]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mmzone.h
mm, rmap: account shmem thp pages
[mirror_ubuntu-bionic-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #else
72 # define is_migrate_cma(migratetype) false
73 #endif
74
75 #define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
79 extern int page_group_by_mobility_disabled;
80
81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
84 #define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
88 struct free_area {
89 struct list_head free_list[MIGRATE_TYPES];
90 unsigned long nr_free;
91 };
92
93 struct pglist_data;
94
95 /*
96 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
97 * So add a wild amount of padding here to ensure that they fall into separate
98 * cachelines. There are very few zone structures in the machine, so space
99 * consumption is not a concern here.
100 */
101 #if defined(CONFIG_SMP)
102 struct zone_padding {
103 char x[0];
104 } ____cacheline_internodealigned_in_smp;
105 #define ZONE_PADDING(name) struct zone_padding name;
106 #else
107 #define ZONE_PADDING(name)
108 #endif
109
110 enum zone_stat_item {
111 /* First 128 byte cacheline (assuming 64 bit words) */
112 NR_FREE_PAGES,
113 NR_ALLOC_BATCH,
114 NR_LRU_BASE,
115 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
116 NR_ACTIVE_ANON, /* " " " " " */
117 NR_INACTIVE_FILE, /* " " " " " */
118 NR_ACTIVE_FILE, /* " " " " " */
119 NR_UNEVICTABLE, /* " " " " " */
120 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
121 NR_ANON_PAGES, /* Mapped anonymous pages */
122 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
123 only modified from process context */
124 NR_FILE_PAGES,
125 NR_FILE_DIRTY,
126 NR_WRITEBACK,
127 NR_SLAB_RECLAIMABLE,
128 NR_SLAB_UNRECLAIMABLE,
129 NR_PAGETABLE, /* used for pagetables */
130 NR_KERNEL_STACK,
131 /* Second 128 byte cacheline */
132 NR_UNSTABLE_NFS, /* NFS unstable pages */
133 NR_BOUNCE,
134 NR_VMSCAN_WRITE,
135 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
136 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
137 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
138 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
139 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
140 NR_DIRTIED, /* page dirtyings since bootup */
141 NR_WRITTEN, /* page writings since bootup */
142 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
143 #if IS_ENABLED(CONFIG_ZSMALLOC)
144 NR_ZSPAGES, /* allocated in zsmalloc */
145 #endif
146 #ifdef CONFIG_NUMA
147 NUMA_HIT, /* allocated in intended node */
148 NUMA_MISS, /* allocated in non intended node */
149 NUMA_FOREIGN, /* was intended here, hit elsewhere */
150 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
151 NUMA_LOCAL, /* allocation from local node */
152 NUMA_OTHER, /* allocation from other node */
153 #endif
154 WORKINGSET_REFAULT,
155 WORKINGSET_ACTIVATE,
156 WORKINGSET_NODERECLAIM,
157 NR_ANON_THPS,
158 NR_SHMEM_THPS,
159 NR_SHMEM_PMDMAPPED,
160 NR_FREE_CMA_PAGES,
161 NR_VM_ZONE_STAT_ITEMS };
162
163 /*
164 * We do arithmetic on the LRU lists in various places in the code,
165 * so it is important to keep the active lists LRU_ACTIVE higher in
166 * the array than the corresponding inactive lists, and to keep
167 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
168 *
169 * This has to be kept in sync with the statistics in zone_stat_item
170 * above and the descriptions in vmstat_text in mm/vmstat.c
171 */
172 #define LRU_BASE 0
173 #define LRU_ACTIVE 1
174 #define LRU_FILE 2
175
176 enum lru_list {
177 LRU_INACTIVE_ANON = LRU_BASE,
178 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
179 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
180 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
181 LRU_UNEVICTABLE,
182 NR_LRU_LISTS
183 };
184
185 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
186
187 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
188
189 static inline int is_file_lru(enum lru_list lru)
190 {
191 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
192 }
193
194 static inline int is_active_lru(enum lru_list lru)
195 {
196 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
197 }
198
199 struct zone_reclaim_stat {
200 /*
201 * The pageout code in vmscan.c keeps track of how many of the
202 * mem/swap backed and file backed pages are referenced.
203 * The higher the rotated/scanned ratio, the more valuable
204 * that cache is.
205 *
206 * The anon LRU stats live in [0], file LRU stats in [1]
207 */
208 unsigned long recent_rotated[2];
209 unsigned long recent_scanned[2];
210 };
211
212 struct lruvec {
213 struct list_head lists[NR_LRU_LISTS];
214 struct zone_reclaim_stat reclaim_stat;
215 /* Evictions & activations on the inactive file list */
216 atomic_long_t inactive_age;
217 #ifdef CONFIG_MEMCG
218 struct zone *zone;
219 #endif
220 };
221
222 /* Mask used at gathering information at once (see memcontrol.c) */
223 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
224 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
225 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
226
227 /* Isolate clean file */
228 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
229 /* Isolate unmapped file */
230 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
231 /* Isolate for asynchronous migration */
232 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
233 /* Isolate unevictable pages */
234 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
235
236 /* LRU Isolation modes. */
237 typedef unsigned __bitwise__ isolate_mode_t;
238
239 enum zone_watermarks {
240 WMARK_MIN,
241 WMARK_LOW,
242 WMARK_HIGH,
243 NR_WMARK
244 };
245
246 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
247 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
248 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
249
250 struct per_cpu_pages {
251 int count; /* number of pages in the list */
252 int high; /* high watermark, emptying needed */
253 int batch; /* chunk size for buddy add/remove */
254
255 /* Lists of pages, one per migrate type stored on the pcp-lists */
256 struct list_head lists[MIGRATE_PCPTYPES];
257 };
258
259 struct per_cpu_pageset {
260 struct per_cpu_pages pcp;
261 #ifdef CONFIG_NUMA
262 s8 expire;
263 #endif
264 #ifdef CONFIG_SMP
265 s8 stat_threshold;
266 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
267 #endif
268 };
269
270 #endif /* !__GENERATING_BOUNDS.H */
271
272 enum zone_type {
273 #ifdef CONFIG_ZONE_DMA
274 /*
275 * ZONE_DMA is used when there are devices that are not able
276 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
277 * carve out the portion of memory that is needed for these devices.
278 * The range is arch specific.
279 *
280 * Some examples
281 *
282 * Architecture Limit
283 * ---------------------------
284 * parisc, ia64, sparc <4G
285 * s390 <2G
286 * arm Various
287 * alpha Unlimited or 0-16MB.
288 *
289 * i386, x86_64 and multiple other arches
290 * <16M.
291 */
292 ZONE_DMA,
293 #endif
294 #ifdef CONFIG_ZONE_DMA32
295 /*
296 * x86_64 needs two ZONE_DMAs because it supports devices that are
297 * only able to do DMA to the lower 16M but also 32 bit devices that
298 * can only do DMA areas below 4G.
299 */
300 ZONE_DMA32,
301 #endif
302 /*
303 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
304 * performed on pages in ZONE_NORMAL if the DMA devices support
305 * transfers to all addressable memory.
306 */
307 ZONE_NORMAL,
308 #ifdef CONFIG_HIGHMEM
309 /*
310 * A memory area that is only addressable by the kernel through
311 * mapping portions into its own address space. This is for example
312 * used by i386 to allow the kernel to address the memory beyond
313 * 900MB. The kernel will set up special mappings (page
314 * table entries on i386) for each page that the kernel needs to
315 * access.
316 */
317 ZONE_HIGHMEM,
318 #endif
319 ZONE_MOVABLE,
320 #ifdef CONFIG_ZONE_DEVICE
321 ZONE_DEVICE,
322 #endif
323 __MAX_NR_ZONES
324
325 };
326
327 #ifndef __GENERATING_BOUNDS_H
328
329 struct zone {
330 /* Read-mostly fields */
331
332 /* zone watermarks, access with *_wmark_pages(zone) macros */
333 unsigned long watermark[NR_WMARK];
334
335 unsigned long nr_reserved_highatomic;
336
337 /*
338 * We don't know if the memory that we're going to allocate will be
339 * freeable or/and it will be released eventually, so to avoid totally
340 * wasting several GB of ram we must reserve some of the lower zone
341 * memory (otherwise we risk to run OOM on the lower zones despite
342 * there being tons of freeable ram on the higher zones). This array is
343 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
344 * changes.
345 */
346 long lowmem_reserve[MAX_NR_ZONES];
347
348 #ifdef CONFIG_NUMA
349 int node;
350 #endif
351
352 /*
353 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
354 * this zone's LRU. Maintained by the pageout code.
355 */
356 unsigned int inactive_ratio;
357
358 struct pglist_data *zone_pgdat;
359 struct per_cpu_pageset __percpu *pageset;
360
361 /*
362 * This is a per-zone reserve of pages that are not available
363 * to userspace allocations.
364 */
365 unsigned long totalreserve_pages;
366
367 #ifndef CONFIG_SPARSEMEM
368 /*
369 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
370 * In SPARSEMEM, this map is stored in struct mem_section
371 */
372 unsigned long *pageblock_flags;
373 #endif /* CONFIG_SPARSEMEM */
374
375 #ifdef CONFIG_NUMA
376 /*
377 * zone reclaim becomes active if more unmapped pages exist.
378 */
379 unsigned long min_unmapped_pages;
380 unsigned long min_slab_pages;
381 #endif /* CONFIG_NUMA */
382
383 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
384 unsigned long zone_start_pfn;
385
386 /*
387 * spanned_pages is the total pages spanned by the zone, including
388 * holes, which is calculated as:
389 * spanned_pages = zone_end_pfn - zone_start_pfn;
390 *
391 * present_pages is physical pages existing within the zone, which
392 * is calculated as:
393 * present_pages = spanned_pages - absent_pages(pages in holes);
394 *
395 * managed_pages is present pages managed by the buddy system, which
396 * is calculated as (reserved_pages includes pages allocated by the
397 * bootmem allocator):
398 * managed_pages = present_pages - reserved_pages;
399 *
400 * So present_pages may be used by memory hotplug or memory power
401 * management logic to figure out unmanaged pages by checking
402 * (present_pages - managed_pages). And managed_pages should be used
403 * by page allocator and vm scanner to calculate all kinds of watermarks
404 * and thresholds.
405 *
406 * Locking rules:
407 *
408 * zone_start_pfn and spanned_pages are protected by span_seqlock.
409 * It is a seqlock because it has to be read outside of zone->lock,
410 * and it is done in the main allocator path. But, it is written
411 * quite infrequently.
412 *
413 * The span_seq lock is declared along with zone->lock because it is
414 * frequently read in proximity to zone->lock. It's good to
415 * give them a chance of being in the same cacheline.
416 *
417 * Write access to present_pages at runtime should be protected by
418 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
419 * present_pages should get_online_mems() to get a stable value.
420 *
421 * Read access to managed_pages should be safe because it's unsigned
422 * long. Write access to zone->managed_pages and totalram_pages are
423 * protected by managed_page_count_lock at runtime. Idealy only
424 * adjust_managed_page_count() should be used instead of directly
425 * touching zone->managed_pages and totalram_pages.
426 */
427 unsigned long managed_pages;
428 unsigned long spanned_pages;
429 unsigned long present_pages;
430
431 const char *name;
432
433 #ifdef CONFIG_MEMORY_ISOLATION
434 /*
435 * Number of isolated pageblock. It is used to solve incorrect
436 * freepage counting problem due to racy retrieving migratetype
437 * of pageblock. Protected by zone->lock.
438 */
439 unsigned long nr_isolate_pageblock;
440 #endif
441
442 #ifdef CONFIG_MEMORY_HOTPLUG
443 /* see spanned/present_pages for more description */
444 seqlock_t span_seqlock;
445 #endif
446
447 /*
448 * wait_table -- the array holding the hash table
449 * wait_table_hash_nr_entries -- the size of the hash table array
450 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
451 *
452 * The purpose of all these is to keep track of the people
453 * waiting for a page to become available and make them
454 * runnable again when possible. The trouble is that this
455 * consumes a lot of space, especially when so few things
456 * wait on pages at a given time. So instead of using
457 * per-page waitqueues, we use a waitqueue hash table.
458 *
459 * The bucket discipline is to sleep on the same queue when
460 * colliding and wake all in that wait queue when removing.
461 * When something wakes, it must check to be sure its page is
462 * truly available, a la thundering herd. The cost of a
463 * collision is great, but given the expected load of the
464 * table, they should be so rare as to be outweighed by the
465 * benefits from the saved space.
466 *
467 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
468 * primary users of these fields, and in mm/page_alloc.c
469 * free_area_init_core() performs the initialization of them.
470 */
471 wait_queue_head_t *wait_table;
472 unsigned long wait_table_hash_nr_entries;
473 unsigned long wait_table_bits;
474
475 ZONE_PADDING(_pad1_)
476 /* free areas of different sizes */
477 struct free_area free_area[MAX_ORDER];
478
479 /* zone flags, see below */
480 unsigned long flags;
481
482 /* Write-intensive fields used from the page allocator */
483 spinlock_t lock;
484
485 ZONE_PADDING(_pad2_)
486
487 /* Write-intensive fields used by page reclaim */
488
489 /* Fields commonly accessed by the page reclaim scanner */
490 spinlock_t lru_lock;
491 struct lruvec lruvec;
492
493 /*
494 * When free pages are below this point, additional steps are taken
495 * when reading the number of free pages to avoid per-cpu counter
496 * drift allowing watermarks to be breached
497 */
498 unsigned long percpu_drift_mark;
499
500 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
501 /* pfn where compaction free scanner should start */
502 unsigned long compact_cached_free_pfn;
503 /* pfn where async and sync compaction migration scanner should start */
504 unsigned long compact_cached_migrate_pfn[2];
505 #endif
506
507 #ifdef CONFIG_COMPACTION
508 /*
509 * On compaction failure, 1<<compact_defer_shift compactions
510 * are skipped before trying again. The number attempted since
511 * last failure is tracked with compact_considered.
512 */
513 unsigned int compact_considered;
514 unsigned int compact_defer_shift;
515 int compact_order_failed;
516 #endif
517
518 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
519 /* Set to true when the PG_migrate_skip bits should be cleared */
520 bool compact_blockskip_flush;
521 #endif
522
523 bool contiguous;
524
525 ZONE_PADDING(_pad3_)
526 /* Zone statistics */
527 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
528 } ____cacheline_internodealigned_in_smp;
529
530 enum zone_flags {
531 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
532 ZONE_CONGESTED, /* zone has many dirty pages backed by
533 * a congested BDI
534 */
535 ZONE_DIRTY, /* reclaim scanning has recently found
536 * many dirty file pages at the tail
537 * of the LRU.
538 */
539 ZONE_WRITEBACK, /* reclaim scanning has recently found
540 * many pages under writeback
541 */
542 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
543 };
544
545 static inline unsigned long zone_end_pfn(const struct zone *zone)
546 {
547 return zone->zone_start_pfn + zone->spanned_pages;
548 }
549
550 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
551 {
552 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
553 }
554
555 static inline bool zone_is_initialized(struct zone *zone)
556 {
557 return !!zone->wait_table;
558 }
559
560 static inline bool zone_is_empty(struct zone *zone)
561 {
562 return zone->spanned_pages == 0;
563 }
564
565 /*
566 * The "priority" of VM scanning is how much of the queues we will scan in one
567 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
568 * queues ("queue_length >> 12") during an aging round.
569 */
570 #define DEF_PRIORITY 12
571
572 /* Maximum number of zones on a zonelist */
573 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
574
575 enum {
576 ZONELIST_FALLBACK, /* zonelist with fallback */
577 #ifdef CONFIG_NUMA
578 /*
579 * The NUMA zonelists are doubled because we need zonelists that
580 * restrict the allocations to a single node for __GFP_THISNODE.
581 */
582 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
583 #endif
584 MAX_ZONELISTS
585 };
586
587 /*
588 * This struct contains information about a zone in a zonelist. It is stored
589 * here to avoid dereferences into large structures and lookups of tables
590 */
591 struct zoneref {
592 struct zone *zone; /* Pointer to actual zone */
593 int zone_idx; /* zone_idx(zoneref->zone) */
594 };
595
596 /*
597 * One allocation request operates on a zonelist. A zonelist
598 * is a list of zones, the first one is the 'goal' of the
599 * allocation, the other zones are fallback zones, in decreasing
600 * priority.
601 *
602 * To speed the reading of the zonelist, the zonerefs contain the zone index
603 * of the entry being read. Helper functions to access information given
604 * a struct zoneref are
605 *
606 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
607 * zonelist_zone_idx() - Return the index of the zone for an entry
608 * zonelist_node_idx() - Return the index of the node for an entry
609 */
610 struct zonelist {
611 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
612 };
613
614 #ifndef CONFIG_DISCONTIGMEM
615 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
616 extern struct page *mem_map;
617 #endif
618
619 /*
620 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
621 * (mostly NUMA machines?) to denote a higher-level memory zone than the
622 * zone denotes.
623 *
624 * On NUMA machines, each NUMA node would have a pg_data_t to describe
625 * it's memory layout.
626 *
627 * Memory statistics and page replacement data structures are maintained on a
628 * per-zone basis.
629 */
630 struct bootmem_data;
631 typedef struct pglist_data {
632 struct zone node_zones[MAX_NR_ZONES];
633 struct zonelist node_zonelists[MAX_ZONELISTS];
634 int nr_zones;
635 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
636 struct page *node_mem_map;
637 #ifdef CONFIG_PAGE_EXTENSION
638 struct page_ext *node_page_ext;
639 #endif
640 #endif
641 #ifndef CONFIG_NO_BOOTMEM
642 struct bootmem_data *bdata;
643 #endif
644 #ifdef CONFIG_MEMORY_HOTPLUG
645 /*
646 * Must be held any time you expect node_start_pfn, node_present_pages
647 * or node_spanned_pages stay constant. Holding this will also
648 * guarantee that any pfn_valid() stays that way.
649 *
650 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
651 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
652 *
653 * Nests above zone->lock and zone->span_seqlock
654 */
655 spinlock_t node_size_lock;
656 #endif
657 unsigned long node_start_pfn;
658 unsigned long node_present_pages; /* total number of physical pages */
659 unsigned long node_spanned_pages; /* total size of physical page
660 range, including holes */
661 int node_id;
662 wait_queue_head_t kswapd_wait;
663 wait_queue_head_t pfmemalloc_wait;
664 struct task_struct *kswapd; /* Protected by
665 mem_hotplug_begin/end() */
666 int kswapd_max_order;
667 enum zone_type classzone_idx;
668 #ifdef CONFIG_COMPACTION
669 int kcompactd_max_order;
670 enum zone_type kcompactd_classzone_idx;
671 wait_queue_head_t kcompactd_wait;
672 struct task_struct *kcompactd;
673 #endif
674 #ifdef CONFIG_NUMA_BALANCING
675 /* Lock serializing the migrate rate limiting window */
676 spinlock_t numabalancing_migrate_lock;
677
678 /* Rate limiting time interval */
679 unsigned long numabalancing_migrate_next_window;
680
681 /* Number of pages migrated during the rate limiting time interval */
682 unsigned long numabalancing_migrate_nr_pages;
683 #endif
684
685 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
686 /*
687 * If memory initialisation on large machines is deferred then this
688 * is the first PFN that needs to be initialised.
689 */
690 unsigned long first_deferred_pfn;
691 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
692
693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
694 spinlock_t split_queue_lock;
695 struct list_head split_queue;
696 unsigned long split_queue_len;
697 #endif
698 } pg_data_t;
699
700 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
701 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
702 #ifdef CONFIG_FLAT_NODE_MEM_MAP
703 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
704 #else
705 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
706 #endif
707 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
708
709 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
710 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
711
712 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
713 {
714 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
715 }
716
717 static inline bool pgdat_is_empty(pg_data_t *pgdat)
718 {
719 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
720 }
721
722 static inline int zone_id(const struct zone *zone)
723 {
724 struct pglist_data *pgdat = zone->zone_pgdat;
725
726 return zone - pgdat->node_zones;
727 }
728
729 #ifdef CONFIG_ZONE_DEVICE
730 static inline bool is_dev_zone(const struct zone *zone)
731 {
732 return zone_id(zone) == ZONE_DEVICE;
733 }
734 #else
735 static inline bool is_dev_zone(const struct zone *zone)
736 {
737 return false;
738 }
739 #endif
740
741 #include <linux/memory_hotplug.h>
742
743 extern struct mutex zonelists_mutex;
744 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
745 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
746 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
747 int classzone_idx, unsigned int alloc_flags,
748 long free_pages);
749 bool zone_watermark_ok(struct zone *z, unsigned int order,
750 unsigned long mark, int classzone_idx,
751 unsigned int alloc_flags);
752 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
753 unsigned long mark, int classzone_idx);
754 enum memmap_context {
755 MEMMAP_EARLY,
756 MEMMAP_HOTPLUG,
757 };
758 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
759 unsigned long size);
760
761 extern void lruvec_init(struct lruvec *lruvec);
762
763 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
764 {
765 #ifdef CONFIG_MEMCG
766 return lruvec->zone;
767 #else
768 return container_of(lruvec, struct zone, lruvec);
769 #endif
770 }
771
772 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
773
774 #ifdef CONFIG_HAVE_MEMORY_PRESENT
775 void memory_present(int nid, unsigned long start, unsigned long end);
776 #else
777 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
778 #endif
779
780 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
781 int local_memory_node(int node_id);
782 #else
783 static inline int local_memory_node(int node_id) { return node_id; };
784 #endif
785
786 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
787 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
788 #endif
789
790 /*
791 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
792 */
793 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
794
795 static inline int populated_zone(struct zone *zone)
796 {
797 return (!!zone->present_pages);
798 }
799
800 extern int movable_zone;
801
802 #ifdef CONFIG_HIGHMEM
803 static inline int zone_movable_is_highmem(void)
804 {
805 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
806 return movable_zone == ZONE_HIGHMEM;
807 #else
808 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
809 #endif
810 }
811 #endif
812
813 static inline int is_highmem_idx(enum zone_type idx)
814 {
815 #ifdef CONFIG_HIGHMEM
816 return (idx == ZONE_HIGHMEM ||
817 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
818 #else
819 return 0;
820 #endif
821 }
822
823 /**
824 * is_highmem - helper function to quickly check if a struct zone is a
825 * highmem zone or not. This is an attempt to keep references
826 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
827 * @zone - pointer to struct zone variable
828 */
829 static inline int is_highmem(struct zone *zone)
830 {
831 #ifdef CONFIG_HIGHMEM
832 return is_highmem_idx(zone_idx(zone));
833 #else
834 return 0;
835 #endif
836 }
837
838 /* These two functions are used to setup the per zone pages min values */
839 struct ctl_table;
840 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
841 void __user *, size_t *, loff_t *);
842 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
843 void __user *, size_t *, loff_t *);
844 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
845 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
846 void __user *, size_t *, loff_t *);
847 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
848 void __user *, size_t *, loff_t *);
849 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
850 void __user *, size_t *, loff_t *);
851 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
852 void __user *, size_t *, loff_t *);
853
854 extern int numa_zonelist_order_handler(struct ctl_table *, int,
855 void __user *, size_t *, loff_t *);
856 extern char numa_zonelist_order[];
857 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
858
859 #ifndef CONFIG_NEED_MULTIPLE_NODES
860
861 extern struct pglist_data contig_page_data;
862 #define NODE_DATA(nid) (&contig_page_data)
863 #define NODE_MEM_MAP(nid) mem_map
864
865 #else /* CONFIG_NEED_MULTIPLE_NODES */
866
867 #include <asm/mmzone.h>
868
869 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
870
871 extern struct pglist_data *first_online_pgdat(void);
872 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
873 extern struct zone *next_zone(struct zone *zone);
874
875 /**
876 * for_each_online_pgdat - helper macro to iterate over all online nodes
877 * @pgdat - pointer to a pg_data_t variable
878 */
879 #define for_each_online_pgdat(pgdat) \
880 for (pgdat = first_online_pgdat(); \
881 pgdat; \
882 pgdat = next_online_pgdat(pgdat))
883 /**
884 * for_each_zone - helper macro to iterate over all memory zones
885 * @zone - pointer to struct zone variable
886 *
887 * The user only needs to declare the zone variable, for_each_zone
888 * fills it in.
889 */
890 #define for_each_zone(zone) \
891 for (zone = (first_online_pgdat())->node_zones; \
892 zone; \
893 zone = next_zone(zone))
894
895 #define for_each_populated_zone(zone) \
896 for (zone = (first_online_pgdat())->node_zones; \
897 zone; \
898 zone = next_zone(zone)) \
899 if (!populated_zone(zone)) \
900 ; /* do nothing */ \
901 else
902
903 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
904 {
905 return zoneref->zone;
906 }
907
908 static inline int zonelist_zone_idx(struct zoneref *zoneref)
909 {
910 return zoneref->zone_idx;
911 }
912
913 static inline int zonelist_node_idx(struct zoneref *zoneref)
914 {
915 #ifdef CONFIG_NUMA
916 /* zone_to_nid not available in this context */
917 return zoneref->zone->node;
918 #else
919 return 0;
920 #endif /* CONFIG_NUMA */
921 }
922
923 struct zoneref *__next_zones_zonelist(struct zoneref *z,
924 enum zone_type highest_zoneidx,
925 nodemask_t *nodes);
926
927 /**
928 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
929 * @z - The cursor used as a starting point for the search
930 * @highest_zoneidx - The zone index of the highest zone to return
931 * @nodes - An optional nodemask to filter the zonelist with
932 *
933 * This function returns the next zone at or below a given zone index that is
934 * within the allowed nodemask using a cursor as the starting point for the
935 * search. The zoneref returned is a cursor that represents the current zone
936 * being examined. It should be advanced by one before calling
937 * next_zones_zonelist again.
938 */
939 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
940 enum zone_type highest_zoneidx,
941 nodemask_t *nodes)
942 {
943 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
944 return z;
945 return __next_zones_zonelist(z, highest_zoneidx, nodes);
946 }
947
948 /**
949 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
950 * @zonelist - The zonelist to search for a suitable zone
951 * @highest_zoneidx - The zone index of the highest zone to return
952 * @nodes - An optional nodemask to filter the zonelist with
953 * @zone - The first suitable zone found is returned via this parameter
954 *
955 * This function returns the first zone at or below a given zone index that is
956 * within the allowed nodemask. The zoneref returned is a cursor that can be
957 * used to iterate the zonelist with next_zones_zonelist by advancing it by
958 * one before calling.
959 */
960 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
961 enum zone_type highest_zoneidx,
962 nodemask_t *nodes)
963 {
964 return next_zones_zonelist(zonelist->_zonerefs,
965 highest_zoneidx, nodes);
966 }
967
968 /**
969 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
970 * @zone - The current zone in the iterator
971 * @z - The current pointer within zonelist->zones being iterated
972 * @zlist - The zonelist being iterated
973 * @highidx - The zone index of the highest zone to return
974 * @nodemask - Nodemask allowed by the allocator
975 *
976 * This iterator iterates though all zones at or below a given zone index and
977 * within a given nodemask
978 */
979 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
980 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
981 zone; \
982 z = next_zones_zonelist(++z, highidx, nodemask), \
983 zone = zonelist_zone(z))
984
985 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
986 for (zone = z->zone; \
987 zone; \
988 z = next_zones_zonelist(++z, highidx, nodemask), \
989 zone = zonelist_zone(z))
990
991
992 /**
993 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
994 * @zone - The current zone in the iterator
995 * @z - The current pointer within zonelist->zones being iterated
996 * @zlist - The zonelist being iterated
997 * @highidx - The zone index of the highest zone to return
998 *
999 * This iterator iterates though all zones at or below a given zone index.
1000 */
1001 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1002 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1003
1004 #ifdef CONFIG_SPARSEMEM
1005 #include <asm/sparsemem.h>
1006 #endif
1007
1008 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1009 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1010 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1011 {
1012 return 0;
1013 }
1014 #endif
1015
1016 #ifdef CONFIG_FLATMEM
1017 #define pfn_to_nid(pfn) (0)
1018 #endif
1019
1020 #ifdef CONFIG_SPARSEMEM
1021
1022 /*
1023 * SECTION_SHIFT #bits space required to store a section #
1024 *
1025 * PA_SECTION_SHIFT physical address to/from section number
1026 * PFN_SECTION_SHIFT pfn to/from section number
1027 */
1028 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1029 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1030
1031 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1032
1033 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1034 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1035
1036 #define SECTION_BLOCKFLAGS_BITS \
1037 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1038
1039 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1040 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1041 #endif
1042
1043 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1044 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1045
1046 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1047 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1048
1049 struct page;
1050 struct page_ext;
1051 struct mem_section {
1052 /*
1053 * This is, logically, a pointer to an array of struct
1054 * pages. However, it is stored with some other magic.
1055 * (see sparse.c::sparse_init_one_section())
1056 *
1057 * Additionally during early boot we encode node id of
1058 * the location of the section here to guide allocation.
1059 * (see sparse.c::memory_present())
1060 *
1061 * Making it a UL at least makes someone do a cast
1062 * before using it wrong.
1063 */
1064 unsigned long section_mem_map;
1065
1066 /* See declaration of similar field in struct zone */
1067 unsigned long *pageblock_flags;
1068 #ifdef CONFIG_PAGE_EXTENSION
1069 /*
1070 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1071 * section. (see page_ext.h about this.)
1072 */
1073 struct page_ext *page_ext;
1074 unsigned long pad;
1075 #endif
1076 /*
1077 * WARNING: mem_section must be a power-of-2 in size for the
1078 * calculation and use of SECTION_ROOT_MASK to make sense.
1079 */
1080 };
1081
1082 #ifdef CONFIG_SPARSEMEM_EXTREME
1083 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1084 #else
1085 #define SECTIONS_PER_ROOT 1
1086 #endif
1087
1088 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1089 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1090 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1091
1092 #ifdef CONFIG_SPARSEMEM_EXTREME
1093 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1094 #else
1095 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1096 #endif
1097
1098 static inline struct mem_section *__nr_to_section(unsigned long nr)
1099 {
1100 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1101 return NULL;
1102 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1103 }
1104 extern int __section_nr(struct mem_section* ms);
1105 extern unsigned long usemap_size(void);
1106
1107 /*
1108 * We use the lower bits of the mem_map pointer to store
1109 * a little bit of information. There should be at least
1110 * 3 bits here due to 32-bit alignment.
1111 */
1112 #define SECTION_MARKED_PRESENT (1UL<<0)
1113 #define SECTION_HAS_MEM_MAP (1UL<<1)
1114 #define SECTION_MAP_LAST_BIT (1UL<<2)
1115 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1116 #define SECTION_NID_SHIFT 2
1117
1118 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1119 {
1120 unsigned long map = section->section_mem_map;
1121 map &= SECTION_MAP_MASK;
1122 return (struct page *)map;
1123 }
1124
1125 static inline int present_section(struct mem_section *section)
1126 {
1127 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1128 }
1129
1130 static inline int present_section_nr(unsigned long nr)
1131 {
1132 return present_section(__nr_to_section(nr));
1133 }
1134
1135 static inline int valid_section(struct mem_section *section)
1136 {
1137 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1138 }
1139
1140 static inline int valid_section_nr(unsigned long nr)
1141 {
1142 return valid_section(__nr_to_section(nr));
1143 }
1144
1145 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1146 {
1147 return __nr_to_section(pfn_to_section_nr(pfn));
1148 }
1149
1150 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1151 static inline int pfn_valid(unsigned long pfn)
1152 {
1153 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1154 return 0;
1155 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1156 }
1157 #endif
1158
1159 static inline int pfn_present(unsigned long pfn)
1160 {
1161 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1162 return 0;
1163 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1164 }
1165
1166 /*
1167 * These are _only_ used during initialisation, therefore they
1168 * can use __initdata ... They could have names to indicate
1169 * this restriction.
1170 */
1171 #ifdef CONFIG_NUMA
1172 #define pfn_to_nid(pfn) \
1173 ({ \
1174 unsigned long __pfn_to_nid_pfn = (pfn); \
1175 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1176 })
1177 #else
1178 #define pfn_to_nid(pfn) (0)
1179 #endif
1180
1181 #define early_pfn_valid(pfn) pfn_valid(pfn)
1182 void sparse_init(void);
1183 #else
1184 #define sparse_init() do {} while (0)
1185 #define sparse_index_init(_sec, _nid) do {} while (0)
1186 #endif /* CONFIG_SPARSEMEM */
1187
1188 /*
1189 * During memory init memblocks map pfns to nids. The search is expensive and
1190 * this caches recent lookups. The implementation of __early_pfn_to_nid
1191 * may treat start/end as pfns or sections.
1192 */
1193 struct mminit_pfnnid_cache {
1194 unsigned long last_start;
1195 unsigned long last_end;
1196 int last_nid;
1197 };
1198
1199 #ifndef early_pfn_valid
1200 #define early_pfn_valid(pfn) (1)
1201 #endif
1202
1203 void memory_present(int nid, unsigned long start, unsigned long end);
1204 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1205
1206 /*
1207 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1208 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1209 * pfn_valid_within() should be used in this case; we optimise this away
1210 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1211 */
1212 #ifdef CONFIG_HOLES_IN_ZONE
1213 #define pfn_valid_within(pfn) pfn_valid(pfn)
1214 #else
1215 #define pfn_valid_within(pfn) (1)
1216 #endif
1217
1218 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1219 /*
1220 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1221 * associated with it or not. In FLATMEM, it is expected that holes always
1222 * have valid memmap as long as there is valid PFNs either side of the hole.
1223 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1224 * entire section.
1225 *
1226 * However, an ARM, and maybe other embedded architectures in the future
1227 * free memmap backing holes to save memory on the assumption the memmap is
1228 * never used. The page_zone linkages are then broken even though pfn_valid()
1229 * returns true. A walker of the full memmap must then do this additional
1230 * check to ensure the memmap they are looking at is sane by making sure
1231 * the zone and PFN linkages are still valid. This is expensive, but walkers
1232 * of the full memmap are extremely rare.
1233 */
1234 bool memmap_valid_within(unsigned long pfn,
1235 struct page *page, struct zone *zone);
1236 #else
1237 static inline bool memmap_valid_within(unsigned long pfn,
1238 struct page *page, struct zone *zone)
1239 {
1240 return true;
1241 }
1242 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1243
1244 #endif /* !__GENERATING_BOUNDS.H */
1245 #endif /* !__ASSEMBLY__ */
1246 #endif /* _LINUX_MMZONE_H */