]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - include/linux/mmzone.h
Merge tag 'powerpc-5.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-kernels.git] / include / linux / mmzone.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24
25 /* Free memory management - zoned buddy allocator. */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33 /*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40
41 enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65 #endif
66 MIGRATE_TYPES
67 };
68
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71
72 #ifdef CONFIG_CMA
73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 # define is_migrate_cma(migratetype) false
77 # define is_migrate_cma_page(_page) false
78 #endif
79
80 static inline bool is_migrate_movable(int mt)
81 {
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84
85 #define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89 extern int page_group_by_mobility_disabled;
90
91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92
93 #define get_pageblock_migratetype(page) \
94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95
96 struct free_area {
97 struct list_head free_list[MIGRATE_TYPES];
98 unsigned long nr_free;
99 };
100
101 static inline struct page *get_page_from_free_area(struct free_area *area,
102 int migratetype)
103 {
104 return list_first_entry_or_null(&area->free_list[migratetype],
105 struct page, lru);
106 }
107
108 static inline bool free_area_empty(struct free_area *area, int migratetype)
109 {
110 return list_empty(&area->free_list[migratetype]);
111 }
112
113 struct pglist_data;
114
115 /*
116 * Add a wild amount of padding here to ensure datas fall into separate
117 * cachelines. There are very few zone structures in the machine, so space
118 * consumption is not a concern here.
119 */
120 #if defined(CONFIG_SMP)
121 struct zone_padding {
122 char x[0];
123 } ____cacheline_internodealigned_in_smp;
124 #define ZONE_PADDING(name) struct zone_padding name;
125 #else
126 #define ZONE_PADDING(name)
127 #endif
128
129 #ifdef CONFIG_NUMA
130 enum numa_stat_item {
131 NUMA_HIT, /* allocated in intended node */
132 NUMA_MISS, /* allocated in non intended node */
133 NUMA_FOREIGN, /* was intended here, hit elsewhere */
134 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
135 NUMA_LOCAL, /* allocation from local node */
136 NUMA_OTHER, /* allocation from other node */
137 NR_VM_NUMA_STAT_ITEMS
138 };
139 #else
140 #define NR_VM_NUMA_STAT_ITEMS 0
141 #endif
142
143 enum zone_stat_item {
144 /* First 128 byte cacheline (assuming 64 bit words) */
145 NR_FREE_PAGES,
146 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
147 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
148 NR_ZONE_ACTIVE_ANON,
149 NR_ZONE_INACTIVE_FILE,
150 NR_ZONE_ACTIVE_FILE,
151 NR_ZONE_UNEVICTABLE,
152 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
153 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
154 /* Second 128 byte cacheline */
155 NR_BOUNCE,
156 #if IS_ENABLED(CONFIG_ZSMALLOC)
157 NR_ZSPAGES, /* allocated in zsmalloc */
158 #endif
159 NR_FREE_CMA_PAGES,
160 NR_VM_ZONE_STAT_ITEMS };
161
162 enum node_stat_item {
163 NR_LRU_BASE,
164 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
165 NR_ACTIVE_ANON, /* " " " " " */
166 NR_INACTIVE_FILE, /* " " " " " */
167 NR_ACTIVE_FILE, /* " " " " " */
168 NR_UNEVICTABLE, /* " " " " " */
169 NR_SLAB_RECLAIMABLE_B,
170 NR_SLAB_UNRECLAIMABLE_B,
171 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
172 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
173 WORKINGSET_NODES,
174 WORKINGSET_REFAULT_BASE,
175 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
176 WORKINGSET_REFAULT_FILE,
177 WORKINGSET_ACTIVATE_BASE,
178 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
179 WORKINGSET_ACTIVATE_FILE,
180 WORKINGSET_RESTORE_BASE,
181 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
182 WORKINGSET_RESTORE_FILE,
183 WORKINGSET_NODERECLAIM,
184 NR_ANON_MAPPED, /* Mapped anonymous pages */
185 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
186 only modified from process context */
187 NR_FILE_PAGES,
188 NR_FILE_DIRTY,
189 NR_WRITEBACK,
190 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
191 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
192 NR_SHMEM_THPS,
193 NR_SHMEM_PMDMAPPED,
194 NR_FILE_THPS,
195 NR_FILE_PMDMAPPED,
196 NR_ANON_THPS,
197 NR_VMSCAN_WRITE,
198 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
199 NR_DIRTIED, /* page dirtyings since bootup */
200 NR_WRITTEN, /* page writings since bootup */
201 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
202 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
203 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
204 NR_KERNEL_STACK_KB, /* measured in KiB */
205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
206 NR_KERNEL_SCS_KB, /* measured in KiB */
207 #endif
208 NR_PAGETABLE, /* used for pagetables */
209 #ifdef CONFIG_SWAP
210 NR_SWAPCACHE,
211 #endif
212 NR_VM_NODE_STAT_ITEMS
213 };
214
215 /*
216 * Returns true if the item should be printed in THPs (/proc/vmstat
217 * currently prints number of anon, file and shmem THPs. But the item
218 * is charged in pages).
219 */
220 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
221 {
222 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
223 return false;
224
225 return item == NR_ANON_THPS ||
226 item == NR_FILE_THPS ||
227 item == NR_SHMEM_THPS ||
228 item == NR_SHMEM_PMDMAPPED ||
229 item == NR_FILE_PMDMAPPED;
230 }
231
232 /*
233 * Returns true if the value is measured in bytes (most vmstat values are
234 * measured in pages). This defines the API part, the internal representation
235 * might be different.
236 */
237 static __always_inline bool vmstat_item_in_bytes(int idx)
238 {
239 /*
240 * Global and per-node slab counters track slab pages.
241 * It's expected that changes are multiples of PAGE_SIZE.
242 * Internally values are stored in pages.
243 *
244 * Per-memcg and per-lruvec counters track memory, consumed
245 * by individual slab objects. These counters are actually
246 * byte-precise.
247 */
248 return (idx == NR_SLAB_RECLAIMABLE_B ||
249 idx == NR_SLAB_UNRECLAIMABLE_B);
250 }
251
252 /*
253 * We do arithmetic on the LRU lists in various places in the code,
254 * so it is important to keep the active lists LRU_ACTIVE higher in
255 * the array than the corresponding inactive lists, and to keep
256 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
257 *
258 * This has to be kept in sync with the statistics in zone_stat_item
259 * above and the descriptions in vmstat_text in mm/vmstat.c
260 */
261 #define LRU_BASE 0
262 #define LRU_ACTIVE 1
263 #define LRU_FILE 2
264
265 enum lru_list {
266 LRU_INACTIVE_ANON = LRU_BASE,
267 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
268 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
269 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
270 LRU_UNEVICTABLE,
271 NR_LRU_LISTS
272 };
273
274 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
275
276 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
277
278 static inline bool is_file_lru(enum lru_list lru)
279 {
280 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
281 }
282
283 static inline bool is_active_lru(enum lru_list lru)
284 {
285 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
286 }
287
288 #define ANON_AND_FILE 2
289
290 enum lruvec_flags {
291 LRUVEC_CONGESTED, /* lruvec has many dirty pages
292 * backed by a congested BDI
293 */
294 };
295
296 struct lruvec {
297 struct list_head lists[NR_LRU_LISTS];
298 /* per lruvec lru_lock for memcg */
299 spinlock_t lru_lock;
300 /*
301 * These track the cost of reclaiming one LRU - file or anon -
302 * over the other. As the observed cost of reclaiming one LRU
303 * increases, the reclaim scan balance tips toward the other.
304 */
305 unsigned long anon_cost;
306 unsigned long file_cost;
307 /* Non-resident age, driven by LRU movement */
308 atomic_long_t nonresident_age;
309 /* Refaults at the time of last reclaim cycle */
310 unsigned long refaults[ANON_AND_FILE];
311 /* Various lruvec state flags (enum lruvec_flags) */
312 unsigned long flags;
313 #ifdef CONFIG_MEMCG
314 struct pglist_data *pgdat;
315 #endif
316 };
317
318 /* Isolate unmapped pages */
319 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
320 /* Isolate for asynchronous migration */
321 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
322 /* Isolate unevictable pages */
323 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
324
325 /* LRU Isolation modes. */
326 typedef unsigned __bitwise isolate_mode_t;
327
328 enum zone_watermarks {
329 WMARK_MIN,
330 WMARK_LOW,
331 WMARK_HIGH,
332 NR_WMARK
333 };
334
335 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
336 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
337 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
338 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
339
340 struct per_cpu_pages {
341 int count; /* number of pages in the list */
342 int high; /* high watermark, emptying needed */
343 int batch; /* chunk size for buddy add/remove */
344
345 /* Lists of pages, one per migrate type stored on the pcp-lists */
346 struct list_head lists[MIGRATE_PCPTYPES];
347 };
348
349 struct per_cpu_pageset {
350 struct per_cpu_pages pcp;
351 #ifdef CONFIG_NUMA
352 s8 expire;
353 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
354 #endif
355 #ifdef CONFIG_SMP
356 s8 stat_threshold;
357 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
358 #endif
359 };
360
361 struct per_cpu_nodestat {
362 s8 stat_threshold;
363 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
364 };
365
366 #endif /* !__GENERATING_BOUNDS.H */
367
368 enum zone_type {
369 /*
370 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
371 * to DMA to all of the addressable memory (ZONE_NORMAL).
372 * On architectures where this area covers the whole 32 bit address
373 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
374 * DMA addressing constraints. This distinction is important as a 32bit
375 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
376 * platforms may need both zones as they support peripherals with
377 * different DMA addressing limitations.
378 */
379 #ifdef CONFIG_ZONE_DMA
380 ZONE_DMA,
381 #endif
382 #ifdef CONFIG_ZONE_DMA32
383 ZONE_DMA32,
384 #endif
385 /*
386 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
387 * performed on pages in ZONE_NORMAL if the DMA devices support
388 * transfers to all addressable memory.
389 */
390 ZONE_NORMAL,
391 #ifdef CONFIG_HIGHMEM
392 /*
393 * A memory area that is only addressable by the kernel through
394 * mapping portions into its own address space. This is for example
395 * used by i386 to allow the kernel to address the memory beyond
396 * 900MB. The kernel will set up special mappings (page
397 * table entries on i386) for each page that the kernel needs to
398 * access.
399 */
400 ZONE_HIGHMEM,
401 #endif
402 /*
403 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
404 * movable pages with few exceptional cases described below. Main use
405 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
406 * likely to succeed, and to locally limit unmovable allocations - e.g.,
407 * to increase the number of THP/huge pages. Notable special cases are:
408 *
409 * 1. Pinned pages: (long-term) pinning of movable pages might
410 * essentially turn such pages unmovable. Memory offlining might
411 * retry a long time.
412 * 2. memblock allocations: kernelcore/movablecore setups might create
413 * situations where ZONE_MOVABLE contains unmovable allocations
414 * after boot. Memory offlining and allocations fail early.
415 * 3. Memory holes: kernelcore/movablecore setups might create very rare
416 * situations where ZONE_MOVABLE contains memory holes after boot,
417 * for example, if we have sections that are only partially
418 * populated. Memory offlining and allocations fail early.
419 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
420 * memory offlining, such pages cannot be allocated.
421 * 5. Unmovable PG_offline pages: in paravirtualized environments,
422 * hotplugged memory blocks might only partially be managed by the
423 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
424 * parts not manged by the buddy are unmovable PG_offline pages. In
425 * some cases (virtio-mem), such pages can be skipped during
426 * memory offlining, however, cannot be moved/allocated. These
427 * techniques might use alloc_contig_range() to hide previously
428 * exposed pages from the buddy again (e.g., to implement some sort
429 * of memory unplug in virtio-mem).
430 *
431 * In general, no unmovable allocations that degrade memory offlining
432 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
433 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
434 * if has_unmovable_pages() states that there are no unmovable pages,
435 * there can be false negatives).
436 */
437 ZONE_MOVABLE,
438 #ifdef CONFIG_ZONE_DEVICE
439 ZONE_DEVICE,
440 #endif
441 __MAX_NR_ZONES
442
443 };
444
445 #ifndef __GENERATING_BOUNDS_H
446
447 #define ASYNC_AND_SYNC 2
448
449 struct zone {
450 /* Read-mostly fields */
451
452 /* zone watermarks, access with *_wmark_pages(zone) macros */
453 unsigned long _watermark[NR_WMARK];
454 unsigned long watermark_boost;
455
456 unsigned long nr_reserved_highatomic;
457
458 /*
459 * We don't know if the memory that we're going to allocate will be
460 * freeable or/and it will be released eventually, so to avoid totally
461 * wasting several GB of ram we must reserve some of the lower zone
462 * memory (otherwise we risk to run OOM on the lower zones despite
463 * there being tons of freeable ram on the higher zones). This array is
464 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
465 * changes.
466 */
467 long lowmem_reserve[MAX_NR_ZONES];
468
469 #ifdef CONFIG_NUMA
470 int node;
471 #endif
472 struct pglist_data *zone_pgdat;
473 struct per_cpu_pageset __percpu *pageset;
474 /*
475 * the high and batch values are copied to individual pagesets for
476 * faster access
477 */
478 int pageset_high;
479 int pageset_batch;
480
481 #ifndef CONFIG_SPARSEMEM
482 /*
483 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
484 * In SPARSEMEM, this map is stored in struct mem_section
485 */
486 unsigned long *pageblock_flags;
487 #endif /* CONFIG_SPARSEMEM */
488
489 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
490 unsigned long zone_start_pfn;
491
492 /*
493 * spanned_pages is the total pages spanned by the zone, including
494 * holes, which is calculated as:
495 * spanned_pages = zone_end_pfn - zone_start_pfn;
496 *
497 * present_pages is physical pages existing within the zone, which
498 * is calculated as:
499 * present_pages = spanned_pages - absent_pages(pages in holes);
500 *
501 * managed_pages is present pages managed by the buddy system, which
502 * is calculated as (reserved_pages includes pages allocated by the
503 * bootmem allocator):
504 * managed_pages = present_pages - reserved_pages;
505 *
506 * cma pages is present pages that are assigned for CMA use
507 * (MIGRATE_CMA).
508 *
509 * So present_pages may be used by memory hotplug or memory power
510 * management logic to figure out unmanaged pages by checking
511 * (present_pages - managed_pages). And managed_pages should be used
512 * by page allocator and vm scanner to calculate all kinds of watermarks
513 * and thresholds.
514 *
515 * Locking rules:
516 *
517 * zone_start_pfn and spanned_pages are protected by span_seqlock.
518 * It is a seqlock because it has to be read outside of zone->lock,
519 * and it is done in the main allocator path. But, it is written
520 * quite infrequently.
521 *
522 * The span_seq lock is declared along with zone->lock because it is
523 * frequently read in proximity to zone->lock. It's good to
524 * give them a chance of being in the same cacheline.
525 *
526 * Write access to present_pages at runtime should be protected by
527 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
528 * present_pages should get_online_mems() to get a stable value.
529 */
530 atomic_long_t managed_pages;
531 unsigned long spanned_pages;
532 unsigned long present_pages;
533 #ifdef CONFIG_CMA
534 unsigned long cma_pages;
535 #endif
536
537 const char *name;
538
539 #ifdef CONFIG_MEMORY_ISOLATION
540 /*
541 * Number of isolated pageblock. It is used to solve incorrect
542 * freepage counting problem due to racy retrieving migratetype
543 * of pageblock. Protected by zone->lock.
544 */
545 unsigned long nr_isolate_pageblock;
546 #endif
547
548 #ifdef CONFIG_MEMORY_HOTPLUG
549 /* see spanned/present_pages for more description */
550 seqlock_t span_seqlock;
551 #endif
552
553 int initialized;
554
555 /* Write-intensive fields used from the page allocator */
556 ZONE_PADDING(_pad1_)
557
558 /* free areas of different sizes */
559 struct free_area free_area[MAX_ORDER];
560
561 /* zone flags, see below */
562 unsigned long flags;
563
564 /* Primarily protects free_area */
565 spinlock_t lock;
566
567 /* Write-intensive fields used by compaction and vmstats. */
568 ZONE_PADDING(_pad2_)
569
570 /*
571 * When free pages are below this point, additional steps are taken
572 * when reading the number of free pages to avoid per-cpu counter
573 * drift allowing watermarks to be breached
574 */
575 unsigned long percpu_drift_mark;
576
577 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
578 /* pfn where compaction free scanner should start */
579 unsigned long compact_cached_free_pfn;
580 /* pfn where compaction migration scanner should start */
581 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
582 unsigned long compact_init_migrate_pfn;
583 unsigned long compact_init_free_pfn;
584 #endif
585
586 #ifdef CONFIG_COMPACTION
587 /*
588 * On compaction failure, 1<<compact_defer_shift compactions
589 * are skipped before trying again. The number attempted since
590 * last failure is tracked with compact_considered.
591 * compact_order_failed is the minimum compaction failed order.
592 */
593 unsigned int compact_considered;
594 unsigned int compact_defer_shift;
595 int compact_order_failed;
596 #endif
597
598 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
599 /* Set to true when the PG_migrate_skip bits should be cleared */
600 bool compact_blockskip_flush;
601 #endif
602
603 bool contiguous;
604
605 ZONE_PADDING(_pad3_)
606 /* Zone statistics */
607 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
608 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
609 } ____cacheline_internodealigned_in_smp;
610
611 enum pgdat_flags {
612 PGDAT_DIRTY, /* reclaim scanning has recently found
613 * many dirty file pages at the tail
614 * of the LRU.
615 */
616 PGDAT_WRITEBACK, /* reclaim scanning has recently found
617 * many pages under writeback
618 */
619 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
620 };
621
622 enum zone_flags {
623 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
624 * Cleared when kswapd is woken.
625 */
626 };
627
628 static inline unsigned long zone_managed_pages(struct zone *zone)
629 {
630 return (unsigned long)atomic_long_read(&zone->managed_pages);
631 }
632
633 static inline unsigned long zone_cma_pages(struct zone *zone)
634 {
635 #ifdef CONFIG_CMA
636 return zone->cma_pages;
637 #else
638 return 0;
639 #endif
640 }
641
642 static inline unsigned long zone_end_pfn(const struct zone *zone)
643 {
644 return zone->zone_start_pfn + zone->spanned_pages;
645 }
646
647 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
648 {
649 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
650 }
651
652 static inline bool zone_is_initialized(struct zone *zone)
653 {
654 return zone->initialized;
655 }
656
657 static inline bool zone_is_empty(struct zone *zone)
658 {
659 return zone->spanned_pages == 0;
660 }
661
662 /*
663 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
664 * intersection with the given zone
665 */
666 static inline bool zone_intersects(struct zone *zone,
667 unsigned long start_pfn, unsigned long nr_pages)
668 {
669 if (zone_is_empty(zone))
670 return false;
671 if (start_pfn >= zone_end_pfn(zone) ||
672 start_pfn + nr_pages <= zone->zone_start_pfn)
673 return false;
674
675 return true;
676 }
677
678 /*
679 * The "priority" of VM scanning is how much of the queues we will scan in one
680 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
681 * queues ("queue_length >> 12") during an aging round.
682 */
683 #define DEF_PRIORITY 12
684
685 /* Maximum number of zones on a zonelist */
686 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
687
688 enum {
689 ZONELIST_FALLBACK, /* zonelist with fallback */
690 #ifdef CONFIG_NUMA
691 /*
692 * The NUMA zonelists are doubled because we need zonelists that
693 * restrict the allocations to a single node for __GFP_THISNODE.
694 */
695 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
696 #endif
697 MAX_ZONELISTS
698 };
699
700 /*
701 * This struct contains information about a zone in a zonelist. It is stored
702 * here to avoid dereferences into large structures and lookups of tables
703 */
704 struct zoneref {
705 struct zone *zone; /* Pointer to actual zone */
706 int zone_idx; /* zone_idx(zoneref->zone) */
707 };
708
709 /*
710 * One allocation request operates on a zonelist. A zonelist
711 * is a list of zones, the first one is the 'goal' of the
712 * allocation, the other zones are fallback zones, in decreasing
713 * priority.
714 *
715 * To speed the reading of the zonelist, the zonerefs contain the zone index
716 * of the entry being read. Helper functions to access information given
717 * a struct zoneref are
718 *
719 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
720 * zonelist_zone_idx() - Return the index of the zone for an entry
721 * zonelist_node_idx() - Return the index of the node for an entry
722 */
723 struct zonelist {
724 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
725 };
726
727 #ifndef CONFIG_DISCONTIGMEM
728 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
729 extern struct page *mem_map;
730 #endif
731
732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
733 struct deferred_split {
734 spinlock_t split_queue_lock;
735 struct list_head split_queue;
736 unsigned long split_queue_len;
737 };
738 #endif
739
740 /*
741 * On NUMA machines, each NUMA node would have a pg_data_t to describe
742 * it's memory layout. On UMA machines there is a single pglist_data which
743 * describes the whole memory.
744 *
745 * Memory statistics and page replacement data structures are maintained on a
746 * per-zone basis.
747 */
748 typedef struct pglist_data {
749 /*
750 * node_zones contains just the zones for THIS node. Not all of the
751 * zones may be populated, but it is the full list. It is referenced by
752 * this node's node_zonelists as well as other node's node_zonelists.
753 */
754 struct zone node_zones[MAX_NR_ZONES];
755
756 /*
757 * node_zonelists contains references to all zones in all nodes.
758 * Generally the first zones will be references to this node's
759 * node_zones.
760 */
761 struct zonelist node_zonelists[MAX_ZONELISTS];
762
763 int nr_zones; /* number of populated zones in this node */
764 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
765 struct page *node_mem_map;
766 #ifdef CONFIG_PAGE_EXTENSION
767 struct page_ext *node_page_ext;
768 #endif
769 #endif
770 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
771 /*
772 * Must be held any time you expect node_start_pfn,
773 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
774 * Also synchronizes pgdat->first_deferred_pfn during deferred page
775 * init.
776 *
777 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
778 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
779 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
780 *
781 * Nests above zone->lock and zone->span_seqlock
782 */
783 spinlock_t node_size_lock;
784 #endif
785 unsigned long node_start_pfn;
786 unsigned long node_present_pages; /* total number of physical pages */
787 unsigned long node_spanned_pages; /* total size of physical page
788 range, including holes */
789 int node_id;
790 wait_queue_head_t kswapd_wait;
791 wait_queue_head_t pfmemalloc_wait;
792 struct task_struct *kswapd; /* Protected by
793 mem_hotplug_begin/end() */
794 int kswapd_order;
795 enum zone_type kswapd_highest_zoneidx;
796
797 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
798
799 #ifdef CONFIG_COMPACTION
800 int kcompactd_max_order;
801 enum zone_type kcompactd_highest_zoneidx;
802 wait_queue_head_t kcompactd_wait;
803 struct task_struct *kcompactd;
804 #endif
805 /*
806 * This is a per-node reserve of pages that are not available
807 * to userspace allocations.
808 */
809 unsigned long totalreserve_pages;
810
811 #ifdef CONFIG_NUMA
812 /*
813 * node reclaim becomes active if more unmapped pages exist.
814 */
815 unsigned long min_unmapped_pages;
816 unsigned long min_slab_pages;
817 #endif /* CONFIG_NUMA */
818
819 /* Write-intensive fields used by page reclaim */
820 ZONE_PADDING(_pad1_)
821
822 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
823 /*
824 * If memory initialisation on large machines is deferred then this
825 * is the first PFN that needs to be initialised.
826 */
827 unsigned long first_deferred_pfn;
828 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
829
830 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
831 struct deferred_split deferred_split_queue;
832 #endif
833
834 /* Fields commonly accessed by the page reclaim scanner */
835
836 /*
837 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
838 *
839 * Use mem_cgroup_lruvec() to look up lruvecs.
840 */
841 struct lruvec __lruvec;
842
843 unsigned long flags;
844
845 ZONE_PADDING(_pad2_)
846
847 /* Per-node vmstats */
848 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
849 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
850 } pg_data_t;
851
852 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
853 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
854 #ifdef CONFIG_FLAT_NODE_MEM_MAP
855 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
856 #else
857 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
858 #endif
859 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
860
861 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
862 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
863
864 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
865 {
866 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
867 }
868
869 static inline bool pgdat_is_empty(pg_data_t *pgdat)
870 {
871 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
872 }
873
874 #include <linux/memory_hotplug.h>
875
876 void build_all_zonelists(pg_data_t *pgdat);
877 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
878 enum zone_type highest_zoneidx);
879 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
880 int highest_zoneidx, unsigned int alloc_flags,
881 long free_pages);
882 bool zone_watermark_ok(struct zone *z, unsigned int order,
883 unsigned long mark, int highest_zoneidx,
884 unsigned int alloc_flags);
885 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
886 unsigned long mark, int highest_zoneidx);
887 /*
888 * Memory initialization context, use to differentiate memory added by
889 * the platform statically or via memory hotplug interface.
890 */
891 enum meminit_context {
892 MEMINIT_EARLY,
893 MEMINIT_HOTPLUG,
894 };
895
896 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
897 unsigned long size);
898
899 extern void lruvec_init(struct lruvec *lruvec);
900
901 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
902 {
903 #ifdef CONFIG_MEMCG
904 return lruvec->pgdat;
905 #else
906 return container_of(lruvec, struct pglist_data, __lruvec);
907 #endif
908 }
909
910 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
911 int local_memory_node(int node_id);
912 #else
913 static inline int local_memory_node(int node_id) { return node_id; };
914 #endif
915
916 /*
917 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
918 */
919 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
920
921 #ifdef CONFIG_ZONE_DEVICE
922 static inline bool zone_is_zone_device(struct zone *zone)
923 {
924 return zone_idx(zone) == ZONE_DEVICE;
925 }
926 #else
927 static inline bool zone_is_zone_device(struct zone *zone)
928 {
929 return false;
930 }
931 #endif
932
933 /*
934 * Returns true if a zone has pages managed by the buddy allocator.
935 * All the reclaim decisions have to use this function rather than
936 * populated_zone(). If the whole zone is reserved then we can easily
937 * end up with populated_zone() && !managed_zone().
938 */
939 static inline bool managed_zone(struct zone *zone)
940 {
941 return zone_managed_pages(zone);
942 }
943
944 /* Returns true if a zone has memory */
945 static inline bool populated_zone(struct zone *zone)
946 {
947 return zone->present_pages;
948 }
949
950 #ifdef CONFIG_NUMA
951 static inline int zone_to_nid(struct zone *zone)
952 {
953 return zone->node;
954 }
955
956 static inline void zone_set_nid(struct zone *zone, int nid)
957 {
958 zone->node = nid;
959 }
960 #else
961 static inline int zone_to_nid(struct zone *zone)
962 {
963 return 0;
964 }
965
966 static inline void zone_set_nid(struct zone *zone, int nid) {}
967 #endif
968
969 extern int movable_zone;
970
971 #ifdef CONFIG_HIGHMEM
972 static inline int zone_movable_is_highmem(void)
973 {
974 #ifdef CONFIG_NEED_MULTIPLE_NODES
975 return movable_zone == ZONE_HIGHMEM;
976 #else
977 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
978 #endif
979 }
980 #endif
981
982 static inline int is_highmem_idx(enum zone_type idx)
983 {
984 #ifdef CONFIG_HIGHMEM
985 return (idx == ZONE_HIGHMEM ||
986 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
987 #else
988 return 0;
989 #endif
990 }
991
992 /**
993 * is_highmem - helper function to quickly check if a struct zone is a
994 * highmem zone or not. This is an attempt to keep references
995 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
996 * @zone - pointer to struct zone variable
997 */
998 static inline int is_highmem(struct zone *zone)
999 {
1000 #ifdef CONFIG_HIGHMEM
1001 return is_highmem_idx(zone_idx(zone));
1002 #else
1003 return 0;
1004 #endif
1005 }
1006
1007 /* These two functions are used to setup the per zone pages min values */
1008 struct ctl_table;
1009
1010 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1011 loff_t *);
1012 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1013 size_t *, loff_t *);
1014 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1015 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1016 size_t *, loff_t *);
1017 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
1018 void *, size_t *, loff_t *);
1019 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1020 void *, size_t *, loff_t *);
1021 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1022 void *, size_t *, loff_t *);
1023 int numa_zonelist_order_handler(struct ctl_table *, int,
1024 void *, size_t *, loff_t *);
1025 extern int percpu_pagelist_fraction;
1026 extern char numa_zonelist_order[];
1027 #define NUMA_ZONELIST_ORDER_LEN 16
1028
1029 #ifndef CONFIG_NEED_MULTIPLE_NODES
1030
1031 extern struct pglist_data contig_page_data;
1032 #define NODE_DATA(nid) (&contig_page_data)
1033 #define NODE_MEM_MAP(nid) mem_map
1034
1035 #else /* CONFIG_NEED_MULTIPLE_NODES */
1036
1037 #include <asm/mmzone.h>
1038
1039 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1040
1041 extern struct pglist_data *first_online_pgdat(void);
1042 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1043 extern struct zone *next_zone(struct zone *zone);
1044
1045 /**
1046 * for_each_online_pgdat - helper macro to iterate over all online nodes
1047 * @pgdat - pointer to a pg_data_t variable
1048 */
1049 #define for_each_online_pgdat(pgdat) \
1050 for (pgdat = first_online_pgdat(); \
1051 pgdat; \
1052 pgdat = next_online_pgdat(pgdat))
1053 /**
1054 * for_each_zone - helper macro to iterate over all memory zones
1055 * @zone - pointer to struct zone variable
1056 *
1057 * The user only needs to declare the zone variable, for_each_zone
1058 * fills it in.
1059 */
1060 #define for_each_zone(zone) \
1061 for (zone = (first_online_pgdat())->node_zones; \
1062 zone; \
1063 zone = next_zone(zone))
1064
1065 #define for_each_populated_zone(zone) \
1066 for (zone = (first_online_pgdat())->node_zones; \
1067 zone; \
1068 zone = next_zone(zone)) \
1069 if (!populated_zone(zone)) \
1070 ; /* do nothing */ \
1071 else
1072
1073 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1074 {
1075 return zoneref->zone;
1076 }
1077
1078 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1079 {
1080 return zoneref->zone_idx;
1081 }
1082
1083 static inline int zonelist_node_idx(struct zoneref *zoneref)
1084 {
1085 return zone_to_nid(zoneref->zone);
1086 }
1087
1088 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1089 enum zone_type highest_zoneidx,
1090 nodemask_t *nodes);
1091
1092 /**
1093 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1094 * @z - The cursor used as a starting point for the search
1095 * @highest_zoneidx - The zone index of the highest zone to return
1096 * @nodes - An optional nodemask to filter the zonelist with
1097 *
1098 * This function returns the next zone at or below a given zone index that is
1099 * within the allowed nodemask using a cursor as the starting point for the
1100 * search. The zoneref returned is a cursor that represents the current zone
1101 * being examined. It should be advanced by one before calling
1102 * next_zones_zonelist again.
1103 */
1104 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1105 enum zone_type highest_zoneidx,
1106 nodemask_t *nodes)
1107 {
1108 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1109 return z;
1110 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1111 }
1112
1113 /**
1114 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1115 * @zonelist - The zonelist to search for a suitable zone
1116 * @highest_zoneidx - The zone index of the highest zone to return
1117 * @nodes - An optional nodemask to filter the zonelist with
1118 * @return - Zoneref pointer for the first suitable zone found (see below)
1119 *
1120 * This function returns the first zone at or below a given zone index that is
1121 * within the allowed nodemask. The zoneref returned is a cursor that can be
1122 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1123 * one before calling.
1124 *
1125 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1126 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1127 * update due to cpuset modification.
1128 */
1129 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1130 enum zone_type highest_zoneidx,
1131 nodemask_t *nodes)
1132 {
1133 return next_zones_zonelist(zonelist->_zonerefs,
1134 highest_zoneidx, nodes);
1135 }
1136
1137 /**
1138 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1139 * @zone - The current zone in the iterator
1140 * @z - The current pointer within zonelist->_zonerefs being iterated
1141 * @zlist - The zonelist being iterated
1142 * @highidx - The zone index of the highest zone to return
1143 * @nodemask - Nodemask allowed by the allocator
1144 *
1145 * This iterator iterates though all zones at or below a given zone index and
1146 * within a given nodemask
1147 */
1148 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1149 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1150 zone; \
1151 z = next_zones_zonelist(++z, highidx, nodemask), \
1152 zone = zonelist_zone(z))
1153
1154 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1155 for (zone = z->zone; \
1156 zone; \
1157 z = next_zones_zonelist(++z, highidx, nodemask), \
1158 zone = zonelist_zone(z))
1159
1160
1161 /**
1162 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1163 * @zone - The current zone in the iterator
1164 * @z - The current pointer within zonelist->zones being iterated
1165 * @zlist - The zonelist being iterated
1166 * @highidx - The zone index of the highest zone to return
1167 *
1168 * This iterator iterates though all zones at or below a given zone index.
1169 */
1170 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1171 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1172
1173 #ifdef CONFIG_SPARSEMEM
1174 #include <asm/sparsemem.h>
1175 #endif
1176
1177 #ifdef CONFIG_FLATMEM
1178 #define pfn_to_nid(pfn) (0)
1179 #endif
1180
1181 #ifdef CONFIG_SPARSEMEM
1182
1183 /*
1184 * SECTION_SHIFT #bits space required to store a section #
1185 *
1186 * PA_SECTION_SHIFT physical address to/from section number
1187 * PFN_SECTION_SHIFT pfn to/from section number
1188 */
1189 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1190 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1191
1192 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1193
1194 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1195 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1196
1197 #define SECTION_BLOCKFLAGS_BITS \
1198 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1199
1200 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1201 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1202 #endif
1203
1204 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1205 {
1206 return pfn >> PFN_SECTION_SHIFT;
1207 }
1208 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1209 {
1210 return sec << PFN_SECTION_SHIFT;
1211 }
1212
1213 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1214 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1215
1216 #define SUBSECTION_SHIFT 21
1217 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1218
1219 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1220 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1221 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1222
1223 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1224 #error Subsection size exceeds section size
1225 #else
1226 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1227 #endif
1228
1229 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1230 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1231
1232 struct mem_section_usage {
1233 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1234 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1235 #endif
1236 /* See declaration of similar field in struct zone */
1237 unsigned long pageblock_flags[0];
1238 };
1239
1240 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1241
1242 struct page;
1243 struct page_ext;
1244 struct mem_section {
1245 /*
1246 * This is, logically, a pointer to an array of struct
1247 * pages. However, it is stored with some other magic.
1248 * (see sparse.c::sparse_init_one_section())
1249 *
1250 * Additionally during early boot we encode node id of
1251 * the location of the section here to guide allocation.
1252 * (see sparse.c::memory_present())
1253 *
1254 * Making it a UL at least makes someone do a cast
1255 * before using it wrong.
1256 */
1257 unsigned long section_mem_map;
1258
1259 struct mem_section_usage *usage;
1260 #ifdef CONFIG_PAGE_EXTENSION
1261 /*
1262 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1263 * section. (see page_ext.h about this.)
1264 */
1265 struct page_ext *page_ext;
1266 unsigned long pad;
1267 #endif
1268 /*
1269 * WARNING: mem_section must be a power-of-2 in size for the
1270 * calculation and use of SECTION_ROOT_MASK to make sense.
1271 */
1272 };
1273
1274 #ifdef CONFIG_SPARSEMEM_EXTREME
1275 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1276 #else
1277 #define SECTIONS_PER_ROOT 1
1278 #endif
1279
1280 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1281 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1282 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1283
1284 #ifdef CONFIG_SPARSEMEM_EXTREME
1285 extern struct mem_section **mem_section;
1286 #else
1287 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1288 #endif
1289
1290 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1291 {
1292 return ms->usage->pageblock_flags;
1293 }
1294
1295 static inline struct mem_section *__nr_to_section(unsigned long nr)
1296 {
1297 #ifdef CONFIG_SPARSEMEM_EXTREME
1298 if (!mem_section)
1299 return NULL;
1300 #endif
1301 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1302 return NULL;
1303 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1304 }
1305 extern unsigned long __section_nr(struct mem_section *ms);
1306 extern size_t mem_section_usage_size(void);
1307
1308 /*
1309 * We use the lower bits of the mem_map pointer to store
1310 * a little bit of information. The pointer is calculated
1311 * as mem_map - section_nr_to_pfn(pnum). The result is
1312 * aligned to the minimum alignment of the two values:
1313 * 1. All mem_map arrays are page-aligned.
1314 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1315 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1316 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1317 * worst combination is powerpc with 256k pages,
1318 * which results in PFN_SECTION_SHIFT equal 6.
1319 * To sum it up, at least 6 bits are available.
1320 */
1321 #define SECTION_MARKED_PRESENT (1UL<<0)
1322 #define SECTION_HAS_MEM_MAP (1UL<<1)
1323 #define SECTION_IS_ONLINE (1UL<<2)
1324 #define SECTION_IS_EARLY (1UL<<3)
1325 #define SECTION_TAINT_ZONE_DEVICE (1UL<<4)
1326 #define SECTION_MAP_LAST_BIT (1UL<<5)
1327 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1328 #define SECTION_NID_SHIFT 3
1329
1330 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1331 {
1332 unsigned long map = section->section_mem_map;
1333 map &= SECTION_MAP_MASK;
1334 return (struct page *)map;
1335 }
1336
1337 static inline int present_section(struct mem_section *section)
1338 {
1339 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1340 }
1341
1342 static inline int present_section_nr(unsigned long nr)
1343 {
1344 return present_section(__nr_to_section(nr));
1345 }
1346
1347 static inline int valid_section(struct mem_section *section)
1348 {
1349 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1350 }
1351
1352 static inline int early_section(struct mem_section *section)
1353 {
1354 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1355 }
1356
1357 static inline int valid_section_nr(unsigned long nr)
1358 {
1359 return valid_section(__nr_to_section(nr));
1360 }
1361
1362 static inline int online_section(struct mem_section *section)
1363 {
1364 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1365 }
1366
1367 static inline int online_device_section(struct mem_section *section)
1368 {
1369 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1370
1371 return section && ((section->section_mem_map & flags) == flags);
1372 }
1373
1374 static inline int online_section_nr(unsigned long nr)
1375 {
1376 return online_section(__nr_to_section(nr));
1377 }
1378
1379 #ifdef CONFIG_MEMORY_HOTPLUG
1380 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1381 #ifdef CONFIG_MEMORY_HOTREMOVE
1382 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1383 #endif
1384 #endif
1385
1386 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1387 {
1388 return __nr_to_section(pfn_to_section_nr(pfn));
1389 }
1390
1391 extern unsigned long __highest_present_section_nr;
1392
1393 static inline int subsection_map_index(unsigned long pfn)
1394 {
1395 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1396 }
1397
1398 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1399 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1400 {
1401 int idx = subsection_map_index(pfn);
1402
1403 return test_bit(idx, ms->usage->subsection_map);
1404 }
1405 #else
1406 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1407 {
1408 return 1;
1409 }
1410 #endif
1411
1412 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1413 static inline int pfn_valid(unsigned long pfn)
1414 {
1415 struct mem_section *ms;
1416
1417 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1418 return 0;
1419 ms = __nr_to_section(pfn_to_section_nr(pfn));
1420 if (!valid_section(ms))
1421 return 0;
1422 /*
1423 * Traditionally early sections always returned pfn_valid() for
1424 * the entire section-sized span.
1425 */
1426 return early_section(ms) || pfn_section_valid(ms, pfn);
1427 }
1428 #endif
1429
1430 static inline int pfn_in_present_section(unsigned long pfn)
1431 {
1432 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1433 return 0;
1434 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1435 }
1436
1437 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1438 {
1439 while (++section_nr <= __highest_present_section_nr) {
1440 if (present_section_nr(section_nr))
1441 return section_nr;
1442 }
1443
1444 return -1;
1445 }
1446
1447 /*
1448 * These are _only_ used during initialisation, therefore they
1449 * can use __initdata ... They could have names to indicate
1450 * this restriction.
1451 */
1452 #ifdef CONFIG_NUMA
1453 #define pfn_to_nid(pfn) \
1454 ({ \
1455 unsigned long __pfn_to_nid_pfn = (pfn); \
1456 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1457 })
1458 #else
1459 #define pfn_to_nid(pfn) (0)
1460 #endif
1461
1462 void sparse_init(void);
1463 #else
1464 #define sparse_init() do {} while (0)
1465 #define sparse_index_init(_sec, _nid) do {} while (0)
1466 #define pfn_in_present_section pfn_valid
1467 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1468 #endif /* CONFIG_SPARSEMEM */
1469
1470 /*
1471 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1472 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1473 * pfn_valid_within() should be used in this case; we optimise this away
1474 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1475 */
1476 #ifdef CONFIG_HOLES_IN_ZONE
1477 #define pfn_valid_within(pfn) pfn_valid(pfn)
1478 #else
1479 #define pfn_valid_within(pfn) (1)
1480 #endif
1481
1482 #endif /* !__GENERATING_BOUNDS.H */
1483 #endif /* !__ASSEMBLY__ */
1484 #endif /* _LINUX_MMZONE_H */