]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - include/linux/mmzone.h
mm: memcg/slab: fix percpu slab vmstats flushing
[mirror_ubuntu-focal-kernel.git] / include / linux / mmzone.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24
25 /* Free memory management - zoned buddy allocator. */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33 /*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40
41 enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65 #endif
66 MIGRATE_TYPES
67 };
68
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71
72 #ifdef CONFIG_CMA
73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 # define is_migrate_cma(migratetype) false
77 # define is_migrate_cma_page(_page) false
78 #endif
79
80 static inline bool is_migrate_movable(int mt)
81 {
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84
85 #define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89 extern int page_group_by_mobility_disabled;
90
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
94 #define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), \
96 PB_migrate_end, MIGRATETYPE_MASK)
97
98 struct free_area {
99 struct list_head free_list[MIGRATE_TYPES];
100 unsigned long nr_free;
101 };
102
103 /* Used for pages not on another list */
104 static inline void add_to_free_area(struct page *page, struct free_area *area,
105 int migratetype)
106 {
107 list_add(&page->lru, &area->free_list[migratetype]);
108 area->nr_free++;
109 }
110
111 /* Used for pages not on another list */
112 static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 int migratetype)
114 {
115 list_add_tail(&page->lru, &area->free_list[migratetype]);
116 area->nr_free++;
117 }
118
119 #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120 /* Used to preserve page allocation order entropy */
121 void add_to_free_area_random(struct page *page, struct free_area *area,
122 int migratetype);
123 #else
124 static inline void add_to_free_area_random(struct page *page,
125 struct free_area *area, int migratetype)
126 {
127 add_to_free_area(page, area, migratetype);
128 }
129 #endif
130
131 /* Used for pages which are on another list */
132 static inline void move_to_free_area(struct page *page, struct free_area *area,
133 int migratetype)
134 {
135 list_move(&page->lru, &area->free_list[migratetype]);
136 }
137
138 static inline struct page *get_page_from_free_area(struct free_area *area,
139 int migratetype)
140 {
141 return list_first_entry_or_null(&area->free_list[migratetype],
142 struct page, lru);
143 }
144
145 static inline void del_page_from_free_area(struct page *page,
146 struct free_area *area)
147 {
148 list_del(&page->lru);
149 __ClearPageBuddy(page);
150 set_page_private(page, 0);
151 area->nr_free--;
152 }
153
154 static inline bool free_area_empty(struct free_area *area, int migratetype)
155 {
156 return list_empty(&area->free_list[migratetype]);
157 }
158
159 struct pglist_data;
160
161 /*
162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163 * So add a wild amount of padding here to ensure that they fall into separate
164 * cachelines. There are very few zone structures in the machine, so space
165 * consumption is not a concern here.
166 */
167 #if defined(CONFIG_SMP)
168 struct zone_padding {
169 char x[0];
170 } ____cacheline_internodealigned_in_smp;
171 #define ZONE_PADDING(name) struct zone_padding name;
172 #else
173 #define ZONE_PADDING(name)
174 #endif
175
176 #ifdef CONFIG_NUMA
177 enum numa_stat_item {
178 NUMA_HIT, /* allocated in intended node */
179 NUMA_MISS, /* allocated in non intended node */
180 NUMA_FOREIGN, /* was intended here, hit elsewhere */
181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
182 NUMA_LOCAL, /* allocation from local node */
183 NUMA_OTHER, /* allocation from other node */
184 NR_VM_NUMA_STAT_ITEMS
185 };
186 #else
187 #define NR_VM_NUMA_STAT_ITEMS 0
188 #endif
189
190 enum zone_stat_item {
191 /* First 128 byte cacheline (assuming 64 bit words) */
192 NR_FREE_PAGES,
193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 NR_ZONE_ACTIVE_ANON,
196 NR_ZONE_INACTIVE_FILE,
197 NR_ZONE_ACTIVE_FILE,
198 NR_ZONE_UNEVICTABLE,
199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
201 NR_PAGETABLE, /* used for pagetables */
202 NR_KERNEL_STACK_KB, /* measured in KiB */
203 /* Second 128 byte cacheline */
204 NR_BOUNCE,
205 #if IS_ENABLED(CONFIG_ZSMALLOC)
206 NR_ZSPAGES, /* allocated in zsmalloc */
207 #endif
208 NR_FREE_CMA_PAGES,
209 NR_VM_ZONE_STAT_ITEMS };
210
211 enum node_stat_item {
212 NR_LRU_BASE,
213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 NR_ACTIVE_ANON, /* " " " " " */
215 NR_INACTIVE_FILE, /* " " " " " */
216 NR_ACTIVE_FILE, /* " " " " " */
217 NR_UNEVICTABLE, /* " " " " " */
218 NR_SLAB_RECLAIMABLE,
219 NR_SLAB_UNRECLAIMABLE,
220 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
221 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
222 WORKINGSET_NODES,
223 WORKINGSET_REFAULT,
224 WORKINGSET_ACTIVATE,
225 WORKINGSET_RESTORE,
226 WORKINGSET_NODERECLAIM,
227 NR_ANON_MAPPED, /* Mapped anonymous pages */
228 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
229 only modified from process context */
230 NR_FILE_PAGES,
231 NR_FILE_DIRTY,
232 NR_WRITEBACK,
233 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
234 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
235 NR_SHMEM_THPS,
236 NR_SHMEM_PMDMAPPED,
237 NR_FILE_THPS,
238 NR_FILE_PMDMAPPED,
239 NR_ANON_THPS,
240 NR_UNSTABLE_NFS, /* NFS unstable pages */
241 NR_VMSCAN_WRITE,
242 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
243 NR_DIRTIED, /* page dirtyings since bootup */
244 NR_WRITTEN, /* page writings since bootup */
245 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
246 NR_VM_NODE_STAT_ITEMS
247 };
248
249 /*
250 * We do arithmetic on the LRU lists in various places in the code,
251 * so it is important to keep the active lists LRU_ACTIVE higher in
252 * the array than the corresponding inactive lists, and to keep
253 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
254 *
255 * This has to be kept in sync with the statistics in zone_stat_item
256 * above and the descriptions in vmstat_text in mm/vmstat.c
257 */
258 #define LRU_BASE 0
259 #define LRU_ACTIVE 1
260 #define LRU_FILE 2
261
262 enum lru_list {
263 LRU_INACTIVE_ANON = LRU_BASE,
264 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
265 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
266 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
267 LRU_UNEVICTABLE,
268 NR_LRU_LISTS
269 };
270
271 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
272
273 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
274
275 static inline int is_file_lru(enum lru_list lru)
276 {
277 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
278 }
279
280 static inline int is_active_lru(enum lru_list lru)
281 {
282 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
283 }
284
285 struct zone_reclaim_stat {
286 /*
287 * The pageout code in vmscan.c keeps track of how many of the
288 * mem/swap backed and file backed pages are referenced.
289 * The higher the rotated/scanned ratio, the more valuable
290 * that cache is.
291 *
292 * The anon LRU stats live in [0], file LRU stats in [1]
293 */
294 unsigned long recent_rotated[2];
295 unsigned long recent_scanned[2];
296 };
297
298 struct lruvec {
299 struct list_head lists[NR_LRU_LISTS];
300 struct zone_reclaim_stat reclaim_stat;
301 /* Evictions & activations on the inactive file list */
302 atomic_long_t inactive_age;
303 /* Refaults at the time of last reclaim cycle */
304 unsigned long refaults;
305 #ifdef CONFIG_MEMCG
306 struct pglist_data *pgdat;
307 #endif
308 };
309
310 /* Isolate unmapped file */
311 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
312 /* Isolate for asynchronous migration */
313 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
314 /* Isolate unevictable pages */
315 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
316
317 /* LRU Isolation modes. */
318 typedef unsigned __bitwise isolate_mode_t;
319
320 enum zone_watermarks {
321 WMARK_MIN,
322 WMARK_LOW,
323 WMARK_HIGH,
324 NR_WMARK
325 };
326
327 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
328 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
329 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
330 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
331
332 struct per_cpu_pages {
333 int count; /* number of pages in the list */
334 int high; /* high watermark, emptying needed */
335 int batch; /* chunk size for buddy add/remove */
336
337 /* Lists of pages, one per migrate type stored on the pcp-lists */
338 struct list_head lists[MIGRATE_PCPTYPES];
339 };
340
341 struct per_cpu_pageset {
342 struct per_cpu_pages pcp;
343 #ifdef CONFIG_NUMA
344 s8 expire;
345 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
346 #endif
347 #ifdef CONFIG_SMP
348 s8 stat_threshold;
349 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
350 #endif
351 };
352
353 struct per_cpu_nodestat {
354 s8 stat_threshold;
355 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
356 };
357
358 #endif /* !__GENERATING_BOUNDS.H */
359
360 enum zone_type {
361 #ifdef CONFIG_ZONE_DMA
362 /*
363 * ZONE_DMA is used when there are devices that are not able
364 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
365 * carve out the portion of memory that is needed for these devices.
366 * The range is arch specific.
367 *
368 * Some examples
369 *
370 * Architecture Limit
371 * ---------------------------
372 * parisc, ia64, sparc <4G
373 * s390, powerpc <2G
374 * arm Various
375 * alpha Unlimited or 0-16MB.
376 *
377 * i386, x86_64 and multiple other arches
378 * <16M.
379 */
380 ZONE_DMA,
381 #endif
382 #ifdef CONFIG_ZONE_DMA32
383 /*
384 * x86_64 needs two ZONE_DMAs because it supports devices that are
385 * only able to do DMA to the lower 16M but also 32 bit devices that
386 * can only do DMA areas below 4G.
387 */
388 ZONE_DMA32,
389 #endif
390 /*
391 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
392 * performed on pages in ZONE_NORMAL if the DMA devices support
393 * transfers to all addressable memory.
394 */
395 ZONE_NORMAL,
396 #ifdef CONFIG_HIGHMEM
397 /*
398 * A memory area that is only addressable by the kernel through
399 * mapping portions into its own address space. This is for example
400 * used by i386 to allow the kernel to address the memory beyond
401 * 900MB. The kernel will set up special mappings (page
402 * table entries on i386) for each page that the kernel needs to
403 * access.
404 */
405 ZONE_HIGHMEM,
406 #endif
407 ZONE_MOVABLE,
408 #ifdef CONFIG_ZONE_DEVICE
409 ZONE_DEVICE,
410 #endif
411 __MAX_NR_ZONES
412
413 };
414
415 #ifndef __GENERATING_BOUNDS_H
416
417 struct zone {
418 /* Read-mostly fields */
419
420 /* zone watermarks, access with *_wmark_pages(zone) macros */
421 unsigned long _watermark[NR_WMARK];
422 unsigned long watermark_boost;
423
424 unsigned long nr_reserved_highatomic;
425
426 /*
427 * We don't know if the memory that we're going to allocate will be
428 * freeable or/and it will be released eventually, so to avoid totally
429 * wasting several GB of ram we must reserve some of the lower zone
430 * memory (otherwise we risk to run OOM on the lower zones despite
431 * there being tons of freeable ram on the higher zones). This array is
432 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
433 * changes.
434 */
435 long lowmem_reserve[MAX_NR_ZONES];
436
437 #ifdef CONFIG_NUMA
438 int node;
439 #endif
440 struct pglist_data *zone_pgdat;
441 struct per_cpu_pageset __percpu *pageset;
442
443 #ifndef CONFIG_SPARSEMEM
444 /*
445 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
446 * In SPARSEMEM, this map is stored in struct mem_section
447 */
448 unsigned long *pageblock_flags;
449 #endif /* CONFIG_SPARSEMEM */
450
451 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
452 unsigned long zone_start_pfn;
453
454 /*
455 * spanned_pages is the total pages spanned by the zone, including
456 * holes, which is calculated as:
457 * spanned_pages = zone_end_pfn - zone_start_pfn;
458 *
459 * present_pages is physical pages existing within the zone, which
460 * is calculated as:
461 * present_pages = spanned_pages - absent_pages(pages in holes);
462 *
463 * managed_pages is present pages managed by the buddy system, which
464 * is calculated as (reserved_pages includes pages allocated by the
465 * bootmem allocator):
466 * managed_pages = present_pages - reserved_pages;
467 *
468 * So present_pages may be used by memory hotplug or memory power
469 * management logic to figure out unmanaged pages by checking
470 * (present_pages - managed_pages). And managed_pages should be used
471 * by page allocator and vm scanner to calculate all kinds of watermarks
472 * and thresholds.
473 *
474 * Locking rules:
475 *
476 * zone_start_pfn and spanned_pages are protected by span_seqlock.
477 * It is a seqlock because it has to be read outside of zone->lock,
478 * and it is done in the main allocator path. But, it is written
479 * quite infrequently.
480 *
481 * The span_seq lock is declared along with zone->lock because it is
482 * frequently read in proximity to zone->lock. It's good to
483 * give them a chance of being in the same cacheline.
484 *
485 * Write access to present_pages at runtime should be protected by
486 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
487 * present_pages should get_online_mems() to get a stable value.
488 */
489 atomic_long_t managed_pages;
490 unsigned long spanned_pages;
491 unsigned long present_pages;
492
493 const char *name;
494
495 #ifdef CONFIG_MEMORY_ISOLATION
496 /*
497 * Number of isolated pageblock. It is used to solve incorrect
498 * freepage counting problem due to racy retrieving migratetype
499 * of pageblock. Protected by zone->lock.
500 */
501 unsigned long nr_isolate_pageblock;
502 #endif
503
504 #ifdef CONFIG_MEMORY_HOTPLUG
505 /* see spanned/present_pages for more description */
506 seqlock_t span_seqlock;
507 #endif
508
509 int initialized;
510
511 /* Write-intensive fields used from the page allocator */
512 ZONE_PADDING(_pad1_)
513
514 /* free areas of different sizes */
515 struct free_area free_area[MAX_ORDER];
516
517 /* zone flags, see below */
518 unsigned long flags;
519
520 /* Primarily protects free_area */
521 spinlock_t lock;
522
523 /* Write-intensive fields used by compaction and vmstats. */
524 ZONE_PADDING(_pad2_)
525
526 /*
527 * When free pages are below this point, additional steps are taken
528 * when reading the number of free pages to avoid per-cpu counter
529 * drift allowing watermarks to be breached
530 */
531 unsigned long percpu_drift_mark;
532
533 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
534 /* pfn where compaction free scanner should start */
535 unsigned long compact_cached_free_pfn;
536 /* pfn where async and sync compaction migration scanner should start */
537 unsigned long compact_cached_migrate_pfn[2];
538 unsigned long compact_init_migrate_pfn;
539 unsigned long compact_init_free_pfn;
540 #endif
541
542 #ifdef CONFIG_COMPACTION
543 /*
544 * On compaction failure, 1<<compact_defer_shift compactions
545 * are skipped before trying again. The number attempted since
546 * last failure is tracked with compact_considered.
547 */
548 unsigned int compact_considered;
549 unsigned int compact_defer_shift;
550 int compact_order_failed;
551 #endif
552
553 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
554 /* Set to true when the PG_migrate_skip bits should be cleared */
555 bool compact_blockskip_flush;
556 #endif
557
558 bool contiguous;
559
560 ZONE_PADDING(_pad3_)
561 /* Zone statistics */
562 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
563 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
564 } ____cacheline_internodealigned_in_smp;
565
566 enum pgdat_flags {
567 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
568 * a congested BDI
569 */
570 PGDAT_DIRTY, /* reclaim scanning has recently found
571 * many dirty file pages at the tail
572 * of the LRU.
573 */
574 PGDAT_WRITEBACK, /* reclaim scanning has recently found
575 * many pages under writeback
576 */
577 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
578 };
579
580 enum zone_flags {
581 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
582 * Cleared when kswapd is woken.
583 */
584 };
585
586 static inline unsigned long zone_managed_pages(struct zone *zone)
587 {
588 return (unsigned long)atomic_long_read(&zone->managed_pages);
589 }
590
591 static inline unsigned long zone_end_pfn(const struct zone *zone)
592 {
593 return zone->zone_start_pfn + zone->spanned_pages;
594 }
595
596 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
597 {
598 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
599 }
600
601 static inline bool zone_is_initialized(struct zone *zone)
602 {
603 return zone->initialized;
604 }
605
606 static inline bool zone_is_empty(struct zone *zone)
607 {
608 return zone->spanned_pages == 0;
609 }
610
611 /*
612 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
613 * intersection with the given zone
614 */
615 static inline bool zone_intersects(struct zone *zone,
616 unsigned long start_pfn, unsigned long nr_pages)
617 {
618 if (zone_is_empty(zone))
619 return false;
620 if (start_pfn >= zone_end_pfn(zone) ||
621 start_pfn + nr_pages <= zone->zone_start_pfn)
622 return false;
623
624 return true;
625 }
626
627 /*
628 * The "priority" of VM scanning is how much of the queues we will scan in one
629 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
630 * queues ("queue_length >> 12") during an aging round.
631 */
632 #define DEF_PRIORITY 12
633
634 /* Maximum number of zones on a zonelist */
635 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
636
637 enum {
638 ZONELIST_FALLBACK, /* zonelist with fallback */
639 #ifdef CONFIG_NUMA
640 /*
641 * The NUMA zonelists are doubled because we need zonelists that
642 * restrict the allocations to a single node for __GFP_THISNODE.
643 */
644 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
645 #endif
646 MAX_ZONELISTS
647 };
648
649 /*
650 * This struct contains information about a zone in a zonelist. It is stored
651 * here to avoid dereferences into large structures and lookups of tables
652 */
653 struct zoneref {
654 struct zone *zone; /* Pointer to actual zone */
655 int zone_idx; /* zone_idx(zoneref->zone) */
656 };
657
658 /*
659 * One allocation request operates on a zonelist. A zonelist
660 * is a list of zones, the first one is the 'goal' of the
661 * allocation, the other zones are fallback zones, in decreasing
662 * priority.
663 *
664 * To speed the reading of the zonelist, the zonerefs contain the zone index
665 * of the entry being read. Helper functions to access information given
666 * a struct zoneref are
667 *
668 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
669 * zonelist_zone_idx() - Return the index of the zone for an entry
670 * zonelist_node_idx() - Return the index of the node for an entry
671 */
672 struct zonelist {
673 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
674 };
675
676 #ifndef CONFIG_DISCONTIGMEM
677 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
678 extern struct page *mem_map;
679 #endif
680
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 struct deferred_split {
683 spinlock_t split_queue_lock;
684 struct list_head split_queue;
685 unsigned long split_queue_len;
686 };
687 #endif
688
689 /*
690 * On NUMA machines, each NUMA node would have a pg_data_t to describe
691 * it's memory layout. On UMA machines there is a single pglist_data which
692 * describes the whole memory.
693 *
694 * Memory statistics and page replacement data structures are maintained on a
695 * per-zone basis.
696 */
697 struct bootmem_data;
698 typedef struct pglist_data {
699 struct zone node_zones[MAX_NR_ZONES];
700 struct zonelist node_zonelists[MAX_ZONELISTS];
701 int nr_zones;
702 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
703 struct page *node_mem_map;
704 #ifdef CONFIG_PAGE_EXTENSION
705 struct page_ext *node_page_ext;
706 #endif
707 #endif
708 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
709 /*
710 * Must be held any time you expect node_start_pfn,
711 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
712 *
713 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
714 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
715 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
716 *
717 * Nests above zone->lock and zone->span_seqlock
718 */
719 spinlock_t node_size_lock;
720 #endif
721 unsigned long node_start_pfn;
722 unsigned long node_present_pages; /* total number of physical pages */
723 unsigned long node_spanned_pages; /* total size of physical page
724 range, including holes */
725 int node_id;
726 wait_queue_head_t kswapd_wait;
727 wait_queue_head_t pfmemalloc_wait;
728 struct task_struct *kswapd; /* Protected by
729 mem_hotplug_begin/end() */
730 int kswapd_order;
731 enum zone_type kswapd_classzone_idx;
732
733 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
734
735 #ifdef CONFIG_COMPACTION
736 int kcompactd_max_order;
737 enum zone_type kcompactd_classzone_idx;
738 wait_queue_head_t kcompactd_wait;
739 struct task_struct *kcompactd;
740 #endif
741 /*
742 * This is a per-node reserve of pages that are not available
743 * to userspace allocations.
744 */
745 unsigned long totalreserve_pages;
746
747 #ifdef CONFIG_NUMA
748 /*
749 * zone reclaim becomes active if more unmapped pages exist.
750 */
751 unsigned long min_unmapped_pages;
752 unsigned long min_slab_pages;
753 #endif /* CONFIG_NUMA */
754
755 /* Write-intensive fields used by page reclaim */
756 ZONE_PADDING(_pad1_)
757 spinlock_t lru_lock;
758
759 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
760 /*
761 * If memory initialisation on large machines is deferred then this
762 * is the first PFN that needs to be initialised.
763 */
764 unsigned long first_deferred_pfn;
765 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
766
767 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
768 struct deferred_split deferred_split_queue;
769 #endif
770
771 /* Fields commonly accessed by the page reclaim scanner */
772 struct lruvec lruvec;
773
774 unsigned long flags;
775
776 ZONE_PADDING(_pad2_)
777
778 /* Per-node vmstats */
779 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
780 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
781 } pg_data_t;
782
783 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
784 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
785 #ifdef CONFIG_FLAT_NODE_MEM_MAP
786 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
787 #else
788 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
789 #endif
790 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
791
792 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
793 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
794
795 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
796 {
797 return &pgdat->lruvec;
798 }
799
800 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
801 {
802 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
803 }
804
805 static inline bool pgdat_is_empty(pg_data_t *pgdat)
806 {
807 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
808 }
809
810 #include <linux/memory_hotplug.h>
811
812 void build_all_zonelists(pg_data_t *pgdat);
813 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
814 enum zone_type classzone_idx);
815 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
816 int classzone_idx, unsigned int alloc_flags,
817 long free_pages);
818 bool zone_watermark_ok(struct zone *z, unsigned int order,
819 unsigned long mark, int classzone_idx,
820 unsigned int alloc_flags);
821 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
822 unsigned long mark, int classzone_idx);
823 enum memmap_context {
824 MEMMAP_EARLY,
825 MEMMAP_HOTPLUG,
826 };
827 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
828 unsigned long size);
829
830 extern void lruvec_init(struct lruvec *lruvec);
831
832 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
833 {
834 #ifdef CONFIG_MEMCG
835 return lruvec->pgdat;
836 #else
837 return container_of(lruvec, struct pglist_data, lruvec);
838 #endif
839 }
840
841 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
842
843 #ifdef CONFIG_HAVE_MEMORY_PRESENT
844 void memory_present(int nid, unsigned long start, unsigned long end);
845 #else
846 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
847 #endif
848
849 #if defined(CONFIG_SPARSEMEM)
850 void memblocks_present(void);
851 #else
852 static inline void memblocks_present(void) {}
853 #endif
854
855 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
856 int local_memory_node(int node_id);
857 #else
858 static inline int local_memory_node(int node_id) { return node_id; };
859 #endif
860
861 /*
862 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
863 */
864 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
865
866 /*
867 * Returns true if a zone has pages managed by the buddy allocator.
868 * All the reclaim decisions have to use this function rather than
869 * populated_zone(). If the whole zone is reserved then we can easily
870 * end up with populated_zone() && !managed_zone().
871 */
872 static inline bool managed_zone(struct zone *zone)
873 {
874 return zone_managed_pages(zone);
875 }
876
877 /* Returns true if a zone has memory */
878 static inline bool populated_zone(struct zone *zone)
879 {
880 return zone->present_pages;
881 }
882
883 #ifdef CONFIG_NUMA
884 static inline int zone_to_nid(struct zone *zone)
885 {
886 return zone->node;
887 }
888
889 static inline void zone_set_nid(struct zone *zone, int nid)
890 {
891 zone->node = nid;
892 }
893 #else
894 static inline int zone_to_nid(struct zone *zone)
895 {
896 return 0;
897 }
898
899 static inline void zone_set_nid(struct zone *zone, int nid) {}
900 #endif
901
902 extern int movable_zone;
903
904 #ifdef CONFIG_HIGHMEM
905 static inline int zone_movable_is_highmem(void)
906 {
907 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
908 return movable_zone == ZONE_HIGHMEM;
909 #else
910 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
911 #endif
912 }
913 #endif
914
915 static inline int is_highmem_idx(enum zone_type idx)
916 {
917 #ifdef CONFIG_HIGHMEM
918 return (idx == ZONE_HIGHMEM ||
919 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
920 #else
921 return 0;
922 #endif
923 }
924
925 /**
926 * is_highmem - helper function to quickly check if a struct zone is a
927 * highmem zone or not. This is an attempt to keep references
928 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
929 * @zone - pointer to struct zone variable
930 */
931 static inline int is_highmem(struct zone *zone)
932 {
933 #ifdef CONFIG_HIGHMEM
934 return is_highmem_idx(zone_idx(zone));
935 #else
936 return 0;
937 #endif
938 }
939
940 /* These two functions are used to setup the per zone pages min values */
941 struct ctl_table;
942 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
943 void __user *, size_t *, loff_t *);
944 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
945 void __user *, size_t *, loff_t *);
946 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
947 void __user *, size_t *, loff_t *);
948 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
949 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
950 void __user *, size_t *, loff_t *);
951 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
952 void __user *, size_t *, loff_t *);
953 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
954 void __user *, size_t *, loff_t *);
955 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
956 void __user *, size_t *, loff_t *);
957
958 extern int numa_zonelist_order_handler(struct ctl_table *, int,
959 void __user *, size_t *, loff_t *);
960 extern char numa_zonelist_order[];
961 #define NUMA_ZONELIST_ORDER_LEN 16
962
963 #ifndef CONFIG_NEED_MULTIPLE_NODES
964
965 extern struct pglist_data contig_page_data;
966 #define NODE_DATA(nid) (&contig_page_data)
967 #define NODE_MEM_MAP(nid) mem_map
968
969 #else /* CONFIG_NEED_MULTIPLE_NODES */
970
971 #include <asm/mmzone.h>
972
973 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
974
975 extern struct pglist_data *first_online_pgdat(void);
976 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
977 extern struct zone *next_zone(struct zone *zone);
978
979 /**
980 * for_each_online_pgdat - helper macro to iterate over all online nodes
981 * @pgdat - pointer to a pg_data_t variable
982 */
983 #define for_each_online_pgdat(pgdat) \
984 for (pgdat = first_online_pgdat(); \
985 pgdat; \
986 pgdat = next_online_pgdat(pgdat))
987 /**
988 * for_each_zone - helper macro to iterate over all memory zones
989 * @zone - pointer to struct zone variable
990 *
991 * The user only needs to declare the zone variable, for_each_zone
992 * fills it in.
993 */
994 #define for_each_zone(zone) \
995 for (zone = (first_online_pgdat())->node_zones; \
996 zone; \
997 zone = next_zone(zone))
998
999 #define for_each_populated_zone(zone) \
1000 for (zone = (first_online_pgdat())->node_zones; \
1001 zone; \
1002 zone = next_zone(zone)) \
1003 if (!populated_zone(zone)) \
1004 ; /* do nothing */ \
1005 else
1006
1007 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1008 {
1009 return zoneref->zone;
1010 }
1011
1012 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1013 {
1014 return zoneref->zone_idx;
1015 }
1016
1017 static inline int zonelist_node_idx(struct zoneref *zoneref)
1018 {
1019 return zone_to_nid(zoneref->zone);
1020 }
1021
1022 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1023 enum zone_type highest_zoneidx,
1024 nodemask_t *nodes);
1025
1026 /**
1027 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1028 * @z - The cursor used as a starting point for the search
1029 * @highest_zoneidx - The zone index of the highest zone to return
1030 * @nodes - An optional nodemask to filter the zonelist with
1031 *
1032 * This function returns the next zone at or below a given zone index that is
1033 * within the allowed nodemask using a cursor as the starting point for the
1034 * search. The zoneref returned is a cursor that represents the current zone
1035 * being examined. It should be advanced by one before calling
1036 * next_zones_zonelist again.
1037 */
1038 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1039 enum zone_type highest_zoneidx,
1040 nodemask_t *nodes)
1041 {
1042 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1043 return z;
1044 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1045 }
1046
1047 /**
1048 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1049 * @zonelist - The zonelist to search for a suitable zone
1050 * @highest_zoneidx - The zone index of the highest zone to return
1051 * @nodes - An optional nodemask to filter the zonelist with
1052 * @return - Zoneref pointer for the first suitable zone found (see below)
1053 *
1054 * This function returns the first zone at or below a given zone index that is
1055 * within the allowed nodemask. The zoneref returned is a cursor that can be
1056 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1057 * one before calling.
1058 *
1059 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1060 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1061 * update due to cpuset modification.
1062 */
1063 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1064 enum zone_type highest_zoneidx,
1065 nodemask_t *nodes)
1066 {
1067 return next_zones_zonelist(zonelist->_zonerefs,
1068 highest_zoneidx, nodes);
1069 }
1070
1071 /**
1072 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1073 * @zone - The current zone in the iterator
1074 * @z - The current pointer within zonelist->zones being iterated
1075 * @zlist - The zonelist being iterated
1076 * @highidx - The zone index of the highest zone to return
1077 * @nodemask - Nodemask allowed by the allocator
1078 *
1079 * This iterator iterates though all zones at or below a given zone index and
1080 * within a given nodemask
1081 */
1082 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1083 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1084 zone; \
1085 z = next_zones_zonelist(++z, highidx, nodemask), \
1086 zone = zonelist_zone(z))
1087
1088 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1089 for (zone = z->zone; \
1090 zone; \
1091 z = next_zones_zonelist(++z, highidx, nodemask), \
1092 zone = zonelist_zone(z))
1093
1094
1095 /**
1096 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1097 * @zone - The current zone in the iterator
1098 * @z - The current pointer within zonelist->zones being iterated
1099 * @zlist - The zonelist being iterated
1100 * @highidx - The zone index of the highest zone to return
1101 *
1102 * This iterator iterates though all zones at or below a given zone index.
1103 */
1104 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1105 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1106
1107 #ifdef CONFIG_SPARSEMEM
1108 #include <asm/sparsemem.h>
1109 #endif
1110
1111 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1112 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1113 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1114 {
1115 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1116 return 0;
1117 }
1118 #endif
1119
1120 #ifdef CONFIG_FLATMEM
1121 #define pfn_to_nid(pfn) (0)
1122 #endif
1123
1124 #ifdef CONFIG_SPARSEMEM
1125
1126 /*
1127 * SECTION_SHIFT #bits space required to store a section #
1128 *
1129 * PA_SECTION_SHIFT physical address to/from section number
1130 * PFN_SECTION_SHIFT pfn to/from section number
1131 */
1132 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1133 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1134
1135 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1136
1137 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1138 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1139
1140 #define SECTION_BLOCKFLAGS_BITS \
1141 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1142
1143 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1144 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1145 #endif
1146
1147 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1148 {
1149 return pfn >> PFN_SECTION_SHIFT;
1150 }
1151 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1152 {
1153 return sec << PFN_SECTION_SHIFT;
1154 }
1155
1156 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1157 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1158
1159 #define SUBSECTION_SHIFT 21
1160
1161 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1162 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1163 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1164
1165 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1166 #error Subsection size exceeds section size
1167 #else
1168 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1169 #endif
1170
1171 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1172 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1173
1174 struct mem_section_usage {
1175 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1176 /* See declaration of similar field in struct zone */
1177 unsigned long pageblock_flags[0];
1178 };
1179
1180 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1181
1182 struct page;
1183 struct page_ext;
1184 struct mem_section {
1185 /*
1186 * This is, logically, a pointer to an array of struct
1187 * pages. However, it is stored with some other magic.
1188 * (see sparse.c::sparse_init_one_section())
1189 *
1190 * Additionally during early boot we encode node id of
1191 * the location of the section here to guide allocation.
1192 * (see sparse.c::memory_present())
1193 *
1194 * Making it a UL at least makes someone do a cast
1195 * before using it wrong.
1196 */
1197 unsigned long section_mem_map;
1198
1199 struct mem_section_usage *usage;
1200 #ifdef CONFIG_PAGE_EXTENSION
1201 /*
1202 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1203 * section. (see page_ext.h about this.)
1204 */
1205 struct page_ext *page_ext;
1206 unsigned long pad;
1207 #endif
1208 /*
1209 * WARNING: mem_section must be a power-of-2 in size for the
1210 * calculation and use of SECTION_ROOT_MASK to make sense.
1211 */
1212 };
1213
1214 #ifdef CONFIG_SPARSEMEM_EXTREME
1215 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1216 #else
1217 #define SECTIONS_PER_ROOT 1
1218 #endif
1219
1220 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1221 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1222 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1223
1224 #ifdef CONFIG_SPARSEMEM_EXTREME
1225 extern struct mem_section **mem_section;
1226 #else
1227 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1228 #endif
1229
1230 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1231 {
1232 return ms->usage->pageblock_flags;
1233 }
1234
1235 static inline struct mem_section *__nr_to_section(unsigned long nr)
1236 {
1237 #ifdef CONFIG_SPARSEMEM_EXTREME
1238 if (!mem_section)
1239 return NULL;
1240 #endif
1241 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1242 return NULL;
1243 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1244 }
1245 extern unsigned long __section_nr(struct mem_section *ms);
1246 extern size_t mem_section_usage_size(void);
1247
1248 /*
1249 * We use the lower bits of the mem_map pointer to store
1250 * a little bit of information. The pointer is calculated
1251 * as mem_map - section_nr_to_pfn(pnum). The result is
1252 * aligned to the minimum alignment of the two values:
1253 * 1. All mem_map arrays are page-aligned.
1254 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1255 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1256 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1257 * worst combination is powerpc with 256k pages,
1258 * which results in PFN_SECTION_SHIFT equal 6.
1259 * To sum it up, at least 6 bits are available.
1260 */
1261 #define SECTION_MARKED_PRESENT (1UL<<0)
1262 #define SECTION_HAS_MEM_MAP (1UL<<1)
1263 #define SECTION_IS_ONLINE (1UL<<2)
1264 #define SECTION_IS_EARLY (1UL<<3)
1265 #define SECTION_MAP_LAST_BIT (1UL<<4)
1266 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1267 #define SECTION_NID_SHIFT 3
1268
1269 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1270 {
1271 unsigned long map = section->section_mem_map;
1272 map &= SECTION_MAP_MASK;
1273 return (struct page *)map;
1274 }
1275
1276 static inline int present_section(struct mem_section *section)
1277 {
1278 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1279 }
1280
1281 static inline int present_section_nr(unsigned long nr)
1282 {
1283 return present_section(__nr_to_section(nr));
1284 }
1285
1286 static inline int valid_section(struct mem_section *section)
1287 {
1288 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1289 }
1290
1291 static inline int early_section(struct mem_section *section)
1292 {
1293 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1294 }
1295
1296 static inline int valid_section_nr(unsigned long nr)
1297 {
1298 return valid_section(__nr_to_section(nr));
1299 }
1300
1301 static inline int online_section(struct mem_section *section)
1302 {
1303 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1304 }
1305
1306 static inline int online_section_nr(unsigned long nr)
1307 {
1308 return online_section(__nr_to_section(nr));
1309 }
1310
1311 #ifdef CONFIG_MEMORY_HOTPLUG
1312 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1313 #ifdef CONFIG_MEMORY_HOTREMOVE
1314 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1315 #endif
1316 #endif
1317
1318 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1319 {
1320 return __nr_to_section(pfn_to_section_nr(pfn));
1321 }
1322
1323 extern unsigned long __highest_present_section_nr;
1324
1325 static inline int subsection_map_index(unsigned long pfn)
1326 {
1327 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1328 }
1329
1330 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1331 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1332 {
1333 int idx = subsection_map_index(pfn);
1334
1335 return test_bit(idx, ms->usage->subsection_map);
1336 }
1337 #else
1338 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1339 {
1340 return 1;
1341 }
1342 #endif
1343
1344 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1345 static inline int pfn_valid(unsigned long pfn)
1346 {
1347 struct mem_section *ms;
1348
1349 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1350 return 0;
1351 ms = __nr_to_section(pfn_to_section_nr(pfn));
1352 if (!valid_section(ms))
1353 return 0;
1354 /*
1355 * Traditionally early sections always returned pfn_valid() for
1356 * the entire section-sized span.
1357 */
1358 return early_section(ms) || pfn_section_valid(ms, pfn);
1359 }
1360 #endif
1361
1362 static inline int pfn_present(unsigned long pfn)
1363 {
1364 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1365 return 0;
1366 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1367 }
1368
1369 /*
1370 * These are _only_ used during initialisation, therefore they
1371 * can use __initdata ... They could have names to indicate
1372 * this restriction.
1373 */
1374 #ifdef CONFIG_NUMA
1375 #define pfn_to_nid(pfn) \
1376 ({ \
1377 unsigned long __pfn_to_nid_pfn = (pfn); \
1378 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1379 })
1380 #else
1381 #define pfn_to_nid(pfn) (0)
1382 #endif
1383
1384 #define early_pfn_valid(pfn) pfn_valid(pfn)
1385 void sparse_init(void);
1386 #else
1387 #define sparse_init() do {} while (0)
1388 #define sparse_index_init(_sec, _nid) do {} while (0)
1389 #define pfn_present pfn_valid
1390 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1391 #endif /* CONFIG_SPARSEMEM */
1392
1393 /*
1394 * During memory init memblocks map pfns to nids. The search is expensive and
1395 * this caches recent lookups. The implementation of __early_pfn_to_nid
1396 * may treat start/end as pfns or sections.
1397 */
1398 struct mminit_pfnnid_cache {
1399 unsigned long last_start;
1400 unsigned long last_end;
1401 int last_nid;
1402 };
1403
1404 #ifndef early_pfn_valid
1405 #define early_pfn_valid(pfn) (1)
1406 #endif
1407
1408 void memory_present(int nid, unsigned long start, unsigned long end);
1409
1410 /*
1411 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1412 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1413 * pfn_valid_within() should be used in this case; we optimise this away
1414 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1415 */
1416 #ifdef CONFIG_HOLES_IN_ZONE
1417 #define pfn_valid_within(pfn) pfn_valid(pfn)
1418 #else
1419 #define pfn_valid_within(pfn) (1)
1420 #endif
1421
1422 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1423 /*
1424 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1425 * associated with it or not. This means that a struct page exists for this
1426 * pfn. The caller cannot assume the page is fully initialized in general.
1427 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1428 * will ensure the struct page is fully online and initialized. Special pages
1429 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1430 *
1431 * In FLATMEM, it is expected that holes always have valid memmap as long as
1432 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1433 * that a valid section has a memmap for the entire section.
1434 *
1435 * However, an ARM, and maybe other embedded architectures in the future
1436 * free memmap backing holes to save memory on the assumption the memmap is
1437 * never used. The page_zone linkages are then broken even though pfn_valid()
1438 * returns true. A walker of the full memmap must then do this additional
1439 * check to ensure the memmap they are looking at is sane by making sure
1440 * the zone and PFN linkages are still valid. This is expensive, but walkers
1441 * of the full memmap are extremely rare.
1442 */
1443 bool memmap_valid_within(unsigned long pfn,
1444 struct page *page, struct zone *zone);
1445 #else
1446 static inline bool memmap_valid_within(unsigned long pfn,
1447 struct page *page, struct zone *zone)
1448 {
1449 return true;
1450 }
1451 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1452
1453 #endif /* !__GENERATING_BOUNDS.H */
1454 #endif /* !__ASSEMBLY__ */
1455 #endif /* _LINUX_MMZONE_H */