]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mmzone.h
Merge tag 'trace-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-artful-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72 #else
73 # define is_migrate_cma(migratetype) false
74 # define is_migrate_cma_page(_page) false
75 #endif
76
77 #define for_each_migratetype_order(order, type) \
78 for (order = 0; order < MAX_ORDER; order++) \
79 for (type = 0; type < MIGRATE_TYPES; type++)
80
81 extern int page_group_by_mobility_disabled;
82
83 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
84 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
85
86 #define get_pageblock_migratetype(page) \
87 get_pfnblock_flags_mask(page, page_to_pfn(page), \
88 PB_migrate_end, MIGRATETYPE_MASK)
89
90 struct free_area {
91 struct list_head free_list[MIGRATE_TYPES];
92 unsigned long nr_free;
93 };
94
95 struct pglist_data;
96
97 /*
98 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
99 * So add a wild amount of padding here to ensure that they fall into separate
100 * cachelines. There are very few zone structures in the machine, so space
101 * consumption is not a concern here.
102 */
103 #if defined(CONFIG_SMP)
104 struct zone_padding {
105 char x[0];
106 } ____cacheline_internodealigned_in_smp;
107 #define ZONE_PADDING(name) struct zone_padding name;
108 #else
109 #define ZONE_PADDING(name)
110 #endif
111
112 enum zone_stat_item {
113 /* First 128 byte cacheline (assuming 64 bit words) */
114 NR_FREE_PAGES,
115 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
116 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
117 NR_ZONE_ACTIVE_ANON,
118 NR_ZONE_INACTIVE_FILE,
119 NR_ZONE_ACTIVE_FILE,
120 NR_ZONE_UNEVICTABLE,
121 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
122 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
123 NR_SLAB_RECLAIMABLE,
124 NR_SLAB_UNRECLAIMABLE,
125 NR_PAGETABLE, /* used for pagetables */
126 NR_KERNEL_STACK_KB, /* measured in KiB */
127 /* Second 128 byte cacheline */
128 NR_BOUNCE,
129 #if IS_ENABLED(CONFIG_ZSMALLOC)
130 NR_ZSPAGES, /* allocated in zsmalloc */
131 #endif
132 #ifdef CONFIG_NUMA
133 NUMA_HIT, /* allocated in intended node */
134 NUMA_MISS, /* allocated in non intended node */
135 NUMA_FOREIGN, /* was intended here, hit elsewhere */
136 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
137 NUMA_LOCAL, /* allocation from local node */
138 NUMA_OTHER, /* allocation from other node */
139 #endif
140 NR_FREE_CMA_PAGES,
141 NR_VM_ZONE_STAT_ITEMS };
142
143 enum node_stat_item {
144 NR_LRU_BASE,
145 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
146 NR_ACTIVE_ANON, /* " " " " " */
147 NR_INACTIVE_FILE, /* " " " " " */
148 NR_ACTIVE_FILE, /* " " " " " */
149 NR_UNEVICTABLE, /* " " " " " */
150 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
151 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
152 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
153 WORKINGSET_REFAULT,
154 WORKINGSET_ACTIVATE,
155 WORKINGSET_NODERECLAIM,
156 NR_ANON_MAPPED, /* Mapped anonymous pages */
157 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
158 only modified from process context */
159 NR_FILE_PAGES,
160 NR_FILE_DIRTY,
161 NR_WRITEBACK,
162 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
163 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
164 NR_SHMEM_THPS,
165 NR_SHMEM_PMDMAPPED,
166 NR_ANON_THPS,
167 NR_UNSTABLE_NFS, /* NFS unstable pages */
168 NR_VMSCAN_WRITE,
169 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
170 NR_DIRTIED, /* page dirtyings since bootup */
171 NR_WRITTEN, /* page writings since bootup */
172 NR_VM_NODE_STAT_ITEMS
173 };
174
175 /*
176 * We do arithmetic on the LRU lists in various places in the code,
177 * so it is important to keep the active lists LRU_ACTIVE higher in
178 * the array than the corresponding inactive lists, and to keep
179 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
180 *
181 * This has to be kept in sync with the statistics in zone_stat_item
182 * above and the descriptions in vmstat_text in mm/vmstat.c
183 */
184 #define LRU_BASE 0
185 #define LRU_ACTIVE 1
186 #define LRU_FILE 2
187
188 enum lru_list {
189 LRU_INACTIVE_ANON = LRU_BASE,
190 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
191 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
192 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
193 LRU_UNEVICTABLE,
194 NR_LRU_LISTS
195 };
196
197 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
198
199 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
200
201 static inline int is_file_lru(enum lru_list lru)
202 {
203 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
204 }
205
206 static inline int is_active_lru(enum lru_list lru)
207 {
208 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
209 }
210
211 struct zone_reclaim_stat {
212 /*
213 * The pageout code in vmscan.c keeps track of how many of the
214 * mem/swap backed and file backed pages are referenced.
215 * The higher the rotated/scanned ratio, the more valuable
216 * that cache is.
217 *
218 * The anon LRU stats live in [0], file LRU stats in [1]
219 */
220 unsigned long recent_rotated[2];
221 unsigned long recent_scanned[2];
222 };
223
224 struct lruvec {
225 struct list_head lists[NR_LRU_LISTS];
226 struct zone_reclaim_stat reclaim_stat;
227 /* Evictions & activations on the inactive file list */
228 atomic_long_t inactive_age;
229 #ifdef CONFIG_MEMCG
230 struct pglist_data *pgdat;
231 #endif
232 };
233
234 /* Mask used at gathering information at once (see memcontrol.c) */
235 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
236 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
237 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
238
239 /* Isolate clean file */
240 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
241 /* Isolate unmapped file */
242 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
243 /* Isolate for asynchronous migration */
244 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
245 /* Isolate unevictable pages */
246 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
247
248 /* LRU Isolation modes. */
249 typedef unsigned __bitwise__ isolate_mode_t;
250
251 enum zone_watermarks {
252 WMARK_MIN,
253 WMARK_LOW,
254 WMARK_HIGH,
255 NR_WMARK
256 };
257
258 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
259 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
260 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
261
262 struct per_cpu_pages {
263 int count; /* number of pages in the list */
264 int high; /* high watermark, emptying needed */
265 int batch; /* chunk size for buddy add/remove */
266
267 /* Lists of pages, one per migrate type stored on the pcp-lists */
268 struct list_head lists[MIGRATE_PCPTYPES];
269 };
270
271 struct per_cpu_pageset {
272 struct per_cpu_pages pcp;
273 #ifdef CONFIG_NUMA
274 s8 expire;
275 #endif
276 #ifdef CONFIG_SMP
277 s8 stat_threshold;
278 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
279 #endif
280 };
281
282 struct per_cpu_nodestat {
283 s8 stat_threshold;
284 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
285 };
286
287 #endif /* !__GENERATING_BOUNDS.H */
288
289 enum zone_type {
290 #ifdef CONFIG_ZONE_DMA
291 /*
292 * ZONE_DMA is used when there are devices that are not able
293 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
294 * carve out the portion of memory that is needed for these devices.
295 * The range is arch specific.
296 *
297 * Some examples
298 *
299 * Architecture Limit
300 * ---------------------------
301 * parisc, ia64, sparc <4G
302 * s390 <2G
303 * arm Various
304 * alpha Unlimited or 0-16MB.
305 *
306 * i386, x86_64 and multiple other arches
307 * <16M.
308 */
309 ZONE_DMA,
310 #endif
311 #ifdef CONFIG_ZONE_DMA32
312 /*
313 * x86_64 needs two ZONE_DMAs because it supports devices that are
314 * only able to do DMA to the lower 16M but also 32 bit devices that
315 * can only do DMA areas below 4G.
316 */
317 ZONE_DMA32,
318 #endif
319 /*
320 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
321 * performed on pages in ZONE_NORMAL if the DMA devices support
322 * transfers to all addressable memory.
323 */
324 ZONE_NORMAL,
325 #ifdef CONFIG_HIGHMEM
326 /*
327 * A memory area that is only addressable by the kernel through
328 * mapping portions into its own address space. This is for example
329 * used by i386 to allow the kernel to address the memory beyond
330 * 900MB. The kernel will set up special mappings (page
331 * table entries on i386) for each page that the kernel needs to
332 * access.
333 */
334 ZONE_HIGHMEM,
335 #endif
336 ZONE_MOVABLE,
337 #ifdef CONFIG_ZONE_DEVICE
338 ZONE_DEVICE,
339 #endif
340 __MAX_NR_ZONES
341
342 };
343
344 #ifndef __GENERATING_BOUNDS_H
345
346 struct zone {
347 /* Read-mostly fields */
348
349 /* zone watermarks, access with *_wmark_pages(zone) macros */
350 unsigned long watermark[NR_WMARK];
351
352 unsigned long nr_reserved_highatomic;
353
354 /*
355 * We don't know if the memory that we're going to allocate will be
356 * freeable or/and it will be released eventually, so to avoid totally
357 * wasting several GB of ram we must reserve some of the lower zone
358 * memory (otherwise we risk to run OOM on the lower zones despite
359 * there being tons of freeable ram on the higher zones). This array is
360 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
361 * changes.
362 */
363 long lowmem_reserve[MAX_NR_ZONES];
364
365 #ifdef CONFIG_NUMA
366 int node;
367 #endif
368 struct pglist_data *zone_pgdat;
369 struct per_cpu_pageset __percpu *pageset;
370
371 #ifndef CONFIG_SPARSEMEM
372 /*
373 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
374 * In SPARSEMEM, this map is stored in struct mem_section
375 */
376 unsigned long *pageblock_flags;
377 #endif /* CONFIG_SPARSEMEM */
378
379 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
380 unsigned long zone_start_pfn;
381
382 /*
383 * spanned_pages is the total pages spanned by the zone, including
384 * holes, which is calculated as:
385 * spanned_pages = zone_end_pfn - zone_start_pfn;
386 *
387 * present_pages is physical pages existing within the zone, which
388 * is calculated as:
389 * present_pages = spanned_pages - absent_pages(pages in holes);
390 *
391 * managed_pages is present pages managed by the buddy system, which
392 * is calculated as (reserved_pages includes pages allocated by the
393 * bootmem allocator):
394 * managed_pages = present_pages - reserved_pages;
395 *
396 * So present_pages may be used by memory hotplug or memory power
397 * management logic to figure out unmanaged pages by checking
398 * (present_pages - managed_pages). And managed_pages should be used
399 * by page allocator and vm scanner to calculate all kinds of watermarks
400 * and thresholds.
401 *
402 * Locking rules:
403 *
404 * zone_start_pfn and spanned_pages are protected by span_seqlock.
405 * It is a seqlock because it has to be read outside of zone->lock,
406 * and it is done in the main allocator path. But, it is written
407 * quite infrequently.
408 *
409 * The span_seq lock is declared along with zone->lock because it is
410 * frequently read in proximity to zone->lock. It's good to
411 * give them a chance of being in the same cacheline.
412 *
413 * Write access to present_pages at runtime should be protected by
414 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
415 * present_pages should get_online_mems() to get a stable value.
416 *
417 * Read access to managed_pages should be safe because it's unsigned
418 * long. Write access to zone->managed_pages and totalram_pages are
419 * protected by managed_page_count_lock at runtime. Idealy only
420 * adjust_managed_page_count() should be used instead of directly
421 * touching zone->managed_pages and totalram_pages.
422 */
423 unsigned long managed_pages;
424 unsigned long spanned_pages;
425 unsigned long present_pages;
426
427 const char *name;
428
429 #ifdef CONFIG_MEMORY_ISOLATION
430 /*
431 * Number of isolated pageblock. It is used to solve incorrect
432 * freepage counting problem due to racy retrieving migratetype
433 * of pageblock. Protected by zone->lock.
434 */
435 unsigned long nr_isolate_pageblock;
436 #endif
437
438 #ifdef CONFIG_MEMORY_HOTPLUG
439 /* see spanned/present_pages for more description */
440 seqlock_t span_seqlock;
441 #endif
442
443 int initialized;
444
445 /* Write-intensive fields used from the page allocator */
446 ZONE_PADDING(_pad1_)
447
448 /* free areas of different sizes */
449 struct free_area free_area[MAX_ORDER];
450
451 /* zone flags, see below */
452 unsigned long flags;
453
454 /* Primarily protects free_area */
455 spinlock_t lock;
456
457 /* Write-intensive fields used by compaction and vmstats. */
458 ZONE_PADDING(_pad2_)
459
460 /*
461 * When free pages are below this point, additional steps are taken
462 * when reading the number of free pages to avoid per-cpu counter
463 * drift allowing watermarks to be breached
464 */
465 unsigned long percpu_drift_mark;
466
467 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
468 /* pfn where compaction free scanner should start */
469 unsigned long compact_cached_free_pfn;
470 /* pfn where async and sync compaction migration scanner should start */
471 unsigned long compact_cached_migrate_pfn[2];
472 #endif
473
474 #ifdef CONFIG_COMPACTION
475 /*
476 * On compaction failure, 1<<compact_defer_shift compactions
477 * are skipped before trying again. The number attempted since
478 * last failure is tracked with compact_considered.
479 */
480 unsigned int compact_considered;
481 unsigned int compact_defer_shift;
482 int compact_order_failed;
483 #endif
484
485 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
486 /* Set to true when the PG_migrate_skip bits should be cleared */
487 bool compact_blockskip_flush;
488 #endif
489
490 bool contiguous;
491
492 ZONE_PADDING(_pad3_)
493 /* Zone statistics */
494 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
495 } ____cacheline_internodealigned_in_smp;
496
497 enum pgdat_flags {
498 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
499 * a congested BDI
500 */
501 PGDAT_DIRTY, /* reclaim scanning has recently found
502 * many dirty file pages at the tail
503 * of the LRU.
504 */
505 PGDAT_WRITEBACK, /* reclaim scanning has recently found
506 * many pages under writeback
507 */
508 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
509 };
510
511 static inline unsigned long zone_end_pfn(const struct zone *zone)
512 {
513 return zone->zone_start_pfn + zone->spanned_pages;
514 }
515
516 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
517 {
518 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
519 }
520
521 static inline bool zone_is_initialized(struct zone *zone)
522 {
523 return zone->initialized;
524 }
525
526 static inline bool zone_is_empty(struct zone *zone)
527 {
528 return zone->spanned_pages == 0;
529 }
530
531 /*
532 * The "priority" of VM scanning is how much of the queues we will scan in one
533 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
534 * queues ("queue_length >> 12") during an aging round.
535 */
536 #define DEF_PRIORITY 12
537
538 /* Maximum number of zones on a zonelist */
539 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
540
541 enum {
542 ZONELIST_FALLBACK, /* zonelist with fallback */
543 #ifdef CONFIG_NUMA
544 /*
545 * The NUMA zonelists are doubled because we need zonelists that
546 * restrict the allocations to a single node for __GFP_THISNODE.
547 */
548 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
549 #endif
550 MAX_ZONELISTS
551 };
552
553 /*
554 * This struct contains information about a zone in a zonelist. It is stored
555 * here to avoid dereferences into large structures and lookups of tables
556 */
557 struct zoneref {
558 struct zone *zone; /* Pointer to actual zone */
559 int zone_idx; /* zone_idx(zoneref->zone) */
560 };
561
562 /*
563 * One allocation request operates on a zonelist. A zonelist
564 * is a list of zones, the first one is the 'goal' of the
565 * allocation, the other zones are fallback zones, in decreasing
566 * priority.
567 *
568 * To speed the reading of the zonelist, the zonerefs contain the zone index
569 * of the entry being read. Helper functions to access information given
570 * a struct zoneref are
571 *
572 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
573 * zonelist_zone_idx() - Return the index of the zone for an entry
574 * zonelist_node_idx() - Return the index of the node for an entry
575 */
576 struct zonelist {
577 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
578 };
579
580 #ifndef CONFIG_DISCONTIGMEM
581 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
582 extern struct page *mem_map;
583 #endif
584
585 /*
586 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
587 * (mostly NUMA machines?) to denote a higher-level memory zone than the
588 * zone denotes.
589 *
590 * On NUMA machines, each NUMA node would have a pg_data_t to describe
591 * it's memory layout.
592 *
593 * Memory statistics and page replacement data structures are maintained on a
594 * per-zone basis.
595 */
596 struct bootmem_data;
597 typedef struct pglist_data {
598 struct zone node_zones[MAX_NR_ZONES];
599 struct zonelist node_zonelists[MAX_ZONELISTS];
600 int nr_zones;
601 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
602 struct page *node_mem_map;
603 #ifdef CONFIG_PAGE_EXTENSION
604 struct page_ext *node_page_ext;
605 #endif
606 #endif
607 #ifndef CONFIG_NO_BOOTMEM
608 struct bootmem_data *bdata;
609 #endif
610 #ifdef CONFIG_MEMORY_HOTPLUG
611 /*
612 * Must be held any time you expect node_start_pfn, node_present_pages
613 * or node_spanned_pages stay constant. Holding this will also
614 * guarantee that any pfn_valid() stays that way.
615 *
616 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
617 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
618 *
619 * Nests above zone->lock and zone->span_seqlock
620 */
621 spinlock_t node_size_lock;
622 #endif
623 unsigned long node_start_pfn;
624 unsigned long node_present_pages; /* total number of physical pages */
625 unsigned long node_spanned_pages; /* total size of physical page
626 range, including holes */
627 int node_id;
628 wait_queue_head_t kswapd_wait;
629 wait_queue_head_t pfmemalloc_wait;
630 struct task_struct *kswapd; /* Protected by
631 mem_hotplug_begin/end() */
632 int kswapd_order;
633 enum zone_type kswapd_classzone_idx;
634
635 #ifdef CONFIG_COMPACTION
636 int kcompactd_max_order;
637 enum zone_type kcompactd_classzone_idx;
638 wait_queue_head_t kcompactd_wait;
639 struct task_struct *kcompactd;
640 #endif
641 #ifdef CONFIG_NUMA_BALANCING
642 /* Lock serializing the migrate rate limiting window */
643 spinlock_t numabalancing_migrate_lock;
644
645 /* Rate limiting time interval */
646 unsigned long numabalancing_migrate_next_window;
647
648 /* Number of pages migrated during the rate limiting time interval */
649 unsigned long numabalancing_migrate_nr_pages;
650 #endif
651 /*
652 * This is a per-node reserve of pages that are not available
653 * to userspace allocations.
654 */
655 unsigned long totalreserve_pages;
656
657 #ifdef CONFIG_NUMA
658 /*
659 * zone reclaim becomes active if more unmapped pages exist.
660 */
661 unsigned long min_unmapped_pages;
662 unsigned long min_slab_pages;
663 #endif /* CONFIG_NUMA */
664
665 /* Write-intensive fields used by page reclaim */
666 ZONE_PADDING(_pad1_)
667 spinlock_t lru_lock;
668
669 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
670 /*
671 * If memory initialisation on large machines is deferred then this
672 * is the first PFN that needs to be initialised.
673 */
674 unsigned long first_deferred_pfn;
675 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
676
677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
678 spinlock_t split_queue_lock;
679 struct list_head split_queue;
680 unsigned long split_queue_len;
681 #endif
682
683 /* Fields commonly accessed by the page reclaim scanner */
684 struct lruvec lruvec;
685
686 /*
687 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
688 * this node's LRU. Maintained by the pageout code.
689 */
690 unsigned int inactive_ratio;
691
692 unsigned long flags;
693
694 ZONE_PADDING(_pad2_)
695
696 /* Per-node vmstats */
697 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
698 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
699 } pg_data_t;
700
701 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
702 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
703 #ifdef CONFIG_FLAT_NODE_MEM_MAP
704 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
705 #else
706 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
707 #endif
708 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
709
710 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
711 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
712 static inline spinlock_t *zone_lru_lock(struct zone *zone)
713 {
714 return &zone->zone_pgdat->lru_lock;
715 }
716
717 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
718 {
719 return &pgdat->lruvec;
720 }
721
722 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
723 {
724 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
725 }
726
727 static inline bool pgdat_is_empty(pg_data_t *pgdat)
728 {
729 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
730 }
731
732 static inline int zone_id(const struct zone *zone)
733 {
734 struct pglist_data *pgdat = zone->zone_pgdat;
735
736 return zone - pgdat->node_zones;
737 }
738
739 #ifdef CONFIG_ZONE_DEVICE
740 static inline bool is_dev_zone(const struct zone *zone)
741 {
742 return zone_id(zone) == ZONE_DEVICE;
743 }
744 #else
745 static inline bool is_dev_zone(const struct zone *zone)
746 {
747 return false;
748 }
749 #endif
750
751 #include <linux/memory_hotplug.h>
752
753 extern struct mutex zonelists_mutex;
754 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
755 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
756 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
757 int classzone_idx, unsigned int alloc_flags,
758 long free_pages);
759 bool zone_watermark_ok(struct zone *z, unsigned int order,
760 unsigned long mark, int classzone_idx,
761 unsigned int alloc_flags);
762 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
763 unsigned long mark, int classzone_idx);
764 enum memmap_context {
765 MEMMAP_EARLY,
766 MEMMAP_HOTPLUG,
767 };
768 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
769 unsigned long size);
770
771 extern void lruvec_init(struct lruvec *lruvec);
772
773 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
774 {
775 #ifdef CONFIG_MEMCG
776 return lruvec->pgdat;
777 #else
778 return container_of(lruvec, struct pglist_data, lruvec);
779 #endif
780 }
781
782 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
783
784 #ifdef CONFIG_HAVE_MEMORY_PRESENT
785 void memory_present(int nid, unsigned long start, unsigned long end);
786 #else
787 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
788 #endif
789
790 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
791 int local_memory_node(int node_id);
792 #else
793 static inline int local_memory_node(int node_id) { return node_id; };
794 #endif
795
796 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
797 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
798 #endif
799
800 /*
801 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
802 */
803 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
804
805 /*
806 * Returns true if a zone has pages managed by the buddy allocator.
807 * All the reclaim decisions have to use this function rather than
808 * populated_zone(). If the whole zone is reserved then we can easily
809 * end up with populated_zone() && !managed_zone().
810 */
811 static inline bool managed_zone(struct zone *zone)
812 {
813 return zone->managed_pages;
814 }
815
816 /* Returns true if a zone has memory */
817 static inline bool populated_zone(struct zone *zone)
818 {
819 return zone->present_pages;
820 }
821
822 extern int movable_zone;
823
824 #ifdef CONFIG_HIGHMEM
825 static inline int zone_movable_is_highmem(void)
826 {
827 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
828 return movable_zone == ZONE_HIGHMEM;
829 #else
830 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
831 #endif
832 }
833 #endif
834
835 static inline int is_highmem_idx(enum zone_type idx)
836 {
837 #ifdef CONFIG_HIGHMEM
838 return (idx == ZONE_HIGHMEM ||
839 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
840 #else
841 return 0;
842 #endif
843 }
844
845 /**
846 * is_highmem - helper function to quickly check if a struct zone is a
847 * highmem zone or not. This is an attempt to keep references
848 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
849 * @zone - pointer to struct zone variable
850 */
851 static inline int is_highmem(struct zone *zone)
852 {
853 #ifdef CONFIG_HIGHMEM
854 return is_highmem_idx(zone_idx(zone));
855 #else
856 return 0;
857 #endif
858 }
859
860 /* These two functions are used to setup the per zone pages min values */
861 struct ctl_table;
862 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
863 void __user *, size_t *, loff_t *);
864 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
865 void __user *, size_t *, loff_t *);
866 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
867 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
868 void __user *, size_t *, loff_t *);
869 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
870 void __user *, size_t *, loff_t *);
871 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
872 void __user *, size_t *, loff_t *);
873 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
874 void __user *, size_t *, loff_t *);
875
876 extern int numa_zonelist_order_handler(struct ctl_table *, int,
877 void __user *, size_t *, loff_t *);
878 extern char numa_zonelist_order[];
879 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
880
881 #ifndef CONFIG_NEED_MULTIPLE_NODES
882
883 extern struct pglist_data contig_page_data;
884 #define NODE_DATA(nid) (&contig_page_data)
885 #define NODE_MEM_MAP(nid) mem_map
886
887 #else /* CONFIG_NEED_MULTIPLE_NODES */
888
889 #include <asm/mmzone.h>
890
891 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
892
893 extern struct pglist_data *first_online_pgdat(void);
894 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
895 extern struct zone *next_zone(struct zone *zone);
896
897 /**
898 * for_each_online_pgdat - helper macro to iterate over all online nodes
899 * @pgdat - pointer to a pg_data_t variable
900 */
901 #define for_each_online_pgdat(pgdat) \
902 for (pgdat = first_online_pgdat(); \
903 pgdat; \
904 pgdat = next_online_pgdat(pgdat))
905 /**
906 * for_each_zone - helper macro to iterate over all memory zones
907 * @zone - pointer to struct zone variable
908 *
909 * The user only needs to declare the zone variable, for_each_zone
910 * fills it in.
911 */
912 #define for_each_zone(zone) \
913 for (zone = (first_online_pgdat())->node_zones; \
914 zone; \
915 zone = next_zone(zone))
916
917 #define for_each_populated_zone(zone) \
918 for (zone = (first_online_pgdat())->node_zones; \
919 zone; \
920 zone = next_zone(zone)) \
921 if (!populated_zone(zone)) \
922 ; /* do nothing */ \
923 else
924
925 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
926 {
927 return zoneref->zone;
928 }
929
930 static inline int zonelist_zone_idx(struct zoneref *zoneref)
931 {
932 return zoneref->zone_idx;
933 }
934
935 static inline int zonelist_node_idx(struct zoneref *zoneref)
936 {
937 #ifdef CONFIG_NUMA
938 /* zone_to_nid not available in this context */
939 return zoneref->zone->node;
940 #else
941 return 0;
942 #endif /* CONFIG_NUMA */
943 }
944
945 struct zoneref *__next_zones_zonelist(struct zoneref *z,
946 enum zone_type highest_zoneidx,
947 nodemask_t *nodes);
948
949 /**
950 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
951 * @z - The cursor used as a starting point for the search
952 * @highest_zoneidx - The zone index of the highest zone to return
953 * @nodes - An optional nodemask to filter the zonelist with
954 *
955 * This function returns the next zone at or below a given zone index that is
956 * within the allowed nodemask using a cursor as the starting point for the
957 * search. The zoneref returned is a cursor that represents the current zone
958 * being examined. It should be advanced by one before calling
959 * next_zones_zonelist again.
960 */
961 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
962 enum zone_type highest_zoneidx,
963 nodemask_t *nodes)
964 {
965 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
966 return z;
967 return __next_zones_zonelist(z, highest_zoneidx, nodes);
968 }
969
970 /**
971 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
972 * @zonelist - The zonelist to search for a suitable zone
973 * @highest_zoneidx - The zone index of the highest zone to return
974 * @nodes - An optional nodemask to filter the zonelist with
975 * @zone - The first suitable zone found is returned via this parameter
976 *
977 * This function returns the first zone at or below a given zone index that is
978 * within the allowed nodemask. The zoneref returned is a cursor that can be
979 * used to iterate the zonelist with next_zones_zonelist by advancing it by
980 * one before calling.
981 */
982 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
983 enum zone_type highest_zoneidx,
984 nodemask_t *nodes)
985 {
986 return next_zones_zonelist(zonelist->_zonerefs,
987 highest_zoneidx, nodes);
988 }
989
990 /**
991 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
992 * @zone - The current zone in the iterator
993 * @z - The current pointer within zonelist->zones being iterated
994 * @zlist - The zonelist being iterated
995 * @highidx - The zone index of the highest zone to return
996 * @nodemask - Nodemask allowed by the allocator
997 *
998 * This iterator iterates though all zones at or below a given zone index and
999 * within a given nodemask
1000 */
1001 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1002 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1003 zone; \
1004 z = next_zones_zonelist(++z, highidx, nodemask), \
1005 zone = zonelist_zone(z))
1006
1007 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1008 for (zone = z->zone; \
1009 zone; \
1010 z = next_zones_zonelist(++z, highidx, nodemask), \
1011 zone = zonelist_zone(z))
1012
1013
1014 /**
1015 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1016 * @zone - The current zone in the iterator
1017 * @z - The current pointer within zonelist->zones being iterated
1018 * @zlist - The zonelist being iterated
1019 * @highidx - The zone index of the highest zone to return
1020 *
1021 * This iterator iterates though all zones at or below a given zone index.
1022 */
1023 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1024 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1025
1026 #ifdef CONFIG_SPARSEMEM
1027 #include <asm/sparsemem.h>
1028 #endif
1029
1030 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1031 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1032 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1033 {
1034 return 0;
1035 }
1036 #endif
1037
1038 #ifdef CONFIG_FLATMEM
1039 #define pfn_to_nid(pfn) (0)
1040 #endif
1041
1042 #ifdef CONFIG_SPARSEMEM
1043
1044 /*
1045 * SECTION_SHIFT #bits space required to store a section #
1046 *
1047 * PA_SECTION_SHIFT physical address to/from section number
1048 * PFN_SECTION_SHIFT pfn to/from section number
1049 */
1050 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1051 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1052
1053 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1054
1055 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1056 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1057
1058 #define SECTION_BLOCKFLAGS_BITS \
1059 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1060
1061 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1062 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1063 #endif
1064
1065 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1066 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1067
1068 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1069 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1070
1071 struct page;
1072 struct page_ext;
1073 struct mem_section {
1074 /*
1075 * This is, logically, a pointer to an array of struct
1076 * pages. However, it is stored with some other magic.
1077 * (see sparse.c::sparse_init_one_section())
1078 *
1079 * Additionally during early boot we encode node id of
1080 * the location of the section here to guide allocation.
1081 * (see sparse.c::memory_present())
1082 *
1083 * Making it a UL at least makes someone do a cast
1084 * before using it wrong.
1085 */
1086 unsigned long section_mem_map;
1087
1088 /* See declaration of similar field in struct zone */
1089 unsigned long *pageblock_flags;
1090 #ifdef CONFIG_PAGE_EXTENSION
1091 /*
1092 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1093 * section. (see page_ext.h about this.)
1094 */
1095 struct page_ext *page_ext;
1096 unsigned long pad;
1097 #endif
1098 /*
1099 * WARNING: mem_section must be a power-of-2 in size for the
1100 * calculation and use of SECTION_ROOT_MASK to make sense.
1101 */
1102 };
1103
1104 #ifdef CONFIG_SPARSEMEM_EXTREME
1105 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1106 #else
1107 #define SECTIONS_PER_ROOT 1
1108 #endif
1109
1110 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1111 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1112 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1113
1114 #ifdef CONFIG_SPARSEMEM_EXTREME
1115 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1116 #else
1117 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1118 #endif
1119
1120 static inline struct mem_section *__nr_to_section(unsigned long nr)
1121 {
1122 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1123 return NULL;
1124 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1125 }
1126 extern int __section_nr(struct mem_section* ms);
1127 extern unsigned long usemap_size(void);
1128
1129 /*
1130 * We use the lower bits of the mem_map pointer to store
1131 * a little bit of information. There should be at least
1132 * 3 bits here due to 32-bit alignment.
1133 */
1134 #define SECTION_MARKED_PRESENT (1UL<<0)
1135 #define SECTION_HAS_MEM_MAP (1UL<<1)
1136 #define SECTION_MAP_LAST_BIT (1UL<<2)
1137 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1138 #define SECTION_NID_SHIFT 2
1139
1140 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1141 {
1142 unsigned long map = section->section_mem_map;
1143 map &= SECTION_MAP_MASK;
1144 return (struct page *)map;
1145 }
1146
1147 static inline int present_section(struct mem_section *section)
1148 {
1149 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1150 }
1151
1152 static inline int present_section_nr(unsigned long nr)
1153 {
1154 return present_section(__nr_to_section(nr));
1155 }
1156
1157 static inline int valid_section(struct mem_section *section)
1158 {
1159 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1160 }
1161
1162 static inline int valid_section_nr(unsigned long nr)
1163 {
1164 return valid_section(__nr_to_section(nr));
1165 }
1166
1167 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1168 {
1169 return __nr_to_section(pfn_to_section_nr(pfn));
1170 }
1171
1172 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1173 static inline int pfn_valid(unsigned long pfn)
1174 {
1175 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1176 return 0;
1177 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1178 }
1179 #endif
1180
1181 static inline int pfn_present(unsigned long pfn)
1182 {
1183 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1184 return 0;
1185 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1186 }
1187
1188 /*
1189 * These are _only_ used during initialisation, therefore they
1190 * can use __initdata ... They could have names to indicate
1191 * this restriction.
1192 */
1193 #ifdef CONFIG_NUMA
1194 #define pfn_to_nid(pfn) \
1195 ({ \
1196 unsigned long __pfn_to_nid_pfn = (pfn); \
1197 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1198 })
1199 #else
1200 #define pfn_to_nid(pfn) (0)
1201 #endif
1202
1203 #define early_pfn_valid(pfn) pfn_valid(pfn)
1204 void sparse_init(void);
1205 #else
1206 #define sparse_init() do {} while (0)
1207 #define sparse_index_init(_sec, _nid) do {} while (0)
1208 #endif /* CONFIG_SPARSEMEM */
1209
1210 /*
1211 * During memory init memblocks map pfns to nids. The search is expensive and
1212 * this caches recent lookups. The implementation of __early_pfn_to_nid
1213 * may treat start/end as pfns or sections.
1214 */
1215 struct mminit_pfnnid_cache {
1216 unsigned long last_start;
1217 unsigned long last_end;
1218 int last_nid;
1219 };
1220
1221 #ifndef early_pfn_valid
1222 #define early_pfn_valid(pfn) (1)
1223 #endif
1224
1225 void memory_present(int nid, unsigned long start, unsigned long end);
1226 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1227
1228 /*
1229 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1230 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1231 * pfn_valid_within() should be used in this case; we optimise this away
1232 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1233 */
1234 #ifdef CONFIG_HOLES_IN_ZONE
1235 #define pfn_valid_within(pfn) pfn_valid(pfn)
1236 #else
1237 #define pfn_valid_within(pfn) (1)
1238 #endif
1239
1240 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1241 /*
1242 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1243 * associated with it or not. In FLATMEM, it is expected that holes always
1244 * have valid memmap as long as there is valid PFNs either side of the hole.
1245 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1246 * entire section.
1247 *
1248 * However, an ARM, and maybe other embedded architectures in the future
1249 * free memmap backing holes to save memory on the assumption the memmap is
1250 * never used. The page_zone linkages are then broken even though pfn_valid()
1251 * returns true. A walker of the full memmap must then do this additional
1252 * check to ensure the memmap they are looking at is sane by making sure
1253 * the zone and PFN linkages are still valid. This is expensive, but walkers
1254 * of the full memmap are extremely rare.
1255 */
1256 bool memmap_valid_within(unsigned long pfn,
1257 struct page *page, struct zone *zone);
1258 #else
1259 static inline bool memmap_valid_within(unsigned long pfn,
1260 struct page *page, struct zone *zone)
1261 {
1262 return true;
1263 }
1264 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1265
1266 #endif /* !__GENERATING_BOUNDS.H */
1267 #endif /* !__ASSEMBLY__ */
1268 #endif /* _LINUX_MMZONE_H */