]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mmzone.h
oom: change all_unreclaimable zone member to flags
[mirror_ubuntu-bionic-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <asm/atomic.h>
19 #include <asm/page.h>
20
21 /* Free memory management - zoned buddy allocator. */
22 #ifndef CONFIG_FORCE_MAX_ZONEORDER
23 #define MAX_ORDER 11
24 #else
25 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
26 #endif
27 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
28
29 /*
30 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
31 * costly to service. That is between allocation orders which should
32 * coelesce naturally under reasonable reclaim pressure and those which
33 * will not.
34 */
35 #define PAGE_ALLOC_COSTLY_ORDER 3
36
37 #define MIGRATE_UNMOVABLE 0
38 #define MIGRATE_RECLAIMABLE 1
39 #define MIGRATE_MOVABLE 2
40 #define MIGRATE_RESERVE 3
41 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
42 #define MIGRATE_TYPES 5
43
44 #define for_each_migratetype_order(order, type) \
45 for (order = 0; order < MAX_ORDER; order++) \
46 for (type = 0; type < MIGRATE_TYPES; type++)
47
48 extern int page_group_by_mobility_disabled;
49
50 static inline int get_pageblock_migratetype(struct page *page)
51 {
52 if (unlikely(page_group_by_mobility_disabled))
53 return MIGRATE_UNMOVABLE;
54
55 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
56 }
57
58 struct free_area {
59 struct list_head free_list[MIGRATE_TYPES];
60 unsigned long nr_free;
61 };
62
63 struct pglist_data;
64
65 /*
66 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
67 * So add a wild amount of padding here to ensure that they fall into separate
68 * cachelines. There are very few zone structures in the machine, so space
69 * consumption is not a concern here.
70 */
71 #if defined(CONFIG_SMP)
72 struct zone_padding {
73 char x[0];
74 } ____cacheline_internodealigned_in_smp;
75 #define ZONE_PADDING(name) struct zone_padding name;
76 #else
77 #define ZONE_PADDING(name)
78 #endif
79
80 enum zone_stat_item {
81 /* First 128 byte cacheline (assuming 64 bit words) */
82 NR_FREE_PAGES,
83 NR_INACTIVE,
84 NR_ACTIVE,
85 NR_ANON_PAGES, /* Mapped anonymous pages */
86 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
87 only modified from process context */
88 NR_FILE_PAGES,
89 NR_FILE_DIRTY,
90 NR_WRITEBACK,
91 /* Second 128 byte cacheline */
92 NR_SLAB_RECLAIMABLE,
93 NR_SLAB_UNRECLAIMABLE,
94 NR_PAGETABLE, /* used for pagetables */
95 NR_UNSTABLE_NFS, /* NFS unstable pages */
96 NR_BOUNCE,
97 NR_VMSCAN_WRITE,
98 #ifdef CONFIG_NUMA
99 NUMA_HIT, /* allocated in intended node */
100 NUMA_MISS, /* allocated in non intended node */
101 NUMA_FOREIGN, /* was intended here, hit elsewhere */
102 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
103 NUMA_LOCAL, /* allocation from local node */
104 NUMA_OTHER, /* allocation from other node */
105 #endif
106 NR_VM_ZONE_STAT_ITEMS };
107
108 struct per_cpu_pages {
109 int count; /* number of pages in the list */
110 int high; /* high watermark, emptying needed */
111 int batch; /* chunk size for buddy add/remove */
112 struct list_head list; /* the list of pages */
113 };
114
115 struct per_cpu_pageset {
116 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
117 #ifdef CONFIG_NUMA
118 s8 expire;
119 #endif
120 #ifdef CONFIG_SMP
121 s8 stat_threshold;
122 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
123 #endif
124 } ____cacheline_aligned_in_smp;
125
126 #ifdef CONFIG_NUMA
127 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
128 #else
129 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
130 #endif
131
132 enum zone_type {
133 #ifdef CONFIG_ZONE_DMA
134 /*
135 * ZONE_DMA is used when there are devices that are not able
136 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
137 * carve out the portion of memory that is needed for these devices.
138 * The range is arch specific.
139 *
140 * Some examples
141 *
142 * Architecture Limit
143 * ---------------------------
144 * parisc, ia64, sparc <4G
145 * s390 <2G
146 * arm Various
147 * alpha Unlimited or 0-16MB.
148 *
149 * i386, x86_64 and multiple other arches
150 * <16M.
151 */
152 ZONE_DMA,
153 #endif
154 #ifdef CONFIG_ZONE_DMA32
155 /*
156 * x86_64 needs two ZONE_DMAs because it supports devices that are
157 * only able to do DMA to the lower 16M but also 32 bit devices that
158 * can only do DMA areas below 4G.
159 */
160 ZONE_DMA32,
161 #endif
162 /*
163 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
164 * performed on pages in ZONE_NORMAL if the DMA devices support
165 * transfers to all addressable memory.
166 */
167 ZONE_NORMAL,
168 #ifdef CONFIG_HIGHMEM
169 /*
170 * A memory area that is only addressable by the kernel through
171 * mapping portions into its own address space. This is for example
172 * used by i386 to allow the kernel to address the memory beyond
173 * 900MB. The kernel will set up special mappings (page
174 * table entries on i386) for each page that the kernel needs to
175 * access.
176 */
177 ZONE_HIGHMEM,
178 #endif
179 ZONE_MOVABLE,
180 MAX_NR_ZONES
181 };
182
183 /*
184 * When a memory allocation must conform to specific limitations (such
185 * as being suitable for DMA) the caller will pass in hints to the
186 * allocator in the gfp_mask, in the zone modifier bits. These bits
187 * are used to select a priority ordered list of memory zones which
188 * match the requested limits. See gfp_zone() in include/linux/gfp.h
189 */
190
191 /*
192 * Count the active zones. Note that the use of defined(X) outside
193 * #if and family is not necessarily defined so ensure we cannot use
194 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
195 */
196 #define __ZONE_COUNT ( \
197 defined(CONFIG_ZONE_DMA) \
198 + defined(CONFIG_ZONE_DMA32) \
199 + 1 \
200 + defined(CONFIG_HIGHMEM) \
201 + 1 \
202 )
203 #if __ZONE_COUNT < 2
204 #define ZONES_SHIFT 0
205 #elif __ZONE_COUNT <= 2
206 #define ZONES_SHIFT 1
207 #elif __ZONE_COUNT <= 4
208 #define ZONES_SHIFT 2
209 #else
210 #error ZONES_SHIFT -- too many zones configured adjust calculation
211 #endif
212 #undef __ZONE_COUNT
213
214 struct zone {
215 /* Fields commonly accessed by the page allocator */
216 unsigned long pages_min, pages_low, pages_high;
217 /*
218 * We don't know if the memory that we're going to allocate will be freeable
219 * or/and it will be released eventually, so to avoid totally wasting several
220 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
221 * to run OOM on the lower zones despite there's tons of freeable ram
222 * on the higher zones). This array is recalculated at runtime if the
223 * sysctl_lowmem_reserve_ratio sysctl changes.
224 */
225 unsigned long lowmem_reserve[MAX_NR_ZONES];
226
227 #ifdef CONFIG_NUMA
228 int node;
229 /*
230 * zone reclaim becomes active if more unmapped pages exist.
231 */
232 unsigned long min_unmapped_pages;
233 unsigned long min_slab_pages;
234 struct per_cpu_pageset *pageset[NR_CPUS];
235 #else
236 struct per_cpu_pageset pageset[NR_CPUS];
237 #endif
238 /*
239 * free areas of different sizes
240 */
241 spinlock_t lock;
242 #ifdef CONFIG_MEMORY_HOTPLUG
243 /* see spanned/present_pages for more description */
244 seqlock_t span_seqlock;
245 #endif
246 struct free_area free_area[MAX_ORDER];
247
248 #ifndef CONFIG_SPARSEMEM
249 /*
250 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
251 * In SPARSEMEM, this map is stored in struct mem_section
252 */
253 unsigned long *pageblock_flags;
254 #endif /* CONFIG_SPARSEMEM */
255
256
257 ZONE_PADDING(_pad1_)
258
259 /* Fields commonly accessed by the page reclaim scanner */
260 spinlock_t lru_lock;
261 struct list_head active_list;
262 struct list_head inactive_list;
263 unsigned long nr_scan_active;
264 unsigned long nr_scan_inactive;
265 unsigned long pages_scanned; /* since last reclaim */
266 unsigned long flags; /* zone flags, see below */
267
268 /* Zone statistics */
269 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
270
271 /*
272 * prev_priority holds the scanning priority for this zone. It is
273 * defined as the scanning priority at which we achieved our reclaim
274 * target at the previous try_to_free_pages() or balance_pgdat()
275 * invokation.
276 *
277 * We use prev_priority as a measure of how much stress page reclaim is
278 * under - it drives the swappiness decision: whether to unmap mapped
279 * pages.
280 *
281 * Access to both this field is quite racy even on uniprocessor. But
282 * it is expected to average out OK.
283 */
284 int prev_priority;
285
286
287 ZONE_PADDING(_pad2_)
288 /* Rarely used or read-mostly fields */
289
290 /*
291 * wait_table -- the array holding the hash table
292 * wait_table_hash_nr_entries -- the size of the hash table array
293 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
294 *
295 * The purpose of all these is to keep track of the people
296 * waiting for a page to become available and make them
297 * runnable again when possible. The trouble is that this
298 * consumes a lot of space, especially when so few things
299 * wait on pages at a given time. So instead of using
300 * per-page waitqueues, we use a waitqueue hash table.
301 *
302 * The bucket discipline is to sleep on the same queue when
303 * colliding and wake all in that wait queue when removing.
304 * When something wakes, it must check to be sure its page is
305 * truly available, a la thundering herd. The cost of a
306 * collision is great, but given the expected load of the
307 * table, they should be so rare as to be outweighed by the
308 * benefits from the saved space.
309 *
310 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
311 * primary users of these fields, and in mm/page_alloc.c
312 * free_area_init_core() performs the initialization of them.
313 */
314 wait_queue_head_t * wait_table;
315 unsigned long wait_table_hash_nr_entries;
316 unsigned long wait_table_bits;
317
318 /*
319 * Discontig memory support fields.
320 */
321 struct pglist_data *zone_pgdat;
322 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
323 unsigned long zone_start_pfn;
324
325 /*
326 * zone_start_pfn, spanned_pages and present_pages are all
327 * protected by span_seqlock. It is a seqlock because it has
328 * to be read outside of zone->lock, and it is done in the main
329 * allocator path. But, it is written quite infrequently.
330 *
331 * The lock is declared along with zone->lock because it is
332 * frequently read in proximity to zone->lock. It's good to
333 * give them a chance of being in the same cacheline.
334 */
335 unsigned long spanned_pages; /* total size, including holes */
336 unsigned long present_pages; /* amount of memory (excluding holes) */
337
338 /*
339 * rarely used fields:
340 */
341 const char *name;
342 } ____cacheline_internodealigned_in_smp;
343
344 typedef enum {
345 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
346 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
347 } zone_flags_t;
348
349 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
350 {
351 set_bit(flag, &zone->flags);
352 }
353 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
354 {
355 clear_bit(flag, &zone->flags);
356 }
357
358 static inline int zone_is_all_unreclaimable(const struct zone *zone)
359 {
360 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
361 }
362 static inline int zone_is_reclaim_locked(const struct zone *zone)
363 {
364 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
365 }
366
367 /*
368 * The "priority" of VM scanning is how much of the queues we will scan in one
369 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
370 * queues ("queue_length >> 12") during an aging round.
371 */
372 #define DEF_PRIORITY 12
373
374 /* Maximum number of zones on a zonelist */
375 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
376
377 #ifdef CONFIG_NUMA
378
379 /*
380 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
381 * allocations to a single node for GFP_THISNODE.
382 *
383 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
384 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
385 */
386 #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
387
388
389 /*
390 * We cache key information from each zonelist for smaller cache
391 * footprint when scanning for free pages in get_page_from_freelist().
392 *
393 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
394 * up short of free memory since the last time (last_fullzone_zap)
395 * we zero'd fullzones.
396 * 2) The array z_to_n[] maps each zone in the zonelist to its node
397 * id, so that we can efficiently evaluate whether that node is
398 * set in the current tasks mems_allowed.
399 *
400 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
401 * indexed by a zones offset in the zonelist zones[] array.
402 *
403 * The get_page_from_freelist() routine does two scans. During the
404 * first scan, we skip zones whose corresponding bit in 'fullzones'
405 * is set or whose corresponding node in current->mems_allowed (which
406 * comes from cpusets) is not set. During the second scan, we bypass
407 * this zonelist_cache, to ensure we look methodically at each zone.
408 *
409 * Once per second, we zero out (zap) fullzones, forcing us to
410 * reconsider nodes that might have regained more free memory.
411 * The field last_full_zap is the time we last zapped fullzones.
412 *
413 * This mechanism reduces the amount of time we waste repeatedly
414 * reexaming zones for free memory when they just came up low on
415 * memory momentarilly ago.
416 *
417 * The zonelist_cache struct members logically belong in struct
418 * zonelist. However, the mempolicy zonelists constructed for
419 * MPOL_BIND are intentionally variable length (and usually much
420 * shorter). A general purpose mechanism for handling structs with
421 * multiple variable length members is more mechanism than we want
422 * here. We resort to some special case hackery instead.
423 *
424 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
425 * part because they are shorter), so we put the fixed length stuff
426 * at the front of the zonelist struct, ending in a variable length
427 * zones[], as is needed by MPOL_BIND.
428 *
429 * Then we put the optional zonelist cache on the end of the zonelist
430 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
431 * the fixed length portion at the front of the struct. This pointer
432 * both enables us to find the zonelist cache, and in the case of
433 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
434 * to know that the zonelist cache is not there.
435 *
436 * The end result is that struct zonelists come in two flavors:
437 * 1) The full, fixed length version, shown below, and
438 * 2) The custom zonelists for MPOL_BIND.
439 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
440 *
441 * Even though there may be multiple CPU cores on a node modifying
442 * fullzones or last_full_zap in the same zonelist_cache at the same
443 * time, we don't lock it. This is just hint data - if it is wrong now
444 * and then, the allocator will still function, perhaps a bit slower.
445 */
446
447
448 struct zonelist_cache {
449 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
450 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
451 unsigned long last_full_zap; /* when last zap'd (jiffies) */
452 };
453 #else
454 #define MAX_ZONELISTS MAX_NR_ZONES
455 struct zonelist_cache;
456 #endif
457
458 /*
459 * One allocation request operates on a zonelist. A zonelist
460 * is a list of zones, the first one is the 'goal' of the
461 * allocation, the other zones are fallback zones, in decreasing
462 * priority.
463 *
464 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
465 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
466 */
467
468 struct zonelist {
469 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
470 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
471 #ifdef CONFIG_NUMA
472 struct zonelist_cache zlcache; // optional ...
473 #endif
474 };
475
476 #ifdef CONFIG_NUMA
477 /*
478 * Only custom zonelists like MPOL_BIND need to be filtered as part of
479 * policies. As described in the comment for struct zonelist_cache, these
480 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
481 * that to determine if the zonelists needs to be filtered or not.
482 */
483 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
484 {
485 return !zonelist->zlcache_ptr;
486 }
487 #else
488 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
489 {
490 return 0;
491 }
492 #endif /* CONFIG_NUMA */
493
494 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
495 struct node_active_region {
496 unsigned long start_pfn;
497 unsigned long end_pfn;
498 int nid;
499 };
500 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
501
502 #ifndef CONFIG_DISCONTIGMEM
503 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
504 extern struct page *mem_map;
505 #endif
506
507 /*
508 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
509 * (mostly NUMA machines?) to denote a higher-level memory zone than the
510 * zone denotes.
511 *
512 * On NUMA machines, each NUMA node would have a pg_data_t to describe
513 * it's memory layout.
514 *
515 * Memory statistics and page replacement data structures are maintained on a
516 * per-zone basis.
517 */
518 struct bootmem_data;
519 typedef struct pglist_data {
520 struct zone node_zones[MAX_NR_ZONES];
521 struct zonelist node_zonelists[MAX_ZONELISTS];
522 int nr_zones;
523 #ifdef CONFIG_FLAT_NODE_MEM_MAP
524 struct page *node_mem_map;
525 #endif
526 struct bootmem_data *bdata;
527 #ifdef CONFIG_MEMORY_HOTPLUG
528 /*
529 * Must be held any time you expect node_start_pfn, node_present_pages
530 * or node_spanned_pages stay constant. Holding this will also
531 * guarantee that any pfn_valid() stays that way.
532 *
533 * Nests above zone->lock and zone->size_seqlock.
534 */
535 spinlock_t node_size_lock;
536 #endif
537 unsigned long node_start_pfn;
538 unsigned long node_present_pages; /* total number of physical pages */
539 unsigned long node_spanned_pages; /* total size of physical page
540 range, including holes */
541 int node_id;
542 wait_queue_head_t kswapd_wait;
543 struct task_struct *kswapd;
544 int kswapd_max_order;
545 } pg_data_t;
546
547 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
548 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
549 #ifdef CONFIG_FLAT_NODE_MEM_MAP
550 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
551 #else
552 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
553 #endif
554 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
555
556 #include <linux/memory_hotplug.h>
557
558 void get_zone_counts(unsigned long *active, unsigned long *inactive,
559 unsigned long *free);
560 void build_all_zonelists(void);
561 void wakeup_kswapd(struct zone *zone, int order);
562 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
563 int classzone_idx, int alloc_flags);
564 enum memmap_context {
565 MEMMAP_EARLY,
566 MEMMAP_HOTPLUG,
567 };
568 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
569 unsigned long size,
570 enum memmap_context context);
571
572 #ifdef CONFIG_HAVE_MEMORY_PRESENT
573 void memory_present(int nid, unsigned long start, unsigned long end);
574 #else
575 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
576 #endif
577
578 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
579 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
580 #endif
581
582 /*
583 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
584 */
585 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
586
587 static inline int populated_zone(struct zone *zone)
588 {
589 return (!!zone->present_pages);
590 }
591
592 extern int movable_zone;
593
594 static inline int zone_movable_is_highmem(void)
595 {
596 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
597 return movable_zone == ZONE_HIGHMEM;
598 #else
599 return 0;
600 #endif
601 }
602
603 static inline int is_highmem_idx(enum zone_type idx)
604 {
605 #ifdef CONFIG_HIGHMEM
606 return (idx == ZONE_HIGHMEM ||
607 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
608 #else
609 return 0;
610 #endif
611 }
612
613 static inline int is_normal_idx(enum zone_type idx)
614 {
615 return (idx == ZONE_NORMAL);
616 }
617
618 /**
619 * is_highmem - helper function to quickly check if a struct zone is a
620 * highmem zone or not. This is an attempt to keep references
621 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
622 * @zone - pointer to struct zone variable
623 */
624 static inline int is_highmem(struct zone *zone)
625 {
626 #ifdef CONFIG_HIGHMEM
627 int zone_idx = zone - zone->zone_pgdat->node_zones;
628 return zone_idx == ZONE_HIGHMEM ||
629 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
630 #else
631 return 0;
632 #endif
633 }
634
635 static inline int is_normal(struct zone *zone)
636 {
637 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
638 }
639
640 static inline int is_dma32(struct zone *zone)
641 {
642 #ifdef CONFIG_ZONE_DMA32
643 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
644 #else
645 return 0;
646 #endif
647 }
648
649 static inline int is_dma(struct zone *zone)
650 {
651 #ifdef CONFIG_ZONE_DMA
652 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
653 #else
654 return 0;
655 #endif
656 }
657
658 /* These two functions are used to setup the per zone pages min values */
659 struct ctl_table;
660 struct file;
661 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
662 void __user *, size_t *, loff_t *);
663 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
664 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
665 void __user *, size_t *, loff_t *);
666 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
667 void __user *, size_t *, loff_t *);
668 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
669 struct file *, void __user *, size_t *, loff_t *);
670 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
671 struct file *, void __user *, size_t *, loff_t *);
672
673 extern int numa_zonelist_order_handler(struct ctl_table *, int,
674 struct file *, void __user *, size_t *, loff_t *);
675 extern char numa_zonelist_order[];
676 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
677
678 #include <linux/topology.h>
679 /* Returns the number of the current Node. */
680 #ifndef numa_node_id
681 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
682 #endif
683
684 #ifndef CONFIG_NEED_MULTIPLE_NODES
685
686 extern struct pglist_data contig_page_data;
687 #define NODE_DATA(nid) (&contig_page_data)
688 #define NODE_MEM_MAP(nid) mem_map
689 #define MAX_NODES_SHIFT 1
690
691 #else /* CONFIG_NEED_MULTIPLE_NODES */
692
693 #include <asm/mmzone.h>
694
695 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
696
697 extern struct pglist_data *first_online_pgdat(void);
698 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
699 extern struct zone *next_zone(struct zone *zone);
700
701 /**
702 * for_each_pgdat - helper macro to iterate over all nodes
703 * @pgdat - pointer to a pg_data_t variable
704 */
705 #define for_each_online_pgdat(pgdat) \
706 for (pgdat = first_online_pgdat(); \
707 pgdat; \
708 pgdat = next_online_pgdat(pgdat))
709 /**
710 * for_each_zone - helper macro to iterate over all memory zones
711 * @zone - pointer to struct zone variable
712 *
713 * The user only needs to declare the zone variable, for_each_zone
714 * fills it in.
715 */
716 #define for_each_zone(zone) \
717 for (zone = (first_online_pgdat())->node_zones; \
718 zone; \
719 zone = next_zone(zone))
720
721 #ifdef CONFIG_SPARSEMEM
722 #include <asm/sparsemem.h>
723 #endif
724
725 #if BITS_PER_LONG == 32
726 /*
727 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
728 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
729 */
730 #define FLAGS_RESERVED 9
731
732 #elif BITS_PER_LONG == 64
733 /*
734 * with 64 bit flags field, there's plenty of room.
735 */
736 #define FLAGS_RESERVED 32
737
738 #else
739
740 #error BITS_PER_LONG not defined
741
742 #endif
743
744 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
745 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
746 #define early_pfn_to_nid(nid) (0UL)
747 #endif
748
749 #ifdef CONFIG_FLATMEM
750 #define pfn_to_nid(pfn) (0)
751 #endif
752
753 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
754 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
755
756 #ifdef CONFIG_SPARSEMEM
757
758 /*
759 * SECTION_SHIFT #bits space required to store a section #
760 *
761 * PA_SECTION_SHIFT physical address to/from section number
762 * PFN_SECTION_SHIFT pfn to/from section number
763 */
764 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
765
766 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
767 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
768
769 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
770
771 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
772 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
773
774 #define SECTION_BLOCKFLAGS_BITS \
775 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
776
777 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
778 #error Allocator MAX_ORDER exceeds SECTION_SIZE
779 #endif
780
781 struct page;
782 struct mem_section {
783 /*
784 * This is, logically, a pointer to an array of struct
785 * pages. However, it is stored with some other magic.
786 * (see sparse.c::sparse_init_one_section())
787 *
788 * Additionally during early boot we encode node id of
789 * the location of the section here to guide allocation.
790 * (see sparse.c::memory_present())
791 *
792 * Making it a UL at least makes someone do a cast
793 * before using it wrong.
794 */
795 unsigned long section_mem_map;
796
797 /* See declaration of similar field in struct zone */
798 unsigned long *pageblock_flags;
799 };
800
801 #ifdef CONFIG_SPARSEMEM_EXTREME
802 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
803 #else
804 #define SECTIONS_PER_ROOT 1
805 #endif
806
807 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
808 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
809 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
810
811 #ifdef CONFIG_SPARSEMEM_EXTREME
812 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
813 #else
814 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
815 #endif
816
817 static inline struct mem_section *__nr_to_section(unsigned long nr)
818 {
819 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
820 return NULL;
821 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
822 }
823 extern int __section_nr(struct mem_section* ms);
824
825 /*
826 * We use the lower bits of the mem_map pointer to store
827 * a little bit of information. There should be at least
828 * 3 bits here due to 32-bit alignment.
829 */
830 #define SECTION_MARKED_PRESENT (1UL<<0)
831 #define SECTION_HAS_MEM_MAP (1UL<<1)
832 #define SECTION_MAP_LAST_BIT (1UL<<2)
833 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
834 #define SECTION_NID_SHIFT 2
835
836 static inline struct page *__section_mem_map_addr(struct mem_section *section)
837 {
838 unsigned long map = section->section_mem_map;
839 map &= SECTION_MAP_MASK;
840 return (struct page *)map;
841 }
842
843 static inline int present_section(struct mem_section *section)
844 {
845 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
846 }
847
848 static inline int present_section_nr(unsigned long nr)
849 {
850 return present_section(__nr_to_section(nr));
851 }
852
853 static inline int valid_section(struct mem_section *section)
854 {
855 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
856 }
857
858 static inline int valid_section_nr(unsigned long nr)
859 {
860 return valid_section(__nr_to_section(nr));
861 }
862
863 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
864 {
865 return __nr_to_section(pfn_to_section_nr(pfn));
866 }
867
868 static inline int pfn_valid(unsigned long pfn)
869 {
870 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
871 return 0;
872 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
873 }
874
875 static inline int pfn_present(unsigned long pfn)
876 {
877 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
878 return 0;
879 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
880 }
881
882 /*
883 * These are _only_ used during initialisation, therefore they
884 * can use __initdata ... They could have names to indicate
885 * this restriction.
886 */
887 #ifdef CONFIG_NUMA
888 #define pfn_to_nid(pfn) \
889 ({ \
890 unsigned long __pfn_to_nid_pfn = (pfn); \
891 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
892 })
893 #else
894 #define pfn_to_nid(pfn) (0)
895 #endif
896
897 #define early_pfn_valid(pfn) pfn_valid(pfn)
898 void sparse_init(void);
899 #else
900 #define sparse_init() do {} while (0)
901 #define sparse_index_init(_sec, _nid) do {} while (0)
902 #endif /* CONFIG_SPARSEMEM */
903
904 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
905 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
906 #else
907 #define early_pfn_in_nid(pfn, nid) (1)
908 #endif
909
910 #ifndef early_pfn_valid
911 #define early_pfn_valid(pfn) (1)
912 #endif
913
914 void memory_present(int nid, unsigned long start, unsigned long end);
915 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
916
917 /*
918 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
919 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
920 * pfn_valid_within() should be used in this case; we optimise this away
921 * when we have no holes within a MAX_ORDER_NR_PAGES block.
922 */
923 #ifdef CONFIG_HOLES_IN_ZONE
924 #define pfn_valid_within(pfn) pfn_valid(pfn)
925 #else
926 #define pfn_valid_within(pfn) (1)
927 #endif
928
929 #endif /* !__ASSEMBLY__ */
930 #endif /* __KERNEL__ */
931 #endif /* _LINUX_MMZONE_H */