]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/linux/mmzone.h
5d935411d3c4b4f9bb95540b2626400904caf651
[mirror_ubuntu-focal-kernel.git] / include / linux / mmzone.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <asm/page.h>
22
23 /* Free memory management - zoned buddy allocator. */
24 #ifndef CONFIG_FORCE_MAX_ZONEORDER
25 #define MAX_ORDER 11
26 #else
27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #endif
29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
30
31 /*
32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
33 * costly to service. That is between allocation orders which should
34 * coalesce naturally under reasonable reclaim pressure and those which
35 * will not.
36 */
37 #define PAGE_ALLOC_COSTLY_ORDER 3
38
39 enum migratetype {
40 MIGRATE_UNMOVABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_RECLAIMABLE,
43 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
44 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
45 #ifdef CONFIG_CMA
46 /*
47 * MIGRATE_CMA migration type is designed to mimic the way
48 * ZONE_MOVABLE works. Only movable pages can be allocated
49 * from MIGRATE_CMA pageblocks and page allocator never
50 * implicitly change migration type of MIGRATE_CMA pageblock.
51 *
52 * The way to use it is to change migratetype of a range of
53 * pageblocks to MIGRATE_CMA which can be done by
54 * __free_pageblock_cma() function. What is important though
55 * is that a range of pageblocks must be aligned to
56 * MAX_ORDER_NR_PAGES should biggest page be bigger then
57 * a single pageblock.
58 */
59 MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62 MIGRATE_ISOLATE, /* can't allocate from here */
63 #endif
64 MIGRATE_TYPES
65 };
66
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern char * const migratetype_names[MIGRATE_TYPES];
69
70 #ifdef CONFIG_CMA
71 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 # define is_migrate_cma(migratetype) false
75 # define is_migrate_cma_page(_page) false
76 #endif
77
78 static inline bool is_migrate_movable(int mt)
79 {
80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82
83 #define for_each_migratetype_order(order, type) \
84 for (order = 0; order < MAX_ORDER; order++) \
85 for (type = 0; type < MIGRATE_TYPES; type++)
86
87 extern int page_group_by_mobility_disabled;
88
89 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
90 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91
92 #define get_pageblock_migratetype(page) \
93 get_pfnblock_flags_mask(page, page_to_pfn(page), \
94 PB_migrate_end, MIGRATETYPE_MASK)
95
96 struct free_area {
97 struct list_head free_list[MIGRATE_TYPES];
98 unsigned long nr_free;
99 };
100
101 struct pglist_data;
102
103 /*
104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
105 * So add a wild amount of padding here to ensure that they fall into separate
106 * cachelines. There are very few zone structures in the machine, so space
107 * consumption is not a concern here.
108 */
109 #if defined(CONFIG_SMP)
110 struct zone_padding {
111 char x[0];
112 } ____cacheline_internodealigned_in_smp;
113 #define ZONE_PADDING(name) struct zone_padding name;
114 #else
115 #define ZONE_PADDING(name)
116 #endif
117
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 NUMA_HIT, /* allocated in intended node */
121 NUMA_MISS, /* allocated in non intended node */
122 NUMA_FOREIGN, /* was intended here, hit elsewhere */
123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
124 NUMA_LOCAL, /* allocation from local node */
125 NUMA_OTHER, /* allocation from other node */
126 NR_VM_NUMA_STAT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_STAT_ITEMS 0
130 #endif
131
132 enum zone_stat_item {
133 /* First 128 byte cacheline (assuming 64 bit words) */
134 NR_FREE_PAGES,
135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 NR_ZONE_ACTIVE_ANON,
138 NR_ZONE_INACTIVE_FILE,
139 NR_ZONE_ACTIVE_FILE,
140 NR_ZONE_UNEVICTABLE,
141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
143 NR_PAGETABLE, /* used for pagetables */
144 NR_KERNEL_STACK_KB, /* measured in KiB */
145 /* Second 128 byte cacheline */
146 NR_BOUNCE,
147 #if IS_ENABLED(CONFIG_ZSMALLOC)
148 NR_ZSPAGES, /* allocated in zsmalloc */
149 #endif
150 NR_FREE_CMA_PAGES,
151 NR_VM_ZONE_STAT_ITEMS };
152
153 enum node_stat_item {
154 NR_LRU_BASE,
155 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
156 NR_ACTIVE_ANON, /* " " " " " */
157 NR_INACTIVE_FILE, /* " " " " " */
158 NR_ACTIVE_FILE, /* " " " " " */
159 NR_UNEVICTABLE, /* " " " " " */
160 NR_SLAB_RECLAIMABLE,
161 NR_SLAB_UNRECLAIMABLE,
162 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
163 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
164 WORKINGSET_REFAULT,
165 WORKINGSET_ACTIVATE,
166 WORKINGSET_NODERECLAIM,
167 NR_ANON_MAPPED, /* Mapped anonymous pages */
168 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
169 only modified from process context */
170 NR_FILE_PAGES,
171 NR_FILE_DIRTY,
172 NR_WRITEBACK,
173 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
174 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
175 NR_SHMEM_THPS,
176 NR_SHMEM_PMDMAPPED,
177 NR_ANON_THPS,
178 NR_UNSTABLE_NFS, /* NFS unstable pages */
179 NR_VMSCAN_WRITE,
180 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
181 NR_DIRTIED, /* page dirtyings since bootup */
182 NR_WRITTEN, /* page writings since bootup */
183 NR_VM_NODE_STAT_ITEMS
184 };
185
186 /*
187 * We do arithmetic on the LRU lists in various places in the code,
188 * so it is important to keep the active lists LRU_ACTIVE higher in
189 * the array than the corresponding inactive lists, and to keep
190 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
191 *
192 * This has to be kept in sync with the statistics in zone_stat_item
193 * above and the descriptions in vmstat_text in mm/vmstat.c
194 */
195 #define LRU_BASE 0
196 #define LRU_ACTIVE 1
197 #define LRU_FILE 2
198
199 enum lru_list {
200 LRU_INACTIVE_ANON = LRU_BASE,
201 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
202 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
203 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
204 LRU_UNEVICTABLE,
205 NR_LRU_LISTS
206 };
207
208 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
209
210 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
211
212 static inline int is_file_lru(enum lru_list lru)
213 {
214 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
215 }
216
217 static inline int is_active_lru(enum lru_list lru)
218 {
219 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
220 }
221
222 struct zone_reclaim_stat {
223 /*
224 * The pageout code in vmscan.c keeps track of how many of the
225 * mem/swap backed and file backed pages are referenced.
226 * The higher the rotated/scanned ratio, the more valuable
227 * that cache is.
228 *
229 * The anon LRU stats live in [0], file LRU stats in [1]
230 */
231 unsigned long recent_rotated[2];
232 unsigned long recent_scanned[2];
233 };
234
235 struct lruvec {
236 struct list_head lists[NR_LRU_LISTS];
237 struct zone_reclaim_stat reclaim_stat;
238 /* Evictions & activations on the inactive file list */
239 atomic_long_t inactive_age;
240 /* Refaults at the time of last reclaim cycle */
241 unsigned long refaults;
242 #ifdef CONFIG_MEMCG
243 struct pglist_data *pgdat;
244 #endif
245 };
246
247 /* Mask used at gathering information at once (see memcontrol.c) */
248 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
249 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
250 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
251
252 /* Isolate unmapped file */
253 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
254 /* Isolate for asynchronous migration */
255 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
256 /* Isolate unevictable pages */
257 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
258
259 /* LRU Isolation modes. */
260 typedef unsigned __bitwise isolate_mode_t;
261
262 enum zone_watermarks {
263 WMARK_MIN,
264 WMARK_LOW,
265 WMARK_HIGH,
266 NR_WMARK
267 };
268
269 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
270 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
271 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
272
273 struct per_cpu_pages {
274 int count; /* number of pages in the list */
275 int high; /* high watermark, emptying needed */
276 int batch; /* chunk size for buddy add/remove */
277
278 /* Lists of pages, one per migrate type stored on the pcp-lists */
279 struct list_head lists[MIGRATE_PCPTYPES];
280 };
281
282 struct per_cpu_pageset {
283 struct per_cpu_pages pcp;
284 #ifdef CONFIG_NUMA
285 s8 expire;
286 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
287 #endif
288 #ifdef CONFIG_SMP
289 s8 stat_threshold;
290 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
291 #endif
292 };
293
294 struct per_cpu_nodestat {
295 s8 stat_threshold;
296 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
297 };
298
299 #endif /* !__GENERATING_BOUNDS.H */
300
301 enum zone_type {
302 #ifdef CONFIG_ZONE_DMA
303 /*
304 * ZONE_DMA is used when there are devices that are not able
305 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
306 * carve out the portion of memory that is needed for these devices.
307 * The range is arch specific.
308 *
309 * Some examples
310 *
311 * Architecture Limit
312 * ---------------------------
313 * parisc, ia64, sparc <4G
314 * s390 <2G
315 * arm Various
316 * alpha Unlimited or 0-16MB.
317 *
318 * i386, x86_64 and multiple other arches
319 * <16M.
320 */
321 ZONE_DMA,
322 #endif
323 #ifdef CONFIG_ZONE_DMA32
324 /*
325 * x86_64 needs two ZONE_DMAs because it supports devices that are
326 * only able to do DMA to the lower 16M but also 32 bit devices that
327 * can only do DMA areas below 4G.
328 */
329 ZONE_DMA32,
330 #endif
331 /*
332 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
333 * performed on pages in ZONE_NORMAL if the DMA devices support
334 * transfers to all addressable memory.
335 */
336 ZONE_NORMAL,
337 #ifdef CONFIG_HIGHMEM
338 /*
339 * A memory area that is only addressable by the kernel through
340 * mapping portions into its own address space. This is for example
341 * used by i386 to allow the kernel to address the memory beyond
342 * 900MB. The kernel will set up special mappings (page
343 * table entries on i386) for each page that the kernel needs to
344 * access.
345 */
346 ZONE_HIGHMEM,
347 #endif
348 ZONE_MOVABLE,
349 #ifdef CONFIG_ZONE_DEVICE
350 ZONE_DEVICE,
351 #endif
352 __MAX_NR_ZONES
353
354 };
355
356 #ifndef __GENERATING_BOUNDS_H
357
358 struct zone {
359 /* Read-mostly fields */
360
361 /* zone watermarks, access with *_wmark_pages(zone) macros */
362 unsigned long watermark[NR_WMARK];
363
364 unsigned long nr_reserved_highatomic;
365
366 /*
367 * We don't know if the memory that we're going to allocate will be
368 * freeable or/and it will be released eventually, so to avoid totally
369 * wasting several GB of ram we must reserve some of the lower zone
370 * memory (otherwise we risk to run OOM on the lower zones despite
371 * there being tons of freeable ram on the higher zones). This array is
372 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
373 * changes.
374 */
375 long lowmem_reserve[MAX_NR_ZONES];
376
377 #ifdef CONFIG_NUMA
378 int node;
379 #endif
380 struct pglist_data *zone_pgdat;
381 struct per_cpu_pageset __percpu *pageset;
382
383 #ifndef CONFIG_SPARSEMEM
384 /*
385 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
386 * In SPARSEMEM, this map is stored in struct mem_section
387 */
388 unsigned long *pageblock_flags;
389 #endif /* CONFIG_SPARSEMEM */
390
391 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
392 unsigned long zone_start_pfn;
393
394 /*
395 * spanned_pages is the total pages spanned by the zone, including
396 * holes, which is calculated as:
397 * spanned_pages = zone_end_pfn - zone_start_pfn;
398 *
399 * present_pages is physical pages existing within the zone, which
400 * is calculated as:
401 * present_pages = spanned_pages - absent_pages(pages in holes);
402 *
403 * managed_pages is present pages managed by the buddy system, which
404 * is calculated as (reserved_pages includes pages allocated by the
405 * bootmem allocator):
406 * managed_pages = present_pages - reserved_pages;
407 *
408 * So present_pages may be used by memory hotplug or memory power
409 * management logic to figure out unmanaged pages by checking
410 * (present_pages - managed_pages). And managed_pages should be used
411 * by page allocator and vm scanner to calculate all kinds of watermarks
412 * and thresholds.
413 *
414 * Locking rules:
415 *
416 * zone_start_pfn and spanned_pages are protected by span_seqlock.
417 * It is a seqlock because it has to be read outside of zone->lock,
418 * and it is done in the main allocator path. But, it is written
419 * quite infrequently.
420 *
421 * The span_seq lock is declared along with zone->lock because it is
422 * frequently read in proximity to zone->lock. It's good to
423 * give them a chance of being in the same cacheline.
424 *
425 * Write access to present_pages at runtime should be protected by
426 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
427 * present_pages should get_online_mems() to get a stable value.
428 *
429 * Read access to managed_pages should be safe because it's unsigned
430 * long. Write access to zone->managed_pages and totalram_pages are
431 * protected by managed_page_count_lock at runtime. Idealy only
432 * adjust_managed_page_count() should be used instead of directly
433 * touching zone->managed_pages and totalram_pages.
434 */
435 unsigned long managed_pages;
436 unsigned long spanned_pages;
437 unsigned long present_pages;
438
439 const char *name;
440
441 #ifdef CONFIG_MEMORY_ISOLATION
442 /*
443 * Number of isolated pageblock. It is used to solve incorrect
444 * freepage counting problem due to racy retrieving migratetype
445 * of pageblock. Protected by zone->lock.
446 */
447 unsigned long nr_isolate_pageblock;
448 #endif
449
450 #ifdef CONFIG_MEMORY_HOTPLUG
451 /* see spanned/present_pages for more description */
452 seqlock_t span_seqlock;
453 #endif
454
455 int initialized;
456
457 /* Write-intensive fields used from the page allocator */
458 ZONE_PADDING(_pad1_)
459
460 /* free areas of different sizes */
461 struct free_area free_area[MAX_ORDER];
462
463 /* zone flags, see below */
464 unsigned long flags;
465
466 /* Primarily protects free_area */
467 spinlock_t lock;
468
469 /* Write-intensive fields used by compaction and vmstats. */
470 ZONE_PADDING(_pad2_)
471
472 /*
473 * When free pages are below this point, additional steps are taken
474 * when reading the number of free pages to avoid per-cpu counter
475 * drift allowing watermarks to be breached
476 */
477 unsigned long percpu_drift_mark;
478
479 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
480 /* pfn where compaction free scanner should start */
481 unsigned long compact_cached_free_pfn;
482 /* pfn where async and sync compaction migration scanner should start */
483 unsigned long compact_cached_migrate_pfn[2];
484 #endif
485
486 #ifdef CONFIG_COMPACTION
487 /*
488 * On compaction failure, 1<<compact_defer_shift compactions
489 * are skipped before trying again. The number attempted since
490 * last failure is tracked with compact_considered.
491 */
492 unsigned int compact_considered;
493 unsigned int compact_defer_shift;
494 int compact_order_failed;
495 #endif
496
497 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
498 /* Set to true when the PG_migrate_skip bits should be cleared */
499 bool compact_blockskip_flush;
500 #endif
501
502 bool contiguous;
503
504 ZONE_PADDING(_pad3_)
505 /* Zone statistics */
506 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
507 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
508 } ____cacheline_internodealigned_in_smp;
509
510 enum pgdat_flags {
511 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
512 * a congested BDI
513 */
514 PGDAT_DIRTY, /* reclaim scanning has recently found
515 * many dirty file pages at the tail
516 * of the LRU.
517 */
518 PGDAT_WRITEBACK, /* reclaim scanning has recently found
519 * many pages under writeback
520 */
521 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
522 };
523
524 static inline unsigned long zone_end_pfn(const struct zone *zone)
525 {
526 return zone->zone_start_pfn + zone->spanned_pages;
527 }
528
529 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
530 {
531 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
532 }
533
534 static inline bool zone_is_initialized(struct zone *zone)
535 {
536 return zone->initialized;
537 }
538
539 static inline bool zone_is_empty(struct zone *zone)
540 {
541 return zone->spanned_pages == 0;
542 }
543
544 /*
545 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
546 * intersection with the given zone
547 */
548 static inline bool zone_intersects(struct zone *zone,
549 unsigned long start_pfn, unsigned long nr_pages)
550 {
551 if (zone_is_empty(zone))
552 return false;
553 if (start_pfn >= zone_end_pfn(zone) ||
554 start_pfn + nr_pages <= zone->zone_start_pfn)
555 return false;
556
557 return true;
558 }
559
560 /*
561 * The "priority" of VM scanning is how much of the queues we will scan in one
562 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
563 * queues ("queue_length >> 12") during an aging round.
564 */
565 #define DEF_PRIORITY 12
566
567 /* Maximum number of zones on a zonelist */
568 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
569
570 enum {
571 ZONELIST_FALLBACK, /* zonelist with fallback */
572 #ifdef CONFIG_NUMA
573 /*
574 * The NUMA zonelists are doubled because we need zonelists that
575 * restrict the allocations to a single node for __GFP_THISNODE.
576 */
577 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
578 #endif
579 MAX_ZONELISTS
580 };
581
582 /*
583 * This struct contains information about a zone in a zonelist. It is stored
584 * here to avoid dereferences into large structures and lookups of tables
585 */
586 struct zoneref {
587 struct zone *zone; /* Pointer to actual zone */
588 int zone_idx; /* zone_idx(zoneref->zone) */
589 };
590
591 /*
592 * One allocation request operates on a zonelist. A zonelist
593 * is a list of zones, the first one is the 'goal' of the
594 * allocation, the other zones are fallback zones, in decreasing
595 * priority.
596 *
597 * To speed the reading of the zonelist, the zonerefs contain the zone index
598 * of the entry being read. Helper functions to access information given
599 * a struct zoneref are
600 *
601 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
602 * zonelist_zone_idx() - Return the index of the zone for an entry
603 * zonelist_node_idx() - Return the index of the node for an entry
604 */
605 struct zonelist {
606 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
607 };
608
609 #ifndef CONFIG_DISCONTIGMEM
610 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
611 extern struct page *mem_map;
612 #endif
613
614 /*
615 * On NUMA machines, each NUMA node would have a pg_data_t to describe
616 * it's memory layout. On UMA machines there is a single pglist_data which
617 * describes the whole memory.
618 *
619 * Memory statistics and page replacement data structures are maintained on a
620 * per-zone basis.
621 */
622 struct bootmem_data;
623 typedef struct pglist_data {
624 struct zone node_zones[MAX_NR_ZONES];
625 struct zonelist node_zonelists[MAX_ZONELISTS];
626 int nr_zones;
627 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
628 struct page *node_mem_map;
629 #ifdef CONFIG_PAGE_EXTENSION
630 struct page_ext *node_page_ext;
631 #endif
632 #endif
633 #ifndef CONFIG_NO_BOOTMEM
634 struct bootmem_data *bdata;
635 #endif
636 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
637 /*
638 * Must be held any time you expect node_start_pfn, node_present_pages
639 * or node_spanned_pages stay constant. Holding this will also
640 * guarantee that any pfn_valid() stays that way.
641 *
642 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
643 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
644 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
645 *
646 * Nests above zone->lock and zone->span_seqlock
647 */
648 spinlock_t node_size_lock;
649 #endif
650 unsigned long node_start_pfn;
651 unsigned long node_present_pages; /* total number of physical pages */
652 unsigned long node_spanned_pages; /* total size of physical page
653 range, including holes */
654 int node_id;
655 wait_queue_head_t kswapd_wait;
656 wait_queue_head_t pfmemalloc_wait;
657 struct task_struct *kswapd; /* Protected by
658 mem_hotplug_begin/end() */
659 int kswapd_order;
660 enum zone_type kswapd_classzone_idx;
661
662 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
663
664 #ifdef CONFIG_COMPACTION
665 int kcompactd_max_order;
666 enum zone_type kcompactd_classzone_idx;
667 wait_queue_head_t kcompactd_wait;
668 struct task_struct *kcompactd;
669 #endif
670 #ifdef CONFIG_NUMA_BALANCING
671 /* Lock serializing the migrate rate limiting window */
672 spinlock_t numabalancing_migrate_lock;
673
674 /* Rate limiting time interval */
675 unsigned long numabalancing_migrate_next_window;
676
677 /* Number of pages migrated during the rate limiting time interval */
678 unsigned long numabalancing_migrate_nr_pages;
679 #endif
680 /*
681 * This is a per-node reserve of pages that are not available
682 * to userspace allocations.
683 */
684 unsigned long totalreserve_pages;
685
686 #ifdef CONFIG_NUMA
687 /*
688 * zone reclaim becomes active if more unmapped pages exist.
689 */
690 unsigned long min_unmapped_pages;
691 unsigned long min_slab_pages;
692 #endif /* CONFIG_NUMA */
693
694 /* Write-intensive fields used by page reclaim */
695 ZONE_PADDING(_pad1_)
696 spinlock_t lru_lock;
697
698 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
699 /*
700 * If memory initialisation on large machines is deferred then this
701 * is the first PFN that needs to be initialised.
702 */
703 unsigned long first_deferred_pfn;
704 /* Number of non-deferred pages */
705 unsigned long static_init_pgcnt;
706 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
707
708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
709 spinlock_t split_queue_lock;
710 struct list_head split_queue;
711 unsigned long split_queue_len;
712 #endif
713
714 /* Fields commonly accessed by the page reclaim scanner */
715 struct lruvec lruvec;
716
717 unsigned long flags;
718
719 ZONE_PADDING(_pad2_)
720
721 /* Per-node vmstats */
722 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
723 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
724 } pg_data_t;
725
726 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
727 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
728 #ifdef CONFIG_FLAT_NODE_MEM_MAP
729 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
730 #else
731 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
732 #endif
733 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
734
735 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
736 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
737 static inline spinlock_t *zone_lru_lock(struct zone *zone)
738 {
739 return &zone->zone_pgdat->lru_lock;
740 }
741
742 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
743 {
744 return &pgdat->lruvec;
745 }
746
747 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
748 {
749 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
750 }
751
752 static inline bool pgdat_is_empty(pg_data_t *pgdat)
753 {
754 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
755 }
756
757 static inline int zone_id(const struct zone *zone)
758 {
759 struct pglist_data *pgdat = zone->zone_pgdat;
760
761 return zone - pgdat->node_zones;
762 }
763
764 #ifdef CONFIG_ZONE_DEVICE
765 static inline bool is_dev_zone(const struct zone *zone)
766 {
767 return zone_id(zone) == ZONE_DEVICE;
768 }
769 #else
770 static inline bool is_dev_zone(const struct zone *zone)
771 {
772 return false;
773 }
774 #endif
775
776 #include <linux/memory_hotplug.h>
777
778 void build_all_zonelists(pg_data_t *pgdat);
779 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
780 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
781 int classzone_idx, unsigned int alloc_flags,
782 long free_pages);
783 bool zone_watermark_ok(struct zone *z, unsigned int order,
784 unsigned long mark, int classzone_idx,
785 unsigned int alloc_flags);
786 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
787 unsigned long mark, int classzone_idx);
788 enum memmap_context {
789 MEMMAP_EARLY,
790 MEMMAP_HOTPLUG,
791 };
792 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
793 unsigned long size);
794
795 extern void lruvec_init(struct lruvec *lruvec);
796
797 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
798 {
799 #ifdef CONFIG_MEMCG
800 return lruvec->pgdat;
801 #else
802 return container_of(lruvec, struct pglist_data, lruvec);
803 #endif
804 }
805
806 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
807
808 #ifdef CONFIG_HAVE_MEMORY_PRESENT
809 void memory_present(int nid, unsigned long start, unsigned long end);
810 #else
811 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
812 #endif
813
814 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
815 int local_memory_node(int node_id);
816 #else
817 static inline int local_memory_node(int node_id) { return node_id; };
818 #endif
819
820 /*
821 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
822 */
823 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
824
825 /*
826 * Returns true if a zone has pages managed by the buddy allocator.
827 * All the reclaim decisions have to use this function rather than
828 * populated_zone(). If the whole zone is reserved then we can easily
829 * end up with populated_zone() && !managed_zone().
830 */
831 static inline bool managed_zone(struct zone *zone)
832 {
833 return zone->managed_pages;
834 }
835
836 /* Returns true if a zone has memory */
837 static inline bool populated_zone(struct zone *zone)
838 {
839 return zone->present_pages;
840 }
841
842 extern int movable_zone;
843
844 #ifdef CONFIG_HIGHMEM
845 static inline int zone_movable_is_highmem(void)
846 {
847 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
848 return movable_zone == ZONE_HIGHMEM;
849 #else
850 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
851 #endif
852 }
853 #endif
854
855 static inline int is_highmem_idx(enum zone_type idx)
856 {
857 #ifdef CONFIG_HIGHMEM
858 return (idx == ZONE_HIGHMEM ||
859 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
860 #else
861 return 0;
862 #endif
863 }
864
865 /**
866 * is_highmem - helper function to quickly check if a struct zone is a
867 * highmem zone or not. This is an attempt to keep references
868 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
869 * @zone - pointer to struct zone variable
870 */
871 static inline int is_highmem(struct zone *zone)
872 {
873 #ifdef CONFIG_HIGHMEM
874 return is_highmem_idx(zone_idx(zone));
875 #else
876 return 0;
877 #endif
878 }
879
880 /* These two functions are used to setup the per zone pages min values */
881 struct ctl_table;
882 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
883 void __user *, size_t *, loff_t *);
884 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
885 void __user *, size_t *, loff_t *);
886 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
887 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
888 void __user *, size_t *, loff_t *);
889 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
890 void __user *, size_t *, loff_t *);
891 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
892 void __user *, size_t *, loff_t *);
893 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
894 void __user *, size_t *, loff_t *);
895
896 extern int numa_zonelist_order_handler(struct ctl_table *, int,
897 void __user *, size_t *, loff_t *);
898 extern char numa_zonelist_order[];
899 #define NUMA_ZONELIST_ORDER_LEN 16
900
901 #ifndef CONFIG_NEED_MULTIPLE_NODES
902
903 extern struct pglist_data contig_page_data;
904 #define NODE_DATA(nid) (&contig_page_data)
905 #define NODE_MEM_MAP(nid) mem_map
906
907 #else /* CONFIG_NEED_MULTIPLE_NODES */
908
909 #include <asm/mmzone.h>
910
911 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
912
913 extern struct pglist_data *first_online_pgdat(void);
914 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
915 extern struct zone *next_zone(struct zone *zone);
916
917 /**
918 * for_each_online_pgdat - helper macro to iterate over all online nodes
919 * @pgdat - pointer to a pg_data_t variable
920 */
921 #define for_each_online_pgdat(pgdat) \
922 for (pgdat = first_online_pgdat(); \
923 pgdat; \
924 pgdat = next_online_pgdat(pgdat))
925 /**
926 * for_each_zone - helper macro to iterate over all memory zones
927 * @zone - pointer to struct zone variable
928 *
929 * The user only needs to declare the zone variable, for_each_zone
930 * fills it in.
931 */
932 #define for_each_zone(zone) \
933 for (zone = (first_online_pgdat())->node_zones; \
934 zone; \
935 zone = next_zone(zone))
936
937 #define for_each_populated_zone(zone) \
938 for (zone = (first_online_pgdat())->node_zones; \
939 zone; \
940 zone = next_zone(zone)) \
941 if (!populated_zone(zone)) \
942 ; /* do nothing */ \
943 else
944
945 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
946 {
947 return zoneref->zone;
948 }
949
950 static inline int zonelist_zone_idx(struct zoneref *zoneref)
951 {
952 return zoneref->zone_idx;
953 }
954
955 static inline int zonelist_node_idx(struct zoneref *zoneref)
956 {
957 #ifdef CONFIG_NUMA
958 /* zone_to_nid not available in this context */
959 return zoneref->zone->node;
960 #else
961 return 0;
962 #endif /* CONFIG_NUMA */
963 }
964
965 struct zoneref *__next_zones_zonelist(struct zoneref *z,
966 enum zone_type highest_zoneidx,
967 nodemask_t *nodes);
968
969 /**
970 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
971 * @z - The cursor used as a starting point for the search
972 * @highest_zoneidx - The zone index of the highest zone to return
973 * @nodes - An optional nodemask to filter the zonelist with
974 *
975 * This function returns the next zone at or below a given zone index that is
976 * within the allowed nodemask using a cursor as the starting point for the
977 * search. The zoneref returned is a cursor that represents the current zone
978 * being examined. It should be advanced by one before calling
979 * next_zones_zonelist again.
980 */
981 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
982 enum zone_type highest_zoneidx,
983 nodemask_t *nodes)
984 {
985 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
986 return z;
987 return __next_zones_zonelist(z, highest_zoneidx, nodes);
988 }
989
990 /**
991 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
992 * @zonelist - The zonelist to search for a suitable zone
993 * @highest_zoneidx - The zone index of the highest zone to return
994 * @nodes - An optional nodemask to filter the zonelist with
995 * @return - Zoneref pointer for the first suitable zone found (see below)
996 *
997 * This function returns the first zone at or below a given zone index that is
998 * within the allowed nodemask. The zoneref returned is a cursor that can be
999 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1000 * one before calling.
1001 *
1002 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1003 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1004 * update due to cpuset modification.
1005 */
1006 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1007 enum zone_type highest_zoneidx,
1008 nodemask_t *nodes)
1009 {
1010 return next_zones_zonelist(zonelist->_zonerefs,
1011 highest_zoneidx, nodes);
1012 }
1013
1014 /**
1015 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1016 * @zone - The current zone in the iterator
1017 * @z - The current pointer within zonelist->zones being iterated
1018 * @zlist - The zonelist being iterated
1019 * @highidx - The zone index of the highest zone to return
1020 * @nodemask - Nodemask allowed by the allocator
1021 *
1022 * This iterator iterates though all zones at or below a given zone index and
1023 * within a given nodemask
1024 */
1025 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1026 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1027 zone; \
1028 z = next_zones_zonelist(++z, highidx, nodemask), \
1029 zone = zonelist_zone(z))
1030
1031 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1032 for (zone = z->zone; \
1033 zone; \
1034 z = next_zones_zonelist(++z, highidx, nodemask), \
1035 zone = zonelist_zone(z))
1036
1037
1038 /**
1039 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1040 * @zone - The current zone in the iterator
1041 * @z - The current pointer within zonelist->zones being iterated
1042 * @zlist - The zonelist being iterated
1043 * @highidx - The zone index of the highest zone to return
1044 *
1045 * This iterator iterates though all zones at or below a given zone index.
1046 */
1047 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1048 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1049
1050 #ifdef CONFIG_SPARSEMEM
1051 #include <asm/sparsemem.h>
1052 #endif
1053
1054 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1055 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1056 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1057 {
1058 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1059 return 0;
1060 }
1061 #endif
1062
1063 #ifdef CONFIG_FLATMEM
1064 #define pfn_to_nid(pfn) (0)
1065 #endif
1066
1067 #ifdef CONFIG_SPARSEMEM
1068
1069 /*
1070 * SECTION_SHIFT #bits space required to store a section #
1071 *
1072 * PA_SECTION_SHIFT physical address to/from section number
1073 * PFN_SECTION_SHIFT pfn to/from section number
1074 */
1075 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1076 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1077
1078 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1079
1080 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1081 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1082
1083 #define SECTION_BLOCKFLAGS_BITS \
1084 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1085
1086 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1087 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1088 #endif
1089
1090 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1091 {
1092 return pfn >> PFN_SECTION_SHIFT;
1093 }
1094 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1095 {
1096 return sec << PFN_SECTION_SHIFT;
1097 }
1098
1099 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1100 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1101
1102 struct page;
1103 struct page_ext;
1104 struct mem_section {
1105 /*
1106 * This is, logically, a pointer to an array of struct
1107 * pages. However, it is stored with some other magic.
1108 * (see sparse.c::sparse_init_one_section())
1109 *
1110 * Additionally during early boot we encode node id of
1111 * the location of the section here to guide allocation.
1112 * (see sparse.c::memory_present())
1113 *
1114 * Making it a UL at least makes someone do a cast
1115 * before using it wrong.
1116 */
1117 unsigned long section_mem_map;
1118
1119 /* See declaration of similar field in struct zone */
1120 unsigned long *pageblock_flags;
1121 #ifdef CONFIG_PAGE_EXTENSION
1122 /*
1123 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1124 * section. (see page_ext.h about this.)
1125 */
1126 struct page_ext *page_ext;
1127 unsigned long pad;
1128 #endif
1129 /*
1130 * WARNING: mem_section must be a power-of-2 in size for the
1131 * calculation and use of SECTION_ROOT_MASK to make sense.
1132 */
1133 };
1134
1135 #ifdef CONFIG_SPARSEMEM_EXTREME
1136 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1137 #else
1138 #define SECTIONS_PER_ROOT 1
1139 #endif
1140
1141 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1142 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1143 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1144
1145 #ifdef CONFIG_SPARSEMEM_EXTREME
1146 extern struct mem_section **mem_section;
1147 #else
1148 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1149 #endif
1150
1151 static inline struct mem_section *__nr_to_section(unsigned long nr)
1152 {
1153 #ifdef CONFIG_SPARSEMEM_EXTREME
1154 if (!mem_section)
1155 return NULL;
1156 #endif
1157 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1158 return NULL;
1159 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1160 }
1161 extern int __section_nr(struct mem_section* ms);
1162 extern unsigned long usemap_size(void);
1163
1164 /*
1165 * We use the lower bits of the mem_map pointer to store
1166 * a little bit of information. The pointer is calculated
1167 * as mem_map - section_nr_to_pfn(pnum). The result is
1168 * aligned to the minimum alignment of the two values:
1169 * 1. All mem_map arrays are page-aligned.
1170 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1171 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1172 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1173 * worst combination is powerpc with 256k pages,
1174 * which results in PFN_SECTION_SHIFT equal 6.
1175 * To sum it up, at least 6 bits are available.
1176 */
1177 #define SECTION_MARKED_PRESENT (1UL<<0)
1178 #define SECTION_HAS_MEM_MAP (1UL<<1)
1179 #define SECTION_IS_ONLINE (1UL<<2)
1180 #define SECTION_MAP_LAST_BIT (1UL<<3)
1181 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1182 #define SECTION_NID_SHIFT 3
1183
1184 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1185 {
1186 unsigned long map = section->section_mem_map;
1187 map &= SECTION_MAP_MASK;
1188 return (struct page *)map;
1189 }
1190
1191 static inline int present_section(struct mem_section *section)
1192 {
1193 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1194 }
1195
1196 static inline int present_section_nr(unsigned long nr)
1197 {
1198 return present_section(__nr_to_section(nr));
1199 }
1200
1201 static inline int valid_section(struct mem_section *section)
1202 {
1203 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1204 }
1205
1206 static inline int valid_section_nr(unsigned long nr)
1207 {
1208 return valid_section(__nr_to_section(nr));
1209 }
1210
1211 static inline int online_section(struct mem_section *section)
1212 {
1213 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1214 }
1215
1216 static inline int online_section_nr(unsigned long nr)
1217 {
1218 return online_section(__nr_to_section(nr));
1219 }
1220
1221 #ifdef CONFIG_MEMORY_HOTPLUG
1222 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1223 #ifdef CONFIG_MEMORY_HOTREMOVE
1224 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1225 #endif
1226 #endif
1227
1228 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1229 {
1230 return __nr_to_section(pfn_to_section_nr(pfn));
1231 }
1232
1233 extern int __highest_present_section_nr;
1234
1235 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1236 static inline int pfn_valid(unsigned long pfn)
1237 {
1238 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1239 return 0;
1240 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1241 }
1242 #endif
1243
1244 static inline int pfn_present(unsigned long pfn)
1245 {
1246 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1247 return 0;
1248 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1249 }
1250
1251 /*
1252 * These are _only_ used during initialisation, therefore they
1253 * can use __initdata ... They could have names to indicate
1254 * this restriction.
1255 */
1256 #ifdef CONFIG_NUMA
1257 #define pfn_to_nid(pfn) \
1258 ({ \
1259 unsigned long __pfn_to_nid_pfn = (pfn); \
1260 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1261 })
1262 #else
1263 #define pfn_to_nid(pfn) (0)
1264 #endif
1265
1266 #define early_pfn_valid(pfn) pfn_valid(pfn)
1267 void sparse_init(void);
1268 #else
1269 #define sparse_init() do {} while (0)
1270 #define sparse_index_init(_sec, _nid) do {} while (0)
1271 #endif /* CONFIG_SPARSEMEM */
1272
1273 /*
1274 * During memory init memblocks map pfns to nids. The search is expensive and
1275 * this caches recent lookups. The implementation of __early_pfn_to_nid
1276 * may treat start/end as pfns or sections.
1277 */
1278 struct mminit_pfnnid_cache {
1279 unsigned long last_start;
1280 unsigned long last_end;
1281 int last_nid;
1282 };
1283
1284 #ifndef early_pfn_valid
1285 #define early_pfn_valid(pfn) (1)
1286 #endif
1287
1288 void memory_present(int nid, unsigned long start, unsigned long end);
1289
1290 /*
1291 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1292 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1293 * pfn_valid_within() should be used in this case; we optimise this away
1294 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1295 */
1296 #ifdef CONFIG_HOLES_IN_ZONE
1297 #define pfn_valid_within(pfn) pfn_valid(pfn)
1298 #else
1299 #define pfn_valid_within(pfn) (1)
1300 #endif
1301
1302 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1303 /*
1304 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1305 * associated with it or not. This means that a struct page exists for this
1306 * pfn. The caller cannot assume the page is fully initialized in general.
1307 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1308 * will ensure the struct page is fully online and initialized. Special pages
1309 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1310 *
1311 * In FLATMEM, it is expected that holes always have valid memmap as long as
1312 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1313 * that a valid section has a memmap for the entire section.
1314 *
1315 * However, an ARM, and maybe other embedded architectures in the future
1316 * free memmap backing holes to save memory on the assumption the memmap is
1317 * never used. The page_zone linkages are then broken even though pfn_valid()
1318 * returns true. A walker of the full memmap must then do this additional
1319 * check to ensure the memmap they are looking at is sane by making sure
1320 * the zone and PFN linkages are still valid. This is expensive, but walkers
1321 * of the full memmap are extremely rare.
1322 */
1323 bool memmap_valid_within(unsigned long pfn,
1324 struct page *page, struct zone *zone);
1325 #else
1326 static inline bool memmap_valid_within(unsigned long pfn,
1327 struct page *page, struct zone *zone)
1328 {
1329 return true;
1330 }
1331 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1332
1333 #endif /* !__GENERATING_BOUNDS.H */
1334 #endif /* !__ASSEMBLY__ */
1335 #endif /* _LINUX_MMZONE_H */