zone().
952 */
953 static inline bool managed_zone(struct zone *zone)
954 {
955 return zone_managed_pages(zone);
956 }
957
958 /* Returns true if a zone has memory */
959 static inline bool populated_zone(struct zone *zone)
960 {
961 return zone->present_pages;
962 }
963
964 #ifdef CONFIG_NUMA
965 static inline int zone_to_nid(struct zone *zone)
966 {
967 return zone->node;
968 }
969
970 static inline void zone_set_nid(struct zone *zone, int nid)
971 {
972 zone->node = nid;
973 }
974 #else
975 static inline int zone_to_nid(struct zone *zone)
976 {
977 return 0;
978 }
979
980 static inline void zone_set_nid(struct zone *zone, int nid) {}
981 #endif
982
983 extern int movable_zone;
984
985 #ifdef CONFIG_HIGHMEM
986 static inline int zone_movable_is_highmem(void)
987 {
988 #ifdef CONFIG_NEED_MULTIPLE_NODES
989 return movable_zone == ZONE_HIGHMEM;
990 #else
991 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
992 #endif
993 }
994 #endif
995
996 static inline int is_highmem_idx(enum zone_type idx)
997 {
998 #ifdef CONFIG_HIGHMEM
999 return (idx == ZONE_HIGHMEM ||
1000 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
1001 #else
1002 return 0;
1003 #endif
1004 }
1005
1006 /**
1007 * is_highmem - helper function to quickly check if a struct zone is a
1008 * highmem zone or not. This is an attempt to keep references
1009 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1010 * @zone: pointer to struct zone variable
1011 * Return: 1 for a highmem zone, 0 otherwise
1012 */
1013 static inline int is_highmem(struct zone *zone)
1014 {
1015 #ifdef CONFIG_HIGHMEM
1016 return is_highmem_idx(zone_idx(zone));
1017 #else
1018 return 0;
1019 #endif
1020 }
1021
1022 /* These two functions are used to setup the per zone pages min values */
1023 struct ctl_table;
1024
1025 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1026 loff_t *);
1027 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1028 size_t *, loff_t *);
1029 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1030 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1031 size_t *, loff_t *);
1032 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
1033 void *, size_t *, loff_t *);
1034 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1035 void *, size_t *, loff_t *);
1036 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1037 void *, size_t *, loff_t *);
1038 int numa_zonelist_order_handler(struct ctl_table *, int,
1039 void *, size_t *, loff_t *);
1040 extern int percpu_pagelist_fraction;
1041 extern char numa_zonelist_order[];
1042 #define NUMA_ZONELIST_ORDER_LEN 16
1043
1044 #ifndef CONFIG_NEED_MULTIPLE_NODES
1045
1046 extern struct pglist_data contig_page_data;
1047 #define NODE_DATA(nid) (&contig_page_data)
1048 #define NODE_MEM_MAP(nid) mem_map
1049
1050 #else /* CONFIG_NEED_MULTIPLE_NODES */
1051
1052 #include <asm/mmzone.h>
1053
1054 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1055
1056 extern struct pglist_data *first_online_pgdat(void);
1057 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1058 extern struct zone *next_zone(struct zone *zone);
1059
1060 /**
1061 * for_each_online_pgdat - helper macro to iterate over all online nodes
1062 * @pgdat: pointer to a pg_data_t variable
1063 */
1064 #define for_each_online_pgdat(pgdat) \
1065 for (pgdat = first_online_pgdat(); \
1066 pgdat; \
1067 pgdat = next_online_pgdat(pgdat))
1068 /**
1069 * for_each_zone - helper macro to iterate over all memory zones
1070 * @zone: pointer to struct zone variable
1071 *
1072 * The user only needs to declare the zone variable, for_each_zone
1073 * fills it in.
1074 */
1075 #define for_each_zone(zone) \
1076 for (zone = (first_online_pgdat())->node_zones; \
1077 zone; \
1078 zone = next_zone(zone))
1079
1080 #define for_each_populated_zone(zone) \
1081 for (zone = (first_online_pgdat())->node_zones; \
1082 zone; \
1083 zone = next_zone(zone)) \
1084 if (!populated_zone(zone)) \
1085 ; /* do nothing */ \
1086 else
1087
1088 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1089 {
1090 return zoneref->zone;
1091 }
1092
1093 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1094 {
1095 return zoneref->zone_idx;
1096 }
1097
1098 static inline int zonelist_node_idx(struct zoneref *zoneref)
1099 {
1100 return zone_to_nid(zoneref->zone);
1101 }
1102
1103 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1104 enum zone_type highest_zoneidx,
1105 nodemask_t *nodes);
1106
1107 /**
1108 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1109 * @z: The cursor used as a starting point for the search
1110 * @highest_zoneidx: The zone index of the highest zone to return
1111 * @nodes: An optional nodemask to filter the zonelist with
1112 *
1113 * This function returns the next zone at or below a given zone index that is
1114 * within the allowed nodemask using a cursor as the starting point for the
1115 * search. The zoneref returned is a cursor that represents the current zone
1116 * being examined. It should be advanced by one before calling
1117 * next_zones_zonelist again.
1118 *
1119 * Return: the next zone at or below highest_zoneidx within the allowed
1120 * nodemask using a cursor within a zonelist as a starting point
1121 */
1122 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1123 enum zone_type highest_zoneidx,
1124 nodemask_t *nodes)
1125 {
1126 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1127 return z;
1128 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1129 }
1130
1131 /**
1132 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1133 * @zonelist: The zonelist to search for a suitable zone
1134 * @highest_zoneidx: The zone index of the highest zone to return
1135 * @nodes: An optional nodemask to filter the zonelist with
1136 *
1137 * This function returns the first zone at or below a given zone index that is
1138 * within the allowed nodemask. The zoneref returned is a cursor that can be
1139 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1140 * one before calling.
1141 *
1142 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1143 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1144 * update due to cpuset modification.
1145 *
1146 * Return: Zoneref pointer for the first suitable zone found
1147 */
1148 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1149 enum zone_type highest_zoneidx,
1150 nodemask_t *nodes)
1151 {
1152 return next_zones_zonelist(zonelist->_zonerefs,
1153 highest_zoneidx, nodes);
1154 }
1155
1156 /**
1157 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1158 * @zone: The current zone in the iterator
1159 * @z: The current pointer within zonelist->_zonerefs being iterated
1160 * @zlist: The zonelist being iterated
1161 * @highidx: The zone index of the highest zone to return
1162 * @nodemask: Nodemask allowed by the allocator
1163 *
1164 * This iterator iterates though all zones at or below a given zone index and
1165 * within a given nodemask
1166 */
1167 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1168 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1169 zone; \
1170 z = next_zones_zonelist(++z, highidx, nodemask), \
1171 zone = zonelist_zone(z))
1172
1173 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1174 for (zone = z->zone; \
1175 zone; \
1176 z = next_zones_zonelist(++z, highidx, nodemask), \
1177 zone = zonelist_zone(z))
1178
1179
1180 /**
1181 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1182 * @zone: The current zone in the iterator
1183 * @z: The current pointer within zonelist->zones being iterated
1184 * @zlist: The zonelist being iterated
1185 * @highidx: The zone index of the highest zone to return
1186 *
1187 * This iterator iterates though all zones at or below a given zone index.
1188 */
1189 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1190 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1191
1192 #ifdef CONFIG_SPARSEMEM
1193 #include <asm/sparsemem.h>
1194 #endif
1195
1196 #ifdef CONFIG_FLATMEM
1197 #define pfn_to_nid(pfn) (0)
1198 #endif
1199
1200 #ifdef CONFIG_SPARSEMEM
1201
1202 /*
1203 * SECTION_SHIFT #bits space required to store a section #
1204 *
1205 * PA_SECTION_SHIFT physical address to/from section number
1206 * PFN_SECTION_SHIFT pfn to/from section number
1207 */
1208 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1209 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1210
1211 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1212
1213 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1214 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1215
1216 #define SECTION_BLOCKFLAGS_BITS \
1217 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1218
1219 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1220 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1221 #endif
1222
1223 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1224 {
1225 return pfn >> PFN_SECTION_SHIFT;
1226 }
1227 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1228 {
1229 return sec << PFN_SECTION_SHIFT;
1230 }
1231
1232 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1233 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1234
1235 #define SUBSECTION_SHIFT 21
1236 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1237
1238 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1239 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1240 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1241
1242 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1243 #error Subsection size exceeds section size
1244 #else
1245 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1246 #endif
1247
1248 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1249 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1250
1251 struct mem_section_usage {
1252 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1253 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1254 #endif
1255 /* See declaration of similar field in struct zone */
1256 unsigned long pageblock_flags[0];
1257 };
1258
1259 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1260
1261 struct page;
1262 struct page_ext;
1263 struct mem_section {
1264 /*
1265 * This is, logically, a pointer to an array of struct
1266 * pages. However, it is stored with some other magic.
1267 * (see sparse.c::sparse_init_one_section())
1268 *
1269 * Additionally during early boot we encode node id of
1270 * the location of the section here to guide allocation.
1271 * (see sparse.c::memory_present())
1272 *
1273 * Making it a UL at least makes someone do a cast
1274 * before using it wrong.
1275 */
1276 unsigned long section_mem_map;
1277
1278 struct mem_section_usage *usage;
1279 #ifdef CONFIG_PAGE_EXTENSION
1280 /*
1281 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1282 * section. (see page_ext.h about this.)
1283 */
1284 struct page_ext *page_ext;
1285 unsigned long pad;
1286 #endif
1287 /*
1288 * WARNING: mem_section must be a power-of-2 in size for the
1289 * calculation and use of SECTION_ROOT_MASK to make sense.
1290 */
1291 };
1292
1293 #ifdef CONFIG_SPARSEMEM_EXTREME
1294 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1295 #else
1296 #define SECTIONS_PER_ROOT 1
1297 #endif
1298
1299 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1300 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1301 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1302
1303 #ifdef CONFIG_SPARSEMEM_EXTREME
1304 extern struct mem_section **mem_section;
1305 #else
1306 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1307 #endif
1308
1309 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1310 {
1311 return ms->usage->pageblock_flags;
1312 }
1313
1314 static inline struct mem_section *__nr_to_section(unsigned long nr)
1315 {
1316 #ifdef CONFIG_SPARSEMEM_EXTREME
1317 if (!mem_section)
1318 return NULL;
1319 #endif
1320 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1321 return NULL;
1322 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1323 }
1324 extern unsigned long __section_nr(struct mem_section *ms);
1325 extern size_t mem_section_usage_size(void);
1326
1327 /*
1328 * We use the lower bits of the mem_map pointer to store
1329 * a little bit of information. The pointer is calculated
1330 * as mem_map - section_nr_to_pfn(pnum). The result is
1331 * aligned to the minimum alignment of the two values:
1332 * 1. All mem_map arrays are page-aligned.
1333 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1334 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1335 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1336 * worst combination is powerpc with 256k pages,
1337 * which results in PFN_SECTION_SHIFT equal 6.
1338 * To sum it up, at least 6 bits are available.
1339 */
1340 #define SECTION_MARKED_PRESENT (1UL<<0)
1341 #define SECTION_HAS_MEM_MAP (1UL<<1)
1342 #define SECTION_IS_ONLINE (1UL<<2)
1343 #define SECTION_IS_EARLY (1UL<<3)
1344 #define SECTION_TAINT_ZONE_DEVICE (1UL<<4)
1345 #define SECTION_MAP_LAST_BIT (1UL<<5)
1346 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1347 #define SECTION_NID_SHIFT 3
1348
1349 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1350 {
1351 unsigned long map = section->section_mem_map;
1352 map &= SECTION_MAP_MASK;
1353 return (struct page *)map;
1354 }
1355
1356 static inline int present_section(struct mem_section *section)
1357 {
1358 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1359 }
1360
1361 static inline int present_section_nr(unsigned long nr)
1362 {
1363 return present_section(__nr_to_section(nr));
1364 }
1365
1366 static inline int valid_section(struct mem_section *section)
1367 {
1368 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1369 }
1370
1371 static inline int early_section(struct mem_section *section)
1372 {
1373 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1374 }
1375
1376 static inline int valid_section_nr(unsigned long nr)
1377 {
1378 return valid_section(__nr_to_section(nr));
1379 }
1380
1381 static inline int online_section(struct mem_section *section)
1382 {
1383 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1384 }
1385
1386 static inline int online_device_section(struct mem_section *section)
1387 {
1388 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1389
1390 return section && ((section->section_mem_map & flags) == flags);
1391 }
1392
1393 static inline int online_section_nr(unsigned long nr)
1394 {
1395 return online_section(__nr_to_section(nr));
1396 }
1397
1398 #ifdef CONFIG_MEMORY_HOTPLUG
1399 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1400 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1401 #endif
1402
1403 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1404 {
1405 return __nr_to_section(pfn_to_section_nr(pfn));
1406 }
1407
1408 extern unsigned long __highest_present_section_nr;
1409
1410 static inline int subsection_map_index(unsigned long pfn)
1411 {
1412 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1413 }
1414
1415 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1416 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1417 {
1418 int idx = subsection_map_index(pfn);
1419
1420 return test_bit(idx, ms->usage->subsection_map);
1421 }
1422 #else
1423 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1424 {
1425 return 1;
1426 }
1427 #endif
1428
1429 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1430 static inline int pfn_valid(unsigned long pfn)
1431 {
1432 struct mem_section *ms;
1433
1434 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1435 return 0;
1436 ms = __nr_to_section(pfn_to_section_nr(pfn));
1437 if (!valid_section(ms))
1438 return 0;
1439 /*
1440 * Traditionally early sections always returned pfn_valid() for
1441 * the entire section-sized span.
1442 */
1443 return early_section(ms) || pfn_section_valid(ms, pfn);
1444 }
1445 #endif
1446
1447 static inline int pfn_in_present_section(unsigned long pfn)
1448 {
1449 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1450 return 0;
1451 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1452 }
1453
1454 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1455 {
1456 while (++section_nr <= __highest_present_section_nr) {
1457 if (present_section_nr(section_nr))
1458 return section_nr;
1459 }
1460
1461 return -1;
1462 }
1463
1464 /*
1465 * These are _only_ used during initialisation, therefore they
1466 * can use __initdata ... They could have names to indicate
1467 * this restriction.
1468 */
1469 #ifdef CONFIG_NUMA
1470 #define pfn_to_nid(pfn) \
1471 ({ \
1472 unsigned long __pfn_to_nid_pfn = (pfn); \
1473 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1474 })
1475 #else
1476 #define pfn_to_nid(pfn) (0)
1477 #endif
1478
1479 void sparse_init(void);
1480 #else
1481 #define sparse_init() do {} while (0)
1482 #define sparse_index_init(_sec, _nid) do {} while (0)
1483 #define pfn_in_present_section pfn_valid
1484 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1485 #endif /* CONFIG_SPARSEMEM */
1486
1487 /*
1488 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1489 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1490 * pfn_valid_within() should be used in this case; we optimise this away
1491 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1492 */
1493 #ifdef CONFIG_HOLES_IN_ZONE
1494 #define pfn_valid_within(pfn) pfn_valid(pfn)
1495 #else
1496 #define pfn_valid_within(pfn) (1)
1497 #endif
1498
1499 #endif /* !__GENERATING_BOUNDS.H */
1500 #endif /* !__ASSEMBLY__ */
1501 #endif /* _LINUX_MMZONE_H */