]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/linux/mmzone.h
[PATCH] Make high and batch sizes of per_cpu_pagelists configurable
[mirror_ubuntu-focal-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/config.h>
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <asm/atomic.h>
17
18 /* Free memory management - zoned buddy allocator. */
19 #ifndef CONFIG_FORCE_MAX_ZONEORDER
20 #define MAX_ORDER 11
21 #else
22 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
23 #endif
24
25 struct free_area {
26 struct list_head free_list;
27 unsigned long nr_free;
28 };
29
30 struct pglist_data;
31
32 /*
33 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
34 * So add a wild amount of padding here to ensure that they fall into separate
35 * cachelines. There are very few zone structures in the machine, so space
36 * consumption is not a concern here.
37 */
38 #if defined(CONFIG_SMP)
39 struct zone_padding {
40 char x[0];
41 } ____cacheline_maxaligned_in_smp;
42 #define ZONE_PADDING(name) struct zone_padding name;
43 #else
44 #define ZONE_PADDING(name)
45 #endif
46
47 struct per_cpu_pages {
48 int count; /* number of pages in the list */
49 int high; /* high watermark, emptying needed */
50 int batch; /* chunk size for buddy add/remove */
51 struct list_head list; /* the list of pages */
52 };
53
54 struct per_cpu_pageset {
55 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
56 #ifdef CONFIG_NUMA
57 unsigned long numa_hit; /* allocated in intended node */
58 unsigned long numa_miss; /* allocated in non intended node */
59 unsigned long numa_foreign; /* was intended here, hit elsewhere */
60 unsigned long interleave_hit; /* interleaver prefered this zone */
61 unsigned long local_node; /* allocation from local node */
62 unsigned long other_node; /* allocation from other node */
63 #endif
64 } ____cacheline_aligned_in_smp;
65
66 #ifdef CONFIG_NUMA
67 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
68 #else
69 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
70 #endif
71
72 #define ZONE_DMA 0
73 #define ZONE_DMA32 1
74 #define ZONE_NORMAL 2
75 #define ZONE_HIGHMEM 3
76
77 #define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */
78 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
79
80
81 /*
82 * When a memory allocation must conform to specific limitations (such
83 * as being suitable for DMA) the caller will pass in hints to the
84 * allocator in the gfp_mask, in the zone modifier bits. These bits
85 * are used to select a priority ordered list of memory zones which
86 * match the requested limits. GFP_ZONEMASK defines which bits within
87 * the gfp_mask should be considered as zone modifiers. Each valid
88 * combination of the zone modifier bits has a corresponding list
89 * of zones (in node_zonelists). Thus for two zone modifiers there
90 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
91 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
92 * combinations of zone modifiers in "zone modifier space".
93 *
94 * NOTE! Make sure this matches the zones in <linux/gfp.h>
95 */
96 #define GFP_ZONEMASK 0x07
97 #define GFP_ZONETYPES 5
98
99 /*
100 * On machines where it is needed (eg PCs) we divide physical memory
101 * into multiple physical zones. On a PC we have 4 zones:
102 *
103 * ZONE_DMA < 16 MB ISA DMA capable memory
104 * ZONE_DMA32 0 MB Empty
105 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
106 * ZONE_HIGHMEM > 896 MB only page cache and user processes
107 */
108
109 struct zone {
110 /* Fields commonly accessed by the page allocator */
111 unsigned long free_pages;
112 unsigned long pages_min, pages_low, pages_high;
113 /*
114 * We don't know if the memory that we're going to allocate will be freeable
115 * or/and it will be released eventually, so to avoid totally wasting several
116 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
117 * to run OOM on the lower zones despite there's tons of freeable ram
118 * on the higher zones). This array is recalculated at runtime if the
119 * sysctl_lowmem_reserve_ratio sysctl changes.
120 */
121 unsigned long lowmem_reserve[MAX_NR_ZONES];
122
123 #ifdef CONFIG_NUMA
124 struct per_cpu_pageset *pageset[NR_CPUS];
125 #else
126 struct per_cpu_pageset pageset[NR_CPUS];
127 #endif
128 /*
129 * free areas of different sizes
130 */
131 spinlock_t lock;
132 #ifdef CONFIG_MEMORY_HOTPLUG
133 /* see spanned/present_pages for more description */
134 seqlock_t span_seqlock;
135 #endif
136 struct free_area free_area[MAX_ORDER];
137
138
139 ZONE_PADDING(_pad1_)
140
141 /* Fields commonly accessed by the page reclaim scanner */
142 spinlock_t lru_lock;
143 struct list_head active_list;
144 struct list_head inactive_list;
145 unsigned long nr_scan_active;
146 unsigned long nr_scan_inactive;
147 unsigned long nr_active;
148 unsigned long nr_inactive;
149 unsigned long pages_scanned; /* since last reclaim */
150 int all_unreclaimable; /* All pages pinned */
151
152 /*
153 * Does the allocator try to reclaim pages from the zone as soon
154 * as it fails a watermark_ok() in __alloc_pages?
155 */
156 int reclaim_pages;
157 /* A count of how many reclaimers are scanning this zone */
158 atomic_t reclaim_in_progress;
159
160 /*
161 * prev_priority holds the scanning priority for this zone. It is
162 * defined as the scanning priority at which we achieved our reclaim
163 * target at the previous try_to_free_pages() or balance_pgdat()
164 * invokation.
165 *
166 * We use prev_priority as a measure of how much stress page reclaim is
167 * under - it drives the swappiness decision: whether to unmap mapped
168 * pages.
169 *
170 * temp_priority is used to remember the scanning priority at which
171 * this zone was successfully refilled to free_pages == pages_high.
172 *
173 * Access to both these fields is quite racy even on uniprocessor. But
174 * it is expected to average out OK.
175 */
176 int temp_priority;
177 int prev_priority;
178
179
180 ZONE_PADDING(_pad2_)
181 /* Rarely used or read-mostly fields */
182
183 /*
184 * wait_table -- the array holding the hash table
185 * wait_table_size -- the size of the hash table array
186 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
187 *
188 * The purpose of all these is to keep track of the people
189 * waiting for a page to become available and make them
190 * runnable again when possible. The trouble is that this
191 * consumes a lot of space, especially when so few things
192 * wait on pages at a given time. So instead of using
193 * per-page waitqueues, we use a waitqueue hash table.
194 *
195 * The bucket discipline is to sleep on the same queue when
196 * colliding and wake all in that wait queue when removing.
197 * When something wakes, it must check to be sure its page is
198 * truly available, a la thundering herd. The cost of a
199 * collision is great, but given the expected load of the
200 * table, they should be so rare as to be outweighed by the
201 * benefits from the saved space.
202 *
203 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
204 * primary users of these fields, and in mm/page_alloc.c
205 * free_area_init_core() performs the initialization of them.
206 */
207 wait_queue_head_t * wait_table;
208 unsigned long wait_table_size;
209 unsigned long wait_table_bits;
210
211 /*
212 * Discontig memory support fields.
213 */
214 struct pglist_data *zone_pgdat;
215 struct page *zone_mem_map;
216 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
217 unsigned long zone_start_pfn;
218
219 /*
220 * zone_start_pfn, spanned_pages and present_pages are all
221 * protected by span_seqlock. It is a seqlock because it has
222 * to be read outside of zone->lock, and it is done in the main
223 * allocator path. But, it is written quite infrequently.
224 *
225 * The lock is declared along with zone->lock because it is
226 * frequently read in proximity to zone->lock. It's good to
227 * give them a chance of being in the same cacheline.
228 */
229 unsigned long spanned_pages; /* total size, including holes */
230 unsigned long present_pages; /* amount of memory (excluding holes) */
231
232 /*
233 * rarely used fields:
234 */
235 char *name;
236 } ____cacheline_maxaligned_in_smp;
237
238
239 /*
240 * The "priority" of VM scanning is how much of the queues we will scan in one
241 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
242 * queues ("queue_length >> 12") during an aging round.
243 */
244 #define DEF_PRIORITY 12
245
246 /*
247 * One allocation request operates on a zonelist. A zonelist
248 * is a list of zones, the first one is the 'goal' of the
249 * allocation, the other zones are fallback zones, in decreasing
250 * priority.
251 *
252 * Right now a zonelist takes up less than a cacheline. We never
253 * modify it apart from boot-up, and only a few indices are used,
254 * so despite the zonelist table being relatively big, the cache
255 * footprint of this construct is very small.
256 */
257 struct zonelist {
258 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
259 };
260
261
262 /*
263 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
264 * (mostly NUMA machines?) to denote a higher-level memory zone than the
265 * zone denotes.
266 *
267 * On NUMA machines, each NUMA node would have a pg_data_t to describe
268 * it's memory layout.
269 *
270 * Memory statistics and page replacement data structures are maintained on a
271 * per-zone basis.
272 */
273 struct bootmem_data;
274 typedef struct pglist_data {
275 struct zone node_zones[MAX_NR_ZONES];
276 struct zonelist node_zonelists[GFP_ZONETYPES];
277 int nr_zones;
278 #ifdef CONFIG_FLAT_NODE_MEM_MAP
279 struct page *node_mem_map;
280 #endif
281 struct bootmem_data *bdata;
282 #ifdef CONFIG_MEMORY_HOTPLUG
283 /*
284 * Must be held any time you expect node_start_pfn, node_present_pages
285 * or node_spanned_pages stay constant. Holding this will also
286 * guarantee that any pfn_valid() stays that way.
287 *
288 * Nests above zone->lock and zone->size_seqlock.
289 */
290 spinlock_t node_size_lock;
291 #endif
292 unsigned long node_start_pfn;
293 unsigned long node_present_pages; /* total number of physical pages */
294 unsigned long node_spanned_pages; /* total size of physical page
295 range, including holes */
296 int node_id;
297 struct pglist_data *pgdat_next;
298 wait_queue_head_t kswapd_wait;
299 struct task_struct *kswapd;
300 int kswapd_max_order;
301 } pg_data_t;
302
303 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
304 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
305 #ifdef CONFIG_FLAT_NODE_MEM_MAP
306 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
307 #else
308 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
309 #endif
310 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
311
312 #include <linux/memory_hotplug.h>
313
314 extern struct pglist_data *pgdat_list;
315
316 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
317 unsigned long *free, struct pglist_data *pgdat);
318 void get_zone_counts(unsigned long *active, unsigned long *inactive,
319 unsigned long *free);
320 void build_all_zonelists(void);
321 void wakeup_kswapd(struct zone *zone, int order);
322 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
323 int classzone_idx, int alloc_flags);
324
325 #ifdef CONFIG_HAVE_MEMORY_PRESENT
326 void memory_present(int nid, unsigned long start, unsigned long end);
327 #else
328 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
329 #endif
330
331 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
332 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
333 #endif
334
335 /*
336 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
337 */
338 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
339
340 /**
341 * for_each_pgdat - helper macro to iterate over all nodes
342 * @pgdat - pointer to a pg_data_t variable
343 *
344 * Meant to help with common loops of the form
345 * pgdat = pgdat_list;
346 * while(pgdat) {
347 * ...
348 * pgdat = pgdat->pgdat_next;
349 * }
350 */
351 #define for_each_pgdat(pgdat) \
352 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
353
354 /*
355 * next_zone - helper magic for for_each_zone()
356 * Thanks to William Lee Irwin III for this piece of ingenuity.
357 */
358 static inline struct zone *next_zone(struct zone *zone)
359 {
360 pg_data_t *pgdat = zone->zone_pgdat;
361
362 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
363 zone++;
364 else if (pgdat->pgdat_next) {
365 pgdat = pgdat->pgdat_next;
366 zone = pgdat->node_zones;
367 } else
368 zone = NULL;
369
370 return zone;
371 }
372
373 /**
374 * for_each_zone - helper macro to iterate over all memory zones
375 * @zone - pointer to struct zone variable
376 *
377 * The user only needs to declare the zone variable, for_each_zone
378 * fills it in. This basically means for_each_zone() is an
379 * easier to read version of this piece of code:
380 *
381 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
382 * for (i = 0; i < MAX_NR_ZONES; ++i) {
383 * struct zone * z = pgdat->node_zones + i;
384 * ...
385 * }
386 * }
387 */
388 #define for_each_zone(zone) \
389 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
390
391 static inline int populated_zone(struct zone *zone)
392 {
393 return (!!zone->present_pages);
394 }
395
396 static inline int is_highmem_idx(int idx)
397 {
398 return (idx == ZONE_HIGHMEM);
399 }
400
401 static inline int is_normal_idx(int idx)
402 {
403 return (idx == ZONE_NORMAL);
404 }
405
406 /**
407 * is_highmem - helper function to quickly check if a struct zone is a
408 * highmem zone or not. This is an attempt to keep references
409 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
410 * @zone - pointer to struct zone variable
411 */
412 static inline int is_highmem(struct zone *zone)
413 {
414 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
415 }
416
417 static inline int is_normal(struct zone *zone)
418 {
419 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
420 }
421
422 static inline int is_dma32(struct zone *zone)
423 {
424 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
425 }
426
427 static inline int is_dma(struct zone *zone)
428 {
429 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
430 }
431
432 /* These two functions are used to setup the per zone pages min values */
433 struct ctl_table;
434 struct file;
435 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
436 void __user *, size_t *, loff_t *);
437 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
438 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
439 void __user *, size_t *, loff_t *);
440 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
441 void __user *, size_t *, loff_t *);
442
443 #include <linux/topology.h>
444 /* Returns the number of the current Node. */
445 #ifndef numa_node_id
446 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
447 #endif
448
449 #ifndef CONFIG_NEED_MULTIPLE_NODES
450
451 extern struct pglist_data contig_page_data;
452 #define NODE_DATA(nid) (&contig_page_data)
453 #define NODE_MEM_MAP(nid) mem_map
454 #define MAX_NODES_SHIFT 1
455
456 #else /* CONFIG_NEED_MULTIPLE_NODES */
457
458 #include <asm/mmzone.h>
459
460 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
461
462 #ifdef CONFIG_SPARSEMEM
463 #include <asm/sparsemem.h>
464 #endif
465
466 #if BITS_PER_LONG == 32
467 /*
468 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
469 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
470 */
471 #define FLAGS_RESERVED 9
472
473 #elif BITS_PER_LONG == 64
474 /*
475 * with 64 bit flags field, there's plenty of room.
476 */
477 #define FLAGS_RESERVED 32
478
479 #else
480
481 #error BITS_PER_LONG not defined
482
483 #endif
484
485 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
486 #define early_pfn_to_nid(nid) (0UL)
487 #endif
488
489 #ifdef CONFIG_FLATMEM
490 #define pfn_to_nid(pfn) (0)
491 #endif
492
493 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
494 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
495
496 #ifdef CONFIG_SPARSEMEM
497
498 /*
499 * SECTION_SHIFT #bits space required to store a section #
500 *
501 * PA_SECTION_SHIFT physical address to/from section number
502 * PFN_SECTION_SHIFT pfn to/from section number
503 */
504 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
505
506 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
507 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
508
509 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
510
511 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
512 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
513
514 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
515 #error Allocator MAX_ORDER exceeds SECTION_SIZE
516 #endif
517
518 struct page;
519 struct mem_section {
520 /*
521 * This is, logically, a pointer to an array of struct
522 * pages. However, it is stored with some other magic.
523 * (see sparse.c::sparse_init_one_section())
524 *
525 * Making it a UL at least makes someone do a cast
526 * before using it wrong.
527 */
528 unsigned long section_mem_map;
529 };
530
531 #ifdef CONFIG_SPARSEMEM_EXTREME
532 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
533 #else
534 #define SECTIONS_PER_ROOT 1
535 #endif
536
537 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
538 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
539 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
540
541 #ifdef CONFIG_SPARSEMEM_EXTREME
542 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
543 #else
544 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
545 #endif
546
547 static inline struct mem_section *__nr_to_section(unsigned long nr)
548 {
549 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
550 return NULL;
551 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
552 }
553 extern int __section_nr(struct mem_section* ms);
554
555 /*
556 * We use the lower bits of the mem_map pointer to store
557 * a little bit of information. There should be at least
558 * 3 bits here due to 32-bit alignment.
559 */
560 #define SECTION_MARKED_PRESENT (1UL<<0)
561 #define SECTION_HAS_MEM_MAP (1UL<<1)
562 #define SECTION_MAP_LAST_BIT (1UL<<2)
563 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
564
565 static inline struct page *__section_mem_map_addr(struct mem_section *section)
566 {
567 unsigned long map = section->section_mem_map;
568 map &= SECTION_MAP_MASK;
569 return (struct page *)map;
570 }
571
572 static inline int valid_section(struct mem_section *section)
573 {
574 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
575 }
576
577 static inline int section_has_mem_map(struct mem_section *section)
578 {
579 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
580 }
581
582 static inline int valid_section_nr(unsigned long nr)
583 {
584 return valid_section(__nr_to_section(nr));
585 }
586
587 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
588 {
589 return __nr_to_section(pfn_to_section_nr(pfn));
590 }
591
592 #define pfn_to_page(pfn) \
593 ({ \
594 unsigned long __pfn = (pfn); \
595 __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \
596 })
597 #define page_to_pfn(page) \
598 ({ \
599 page - __section_mem_map_addr(__nr_to_section( \
600 page_to_section(page))); \
601 })
602
603 static inline int pfn_valid(unsigned long pfn)
604 {
605 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
606 return 0;
607 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
608 }
609
610 /*
611 * These are _only_ used during initialisation, therefore they
612 * can use __initdata ... They could have names to indicate
613 * this restriction.
614 */
615 #ifdef CONFIG_NUMA
616 #define pfn_to_nid(pfn) \
617 ({ \
618 unsigned long __pfn_to_nid_pfn = (pfn); \
619 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
620 })
621 #else
622 #define pfn_to_nid(pfn) (0)
623 #endif
624
625 #define early_pfn_valid(pfn) pfn_valid(pfn)
626 void sparse_init(void);
627 #else
628 #define sparse_init() do {} while (0)
629 #define sparse_index_init(_sec, _nid) do {} while (0)
630 #endif /* CONFIG_SPARSEMEM */
631
632 #ifndef early_pfn_valid
633 #define early_pfn_valid(pfn) (1)
634 #endif
635
636 void memory_present(int nid, unsigned long start, unsigned long end);
637 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
638
639 #endif /* !__ASSEMBLY__ */
640 #endif /* __KERNEL__ */
641 #endif /* _LINUX_MMZONE_H */