]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mmzone.h
Merge branches 'iommu/arm/smmu', 'iommu/updates', 'iommu/vt-d', 'iommu/ipmmu-vmsa...
[mirror_ubuntu-bionic-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum migratetype {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72 #else
73 # define is_migrate_cma(migratetype) false
74 # define is_migrate_cma_page(_page) false
75 #endif
76
77 static inline bool is_migrate_movable(int mt)
78 {
79 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
80 }
81
82 #define for_each_migratetype_order(order, type) \
83 for (order = 0; order < MAX_ORDER; order++) \
84 for (type = 0; type < MIGRATE_TYPES; type++)
85
86 extern int page_group_by_mobility_disabled;
87
88 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
89 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
90
91 #define get_pageblock_migratetype(page) \
92 get_pfnblock_flags_mask(page, page_to_pfn(page), \
93 PB_migrate_end, MIGRATETYPE_MASK)
94
95 struct free_area {
96 struct list_head free_list[MIGRATE_TYPES];
97 unsigned long nr_free;
98 };
99
100 struct pglist_data;
101
102 /*
103 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
104 * So add a wild amount of padding here to ensure that they fall into separate
105 * cachelines. There are very few zone structures in the machine, so space
106 * consumption is not a concern here.
107 */
108 #if defined(CONFIG_SMP)
109 struct zone_padding {
110 char x[0];
111 } ____cacheline_internodealigned_in_smp;
112 #define ZONE_PADDING(name) struct zone_padding name;
113 #else
114 #define ZONE_PADDING(name)
115 #endif
116
117 #ifdef CONFIG_NUMA
118 enum numa_stat_item {
119 NUMA_HIT, /* allocated in intended node */
120 NUMA_MISS, /* allocated in non intended node */
121 NUMA_FOREIGN, /* was intended here, hit elsewhere */
122 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
123 NUMA_LOCAL, /* allocation from local node */
124 NUMA_OTHER, /* allocation from other node */
125 NR_VM_NUMA_STAT_ITEMS
126 };
127 #else
128 #define NR_VM_NUMA_STAT_ITEMS 0
129 #endif
130
131 enum zone_stat_item {
132 /* First 128 byte cacheline (assuming 64 bit words) */
133 NR_FREE_PAGES,
134 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
135 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
136 NR_ZONE_ACTIVE_ANON,
137 NR_ZONE_INACTIVE_FILE,
138 NR_ZONE_ACTIVE_FILE,
139 NR_ZONE_UNEVICTABLE,
140 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
141 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
142 NR_PAGETABLE, /* used for pagetables */
143 NR_KERNEL_STACK_KB, /* measured in KiB */
144 /* Second 128 byte cacheline */
145 NR_BOUNCE,
146 #if IS_ENABLED(CONFIG_ZSMALLOC)
147 NR_ZSPAGES, /* allocated in zsmalloc */
148 #endif
149 NR_FREE_CMA_PAGES,
150 NR_VM_ZONE_STAT_ITEMS };
151
152 enum node_stat_item {
153 NR_LRU_BASE,
154 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
155 NR_ACTIVE_ANON, /* " " " " " */
156 NR_INACTIVE_FILE, /* " " " " " */
157 NR_ACTIVE_FILE, /* " " " " " */
158 NR_UNEVICTABLE, /* " " " " " */
159 NR_SLAB_RECLAIMABLE,
160 NR_SLAB_UNRECLAIMABLE,
161 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
162 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
163 WORKINGSET_REFAULT,
164 WORKINGSET_ACTIVATE,
165 WORKINGSET_NODERECLAIM,
166 NR_ANON_MAPPED, /* Mapped anonymous pages */
167 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
168 only modified from process context */
169 NR_FILE_PAGES,
170 NR_FILE_DIRTY,
171 NR_WRITEBACK,
172 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
173 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
174 NR_SHMEM_THPS,
175 NR_SHMEM_PMDMAPPED,
176 NR_ANON_THPS,
177 NR_UNSTABLE_NFS, /* NFS unstable pages */
178 NR_VMSCAN_WRITE,
179 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
180 NR_DIRTIED, /* page dirtyings since bootup */
181 NR_WRITTEN, /* page writings since bootup */
182 NR_VM_NODE_STAT_ITEMS
183 };
184
185 /*
186 * We do arithmetic on the LRU lists in various places in the code,
187 * so it is important to keep the active lists LRU_ACTIVE higher in
188 * the array than the corresponding inactive lists, and to keep
189 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
190 *
191 * This has to be kept in sync with the statistics in zone_stat_item
192 * above and the descriptions in vmstat_text in mm/vmstat.c
193 */
194 #define LRU_BASE 0
195 #define LRU_ACTIVE 1
196 #define LRU_FILE 2
197
198 enum lru_list {
199 LRU_INACTIVE_ANON = LRU_BASE,
200 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
201 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
202 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
203 LRU_UNEVICTABLE,
204 NR_LRU_LISTS
205 };
206
207 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
208
209 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
210
211 static inline int is_file_lru(enum lru_list lru)
212 {
213 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
214 }
215
216 static inline int is_active_lru(enum lru_list lru)
217 {
218 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
219 }
220
221 struct zone_reclaim_stat {
222 /*
223 * The pageout code in vmscan.c keeps track of how many of the
224 * mem/swap backed and file backed pages are referenced.
225 * The higher the rotated/scanned ratio, the more valuable
226 * that cache is.
227 *
228 * The anon LRU stats live in [0], file LRU stats in [1]
229 */
230 unsigned long recent_rotated[2];
231 unsigned long recent_scanned[2];
232 };
233
234 struct lruvec {
235 struct list_head lists[NR_LRU_LISTS];
236 struct zone_reclaim_stat reclaim_stat;
237 /* Evictions & activations on the inactive file list */
238 atomic_long_t inactive_age;
239 /* Refaults at the time of last reclaim cycle */
240 unsigned long refaults;
241 #ifdef CONFIG_MEMCG
242 struct pglist_data *pgdat;
243 #endif
244 };
245
246 /* Mask used at gathering information at once (see memcontrol.c) */
247 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
248 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
249 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
250
251 /* Isolate unmapped file */
252 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
253 /* Isolate for asynchronous migration */
254 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
255 /* Isolate unevictable pages */
256 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
257
258 /* LRU Isolation modes. */
259 typedef unsigned __bitwise isolate_mode_t;
260
261 enum zone_watermarks {
262 WMARK_MIN,
263 WMARK_LOW,
264 WMARK_HIGH,
265 NR_WMARK
266 };
267
268 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
269 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
270 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
271
272 struct per_cpu_pages {
273 int count; /* number of pages in the list */
274 int high; /* high watermark, emptying needed */
275 int batch; /* chunk size for buddy add/remove */
276
277 /* Lists of pages, one per migrate type stored on the pcp-lists */
278 struct list_head lists[MIGRATE_PCPTYPES];
279 };
280
281 struct per_cpu_pageset {
282 struct per_cpu_pages pcp;
283 #ifdef CONFIG_NUMA
284 s8 expire;
285 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
286 #endif
287 #ifdef CONFIG_SMP
288 s8 stat_threshold;
289 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
290 #endif
291 };
292
293 struct per_cpu_nodestat {
294 s8 stat_threshold;
295 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
296 };
297
298 #endif /* !__GENERATING_BOUNDS.H */
299
300 enum zone_type {
301 #ifdef CONFIG_ZONE_DMA
302 /*
303 * ZONE_DMA is used when there are devices that are not able
304 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
305 * carve out the portion of memory that is needed for these devices.
306 * The range is arch specific.
307 *
308 * Some examples
309 *
310 * Architecture Limit
311 * ---------------------------
312 * parisc, ia64, sparc <4G
313 * s390 <2G
314 * arm Various
315 * alpha Unlimited or 0-16MB.
316 *
317 * i386, x86_64 and multiple other arches
318 * <16M.
319 */
320 ZONE_DMA,
321 #endif
322 #ifdef CONFIG_ZONE_DMA32
323 /*
324 * x86_64 needs two ZONE_DMAs because it supports devices that are
325 * only able to do DMA to the lower 16M but also 32 bit devices that
326 * can only do DMA areas below 4G.
327 */
328 ZONE_DMA32,
329 #endif
330 /*
331 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
332 * performed on pages in ZONE_NORMAL if the DMA devices support
333 * transfers to all addressable memory.
334 */
335 ZONE_NORMAL,
336 #ifdef CONFIG_HIGHMEM
337 /*
338 * A memory area that is only addressable by the kernel through
339 * mapping portions into its own address space. This is for example
340 * used by i386 to allow the kernel to address the memory beyond
341 * 900MB. The kernel will set up special mappings (page
342 * table entries on i386) for each page that the kernel needs to
343 * access.
344 */
345 ZONE_HIGHMEM,
346 #endif
347 ZONE_MOVABLE,
348 #ifdef CONFIG_ZONE_DEVICE
349 ZONE_DEVICE,
350 #endif
351 __MAX_NR_ZONES
352
353 };
354
355 #ifndef __GENERATING_BOUNDS_H
356
357 struct zone {
358 /* Read-mostly fields */
359
360 /* zone watermarks, access with *_wmark_pages(zone) macros */
361 unsigned long watermark[NR_WMARK];
362
363 unsigned long nr_reserved_highatomic;
364
365 /*
366 * We don't know if the memory that we're going to allocate will be
367 * freeable or/and it will be released eventually, so to avoid totally
368 * wasting several GB of ram we must reserve some of the lower zone
369 * memory (otherwise we risk to run OOM on the lower zones despite
370 * there being tons of freeable ram on the higher zones). This array is
371 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
372 * changes.
373 */
374 long lowmem_reserve[MAX_NR_ZONES];
375
376 #ifdef CONFIG_NUMA
377 int node;
378 #endif
379 struct pglist_data *zone_pgdat;
380 struct per_cpu_pageset __percpu *pageset;
381
382 #ifndef CONFIG_SPARSEMEM
383 /*
384 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
385 * In SPARSEMEM, this map is stored in struct mem_section
386 */
387 unsigned long *pageblock_flags;
388 #endif /* CONFIG_SPARSEMEM */
389
390 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
391 unsigned long zone_start_pfn;
392
393 /*
394 * spanned_pages is the total pages spanned by the zone, including
395 * holes, which is calculated as:
396 * spanned_pages = zone_end_pfn - zone_start_pfn;
397 *
398 * present_pages is physical pages existing within the zone, which
399 * is calculated as:
400 * present_pages = spanned_pages - absent_pages(pages in holes);
401 *
402 * managed_pages is present pages managed by the buddy system, which
403 * is calculated as (reserved_pages includes pages allocated by the
404 * bootmem allocator):
405 * managed_pages = present_pages - reserved_pages;
406 *
407 * So present_pages may be used by memory hotplug or memory power
408 * management logic to figure out unmanaged pages by checking
409 * (present_pages - managed_pages). And managed_pages should be used
410 * by page allocator and vm scanner to calculate all kinds of watermarks
411 * and thresholds.
412 *
413 * Locking rules:
414 *
415 * zone_start_pfn and spanned_pages are protected by span_seqlock.
416 * It is a seqlock because it has to be read outside of zone->lock,
417 * and it is done in the main allocator path. But, it is written
418 * quite infrequently.
419 *
420 * The span_seq lock is declared along with zone->lock because it is
421 * frequently read in proximity to zone->lock. It's good to
422 * give them a chance of being in the same cacheline.
423 *
424 * Write access to present_pages at runtime should be protected by
425 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
426 * present_pages should get_online_mems() to get a stable value.
427 *
428 * Read access to managed_pages should be safe because it's unsigned
429 * long. Write access to zone->managed_pages and totalram_pages are
430 * protected by managed_page_count_lock at runtime. Idealy only
431 * adjust_managed_page_count() should be used instead of directly
432 * touching zone->managed_pages and totalram_pages.
433 */
434 unsigned long managed_pages;
435 unsigned long spanned_pages;
436 unsigned long present_pages;
437
438 const char *name;
439
440 #ifdef CONFIG_MEMORY_ISOLATION
441 /*
442 * Number of isolated pageblock. It is used to solve incorrect
443 * freepage counting problem due to racy retrieving migratetype
444 * of pageblock. Protected by zone->lock.
445 */
446 unsigned long nr_isolate_pageblock;
447 #endif
448
449 #ifdef CONFIG_MEMORY_HOTPLUG
450 /* see spanned/present_pages for more description */
451 seqlock_t span_seqlock;
452 #endif
453
454 int initialized;
455
456 /* Write-intensive fields used from the page allocator */
457 ZONE_PADDING(_pad1_)
458
459 /* free areas of different sizes */
460 struct free_area free_area[MAX_ORDER];
461
462 /* zone flags, see below */
463 unsigned long flags;
464
465 /* Primarily protects free_area */
466 spinlock_t lock;
467
468 /* Write-intensive fields used by compaction and vmstats. */
469 ZONE_PADDING(_pad2_)
470
471 /*
472 * When free pages are below this point, additional steps are taken
473 * when reading the number of free pages to avoid per-cpu counter
474 * drift allowing watermarks to be breached
475 */
476 unsigned long percpu_drift_mark;
477
478 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
479 /* pfn where compaction free scanner should start */
480 unsigned long compact_cached_free_pfn;
481 /* pfn where async and sync compaction migration scanner should start */
482 unsigned long compact_cached_migrate_pfn[2];
483 #endif
484
485 #ifdef CONFIG_COMPACTION
486 /*
487 * On compaction failure, 1<<compact_defer_shift compactions
488 * are skipped before trying again. The number attempted since
489 * last failure is tracked with compact_considered.
490 */
491 unsigned int compact_considered;
492 unsigned int compact_defer_shift;
493 int compact_order_failed;
494 #endif
495
496 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
497 /* Set to true when the PG_migrate_skip bits should be cleared */
498 bool compact_blockskip_flush;
499 #endif
500
501 bool contiguous;
502
503 ZONE_PADDING(_pad3_)
504 /* Zone statistics */
505 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
506 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
507 } ____cacheline_internodealigned_in_smp;
508
509 enum pgdat_flags {
510 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
511 * a congested BDI
512 */
513 PGDAT_DIRTY, /* reclaim scanning has recently found
514 * many dirty file pages at the tail
515 * of the LRU.
516 */
517 PGDAT_WRITEBACK, /* reclaim scanning has recently found
518 * many pages under writeback
519 */
520 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
521 };
522
523 static inline unsigned long zone_end_pfn(const struct zone *zone)
524 {
525 return zone->zone_start_pfn + zone->spanned_pages;
526 }
527
528 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
529 {
530 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
531 }
532
533 static inline bool zone_is_initialized(struct zone *zone)
534 {
535 return zone->initialized;
536 }
537
538 static inline bool zone_is_empty(struct zone *zone)
539 {
540 return zone->spanned_pages == 0;
541 }
542
543 /*
544 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
545 * intersection with the given zone
546 */
547 static inline bool zone_intersects(struct zone *zone,
548 unsigned long start_pfn, unsigned long nr_pages)
549 {
550 if (zone_is_empty(zone))
551 return false;
552 if (start_pfn >= zone_end_pfn(zone) ||
553 start_pfn + nr_pages <= zone->zone_start_pfn)
554 return false;
555
556 return true;
557 }
558
559 /*
560 * The "priority" of VM scanning is how much of the queues we will scan in one
561 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
562 * queues ("queue_length >> 12") during an aging round.
563 */
564 #define DEF_PRIORITY 12
565
566 /* Maximum number of zones on a zonelist */
567 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
568
569 enum {
570 ZONELIST_FALLBACK, /* zonelist with fallback */
571 #ifdef CONFIG_NUMA
572 /*
573 * The NUMA zonelists are doubled because we need zonelists that
574 * restrict the allocations to a single node for __GFP_THISNODE.
575 */
576 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
577 #endif
578 MAX_ZONELISTS
579 };
580
581 /*
582 * This struct contains information about a zone in a zonelist. It is stored
583 * here to avoid dereferences into large structures and lookups of tables
584 */
585 struct zoneref {
586 struct zone *zone; /* Pointer to actual zone */
587 int zone_idx; /* zone_idx(zoneref->zone) */
588 };
589
590 /*
591 * One allocation request operates on a zonelist. A zonelist
592 * is a list of zones, the first one is the 'goal' of the
593 * allocation, the other zones are fallback zones, in decreasing
594 * priority.
595 *
596 * To speed the reading of the zonelist, the zonerefs contain the zone index
597 * of the entry being read. Helper functions to access information given
598 * a struct zoneref are
599 *
600 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
601 * zonelist_zone_idx() - Return the index of the zone for an entry
602 * zonelist_node_idx() - Return the index of the node for an entry
603 */
604 struct zonelist {
605 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
606 };
607
608 #ifndef CONFIG_DISCONTIGMEM
609 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
610 extern struct page *mem_map;
611 #endif
612
613 /*
614 * On NUMA machines, each NUMA node would have a pg_data_t to describe
615 * it's memory layout. On UMA machines there is a single pglist_data which
616 * describes the whole memory.
617 *
618 * Memory statistics and page replacement data structures are maintained on a
619 * per-zone basis.
620 */
621 struct bootmem_data;
622 typedef struct pglist_data {
623 struct zone node_zones[MAX_NR_ZONES];
624 struct zonelist node_zonelists[MAX_ZONELISTS];
625 int nr_zones;
626 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
627 struct page *node_mem_map;
628 #ifdef CONFIG_PAGE_EXTENSION
629 struct page_ext *node_page_ext;
630 #endif
631 #endif
632 #ifndef CONFIG_NO_BOOTMEM
633 struct bootmem_data *bdata;
634 #endif
635 #ifdef CONFIG_MEMORY_HOTPLUG
636 /*
637 * Must be held any time you expect node_start_pfn, node_present_pages
638 * or node_spanned_pages stay constant. Holding this will also
639 * guarantee that any pfn_valid() stays that way.
640 *
641 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
642 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
643 *
644 * Nests above zone->lock and zone->span_seqlock
645 */
646 spinlock_t node_size_lock;
647 #endif
648 unsigned long node_start_pfn;
649 unsigned long node_present_pages; /* total number of physical pages */
650 unsigned long node_spanned_pages; /* total size of physical page
651 range, including holes */
652 int node_id;
653 wait_queue_head_t kswapd_wait;
654 wait_queue_head_t pfmemalloc_wait;
655 struct task_struct *kswapd; /* Protected by
656 mem_hotplug_begin/end() */
657 int kswapd_order;
658 enum zone_type kswapd_classzone_idx;
659
660 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
661
662 #ifdef CONFIG_COMPACTION
663 int kcompactd_max_order;
664 enum zone_type kcompactd_classzone_idx;
665 wait_queue_head_t kcompactd_wait;
666 struct task_struct *kcompactd;
667 #endif
668 #ifdef CONFIG_NUMA_BALANCING
669 /* Lock serializing the migrate rate limiting window */
670 spinlock_t numabalancing_migrate_lock;
671
672 /* Rate limiting time interval */
673 unsigned long numabalancing_migrate_next_window;
674
675 /* Number of pages migrated during the rate limiting time interval */
676 unsigned long numabalancing_migrate_nr_pages;
677 #endif
678 /*
679 * This is a per-node reserve of pages that are not available
680 * to userspace allocations.
681 */
682 unsigned long totalreserve_pages;
683
684 #ifdef CONFIG_NUMA
685 /*
686 * zone reclaim becomes active if more unmapped pages exist.
687 */
688 unsigned long min_unmapped_pages;
689 unsigned long min_slab_pages;
690 #endif /* CONFIG_NUMA */
691
692 /* Write-intensive fields used by page reclaim */
693 ZONE_PADDING(_pad1_)
694 spinlock_t lru_lock;
695
696 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
697 /*
698 * If memory initialisation on large machines is deferred then this
699 * is the first PFN that needs to be initialised.
700 */
701 unsigned long first_deferred_pfn;
702 unsigned long static_init_size;
703 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
704
705 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
706 spinlock_t split_queue_lock;
707 struct list_head split_queue;
708 unsigned long split_queue_len;
709 #endif
710
711 /* Fields commonly accessed by the page reclaim scanner */
712 struct lruvec lruvec;
713
714 /*
715 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
716 * this node's LRU. Maintained by the pageout code.
717 */
718 unsigned int inactive_ratio;
719
720 unsigned long flags;
721
722 ZONE_PADDING(_pad2_)
723
724 /* Per-node vmstats */
725 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
726 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
727 } pg_data_t;
728
729 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
730 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
731 #ifdef CONFIG_FLAT_NODE_MEM_MAP
732 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
733 #else
734 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
735 #endif
736 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
737
738 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
739 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
740 static inline spinlock_t *zone_lru_lock(struct zone *zone)
741 {
742 return &zone->zone_pgdat->lru_lock;
743 }
744
745 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
746 {
747 return &pgdat->lruvec;
748 }
749
750 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
751 {
752 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
753 }
754
755 static inline bool pgdat_is_empty(pg_data_t *pgdat)
756 {
757 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
758 }
759
760 static inline int zone_id(const struct zone *zone)
761 {
762 struct pglist_data *pgdat = zone->zone_pgdat;
763
764 return zone - pgdat->node_zones;
765 }
766
767 #ifdef CONFIG_ZONE_DEVICE
768 static inline bool is_dev_zone(const struct zone *zone)
769 {
770 return zone_id(zone) == ZONE_DEVICE;
771 }
772 #else
773 static inline bool is_dev_zone(const struct zone *zone)
774 {
775 return false;
776 }
777 #endif
778
779 #include <linux/memory_hotplug.h>
780
781 void build_all_zonelists(pg_data_t *pgdat);
782 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
783 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
784 int classzone_idx, unsigned int alloc_flags,
785 long free_pages);
786 bool zone_watermark_ok(struct zone *z, unsigned int order,
787 unsigned long mark, int classzone_idx,
788 unsigned int alloc_flags);
789 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
790 unsigned long mark, int classzone_idx);
791 enum memmap_context {
792 MEMMAP_EARLY,
793 MEMMAP_HOTPLUG,
794 };
795 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
796 unsigned long size);
797
798 extern void lruvec_init(struct lruvec *lruvec);
799
800 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
801 {
802 #ifdef CONFIG_MEMCG
803 return lruvec->pgdat;
804 #else
805 return container_of(lruvec, struct pglist_data, lruvec);
806 #endif
807 }
808
809 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
810
811 #ifdef CONFIG_HAVE_MEMORY_PRESENT
812 void memory_present(int nid, unsigned long start, unsigned long end);
813 #else
814 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
815 #endif
816
817 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
818 int local_memory_node(int node_id);
819 #else
820 static inline int local_memory_node(int node_id) { return node_id; };
821 #endif
822
823 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
824 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
825 #endif
826
827 /*
828 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
829 */
830 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
831
832 /*
833 * Returns true if a zone has pages managed by the buddy allocator.
834 * All the reclaim decisions have to use this function rather than
835 * populated_zone(). If the whole zone is reserved then we can easily
836 * end up with populated_zone() && !managed_zone().
837 */
838 static inline bool managed_zone(struct zone *zone)
839 {
840 return zone->managed_pages;
841 }
842
843 /* Returns true if a zone has memory */
844 static inline bool populated_zone(struct zone *zone)
845 {
846 return zone->present_pages;
847 }
848
849 extern int movable_zone;
850
851 #ifdef CONFIG_HIGHMEM
852 static inline int zone_movable_is_highmem(void)
853 {
854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
855 return movable_zone == ZONE_HIGHMEM;
856 #else
857 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
858 #endif
859 }
860 #endif
861
862 static inline int is_highmem_idx(enum zone_type idx)
863 {
864 #ifdef CONFIG_HIGHMEM
865 return (idx == ZONE_HIGHMEM ||
866 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
867 #else
868 return 0;
869 #endif
870 }
871
872 /**
873 * is_highmem - helper function to quickly check if a struct zone is a
874 * highmem zone or not. This is an attempt to keep references
875 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
876 * @zone - pointer to struct zone variable
877 */
878 static inline int is_highmem(struct zone *zone)
879 {
880 #ifdef CONFIG_HIGHMEM
881 return is_highmem_idx(zone_idx(zone));
882 #else
883 return 0;
884 #endif
885 }
886
887 /* These two functions are used to setup the per zone pages min values */
888 struct ctl_table;
889 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
890 void __user *, size_t *, loff_t *);
891 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
892 void __user *, size_t *, loff_t *);
893 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
894 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
895 void __user *, size_t *, loff_t *);
896 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
897 void __user *, size_t *, loff_t *);
898 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
899 void __user *, size_t *, loff_t *);
900 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
901 void __user *, size_t *, loff_t *);
902
903 extern int numa_zonelist_order_handler(struct ctl_table *, int,
904 void __user *, size_t *, loff_t *);
905 extern char numa_zonelist_order[];
906 #define NUMA_ZONELIST_ORDER_LEN 16
907
908 #ifndef CONFIG_NEED_MULTIPLE_NODES
909
910 extern struct pglist_data contig_page_data;
911 #define NODE_DATA(nid) (&contig_page_data)
912 #define NODE_MEM_MAP(nid) mem_map
913
914 #else /* CONFIG_NEED_MULTIPLE_NODES */
915
916 #include <asm/mmzone.h>
917
918 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
919
920 extern struct pglist_data *first_online_pgdat(void);
921 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
922 extern struct zone *next_zone(struct zone *zone);
923
924 /**
925 * for_each_online_pgdat - helper macro to iterate over all online nodes
926 * @pgdat - pointer to a pg_data_t variable
927 */
928 #define for_each_online_pgdat(pgdat) \
929 for (pgdat = first_online_pgdat(); \
930 pgdat; \
931 pgdat = next_online_pgdat(pgdat))
932 /**
933 * for_each_zone - helper macro to iterate over all memory zones
934 * @zone - pointer to struct zone variable
935 *
936 * The user only needs to declare the zone variable, for_each_zone
937 * fills it in.
938 */
939 #define for_each_zone(zone) \
940 for (zone = (first_online_pgdat())->node_zones; \
941 zone; \
942 zone = next_zone(zone))
943
944 #define for_each_populated_zone(zone) \
945 for (zone = (first_online_pgdat())->node_zones; \
946 zone; \
947 zone = next_zone(zone)) \
948 if (!populated_zone(zone)) \
949 ; /* do nothing */ \
950 else
951
952 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
953 {
954 return zoneref->zone;
955 }
956
957 static inline int zonelist_zone_idx(struct zoneref *zoneref)
958 {
959 return zoneref->zone_idx;
960 }
961
962 static inline int zonelist_node_idx(struct zoneref *zoneref)
963 {
964 #ifdef CONFIG_NUMA
965 /* zone_to_nid not available in this context */
966 return zoneref->zone->node;
967 #else
968 return 0;
969 #endif /* CONFIG_NUMA */
970 }
971
972 struct zoneref *__next_zones_zonelist(struct zoneref *z,
973 enum zone_type highest_zoneidx,
974 nodemask_t *nodes);
975
976 /**
977 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
978 * @z - The cursor used as a starting point for the search
979 * @highest_zoneidx - The zone index of the highest zone to return
980 * @nodes - An optional nodemask to filter the zonelist with
981 *
982 * This function returns the next zone at or below a given zone index that is
983 * within the allowed nodemask using a cursor as the starting point for the
984 * search. The zoneref returned is a cursor that represents the current zone
985 * being examined. It should be advanced by one before calling
986 * next_zones_zonelist again.
987 */
988 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
989 enum zone_type highest_zoneidx,
990 nodemask_t *nodes)
991 {
992 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
993 return z;
994 return __next_zones_zonelist(z, highest_zoneidx, nodes);
995 }
996
997 /**
998 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
999 * @zonelist - The zonelist to search for a suitable zone
1000 * @highest_zoneidx - The zone index of the highest zone to return
1001 * @nodes - An optional nodemask to filter the zonelist with
1002 * @return - Zoneref pointer for the first suitable zone found (see below)
1003 *
1004 * This function returns the first zone at or below a given zone index that is
1005 * within the allowed nodemask. The zoneref returned is a cursor that can be
1006 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1007 * one before calling.
1008 *
1009 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1010 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1011 * update due to cpuset modification.
1012 */
1013 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1014 enum zone_type highest_zoneidx,
1015 nodemask_t *nodes)
1016 {
1017 return next_zones_zonelist(zonelist->_zonerefs,
1018 highest_zoneidx, nodes);
1019 }
1020
1021 /**
1022 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1023 * @zone - The current zone in the iterator
1024 * @z - The current pointer within zonelist->zones being iterated
1025 * @zlist - The zonelist being iterated
1026 * @highidx - The zone index of the highest zone to return
1027 * @nodemask - Nodemask allowed by the allocator
1028 *
1029 * This iterator iterates though all zones at or below a given zone index and
1030 * within a given nodemask
1031 */
1032 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1033 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1034 zone; \
1035 z = next_zones_zonelist(++z, highidx, nodemask), \
1036 zone = zonelist_zone(z))
1037
1038 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1039 for (zone = z->zone; \
1040 zone; \
1041 z = next_zones_zonelist(++z, highidx, nodemask), \
1042 zone = zonelist_zone(z))
1043
1044
1045 /**
1046 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1047 * @zone - The current zone in the iterator
1048 * @z - The current pointer within zonelist->zones being iterated
1049 * @zlist - The zonelist being iterated
1050 * @highidx - The zone index of the highest zone to return
1051 *
1052 * This iterator iterates though all zones at or below a given zone index.
1053 */
1054 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1055 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1056
1057 #ifdef CONFIG_SPARSEMEM
1058 #include <asm/sparsemem.h>
1059 #endif
1060
1061 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1062 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1063 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1064 {
1065 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1066 return 0;
1067 }
1068 #endif
1069
1070 #ifdef CONFIG_FLATMEM
1071 #define pfn_to_nid(pfn) (0)
1072 #endif
1073
1074 #ifdef CONFIG_SPARSEMEM
1075
1076 /*
1077 * SECTION_SHIFT #bits space required to store a section #
1078 *
1079 * PA_SECTION_SHIFT physical address to/from section number
1080 * PFN_SECTION_SHIFT pfn to/from section number
1081 */
1082 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1083 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1084
1085 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1086
1087 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1088 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1089
1090 #define SECTION_BLOCKFLAGS_BITS \
1091 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1092
1093 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1094 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1095 #endif
1096
1097 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1098 {
1099 return pfn >> PFN_SECTION_SHIFT;
1100 }
1101 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1102 {
1103 return sec << PFN_SECTION_SHIFT;
1104 }
1105
1106 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1107 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1108
1109 struct page;
1110 struct page_ext;
1111 struct mem_section {
1112 /*
1113 * This is, logically, a pointer to an array of struct
1114 * pages. However, it is stored with some other magic.
1115 * (see sparse.c::sparse_init_one_section())
1116 *
1117 * Additionally during early boot we encode node id of
1118 * the location of the section here to guide allocation.
1119 * (see sparse.c::memory_present())
1120 *
1121 * Making it a UL at least makes someone do a cast
1122 * before using it wrong.
1123 */
1124 unsigned long section_mem_map;
1125
1126 /* See declaration of similar field in struct zone */
1127 unsigned long *pageblock_flags;
1128 #ifdef CONFIG_PAGE_EXTENSION
1129 /*
1130 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1131 * section. (see page_ext.h about this.)
1132 */
1133 struct page_ext *page_ext;
1134 unsigned long pad;
1135 #endif
1136 /*
1137 * WARNING: mem_section must be a power-of-2 in size for the
1138 * calculation and use of SECTION_ROOT_MASK to make sense.
1139 */
1140 };
1141
1142 #ifdef CONFIG_SPARSEMEM_EXTREME
1143 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1144 #else
1145 #define SECTIONS_PER_ROOT 1
1146 #endif
1147
1148 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1149 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1150 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1151
1152 #ifdef CONFIG_SPARSEMEM_EXTREME
1153 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1154 #else
1155 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1156 #endif
1157
1158 static inline struct mem_section *__nr_to_section(unsigned long nr)
1159 {
1160 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1161 return NULL;
1162 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1163 }
1164 extern int __section_nr(struct mem_section* ms);
1165 extern unsigned long usemap_size(void);
1166
1167 /*
1168 * We use the lower bits of the mem_map pointer to store
1169 * a little bit of information. There should be at least
1170 * 3 bits here due to 32-bit alignment.
1171 */
1172 #define SECTION_MARKED_PRESENT (1UL<<0)
1173 #define SECTION_HAS_MEM_MAP (1UL<<1)
1174 #define SECTION_IS_ONLINE (1UL<<2)
1175 #define SECTION_MAP_LAST_BIT (1UL<<3)
1176 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1177 #define SECTION_NID_SHIFT 3
1178
1179 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1180 {
1181 unsigned long map = section->section_mem_map;
1182 map &= SECTION_MAP_MASK;
1183 return (struct page *)map;
1184 }
1185
1186 static inline int present_section(struct mem_section *section)
1187 {
1188 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1189 }
1190
1191 static inline int present_section_nr(unsigned long nr)
1192 {
1193 return present_section(__nr_to_section(nr));
1194 }
1195
1196 static inline int valid_section(struct mem_section *section)
1197 {
1198 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1199 }
1200
1201 static inline int valid_section_nr(unsigned long nr)
1202 {
1203 return valid_section(__nr_to_section(nr));
1204 }
1205
1206 static inline int online_section(struct mem_section *section)
1207 {
1208 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1209 }
1210
1211 static inline int online_section_nr(unsigned long nr)
1212 {
1213 return online_section(__nr_to_section(nr));
1214 }
1215
1216 #ifdef CONFIG_MEMORY_HOTPLUG
1217 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1218 #ifdef CONFIG_MEMORY_HOTREMOVE
1219 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1220 #endif
1221 #endif
1222
1223 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1224 {
1225 return __nr_to_section(pfn_to_section_nr(pfn));
1226 }
1227
1228 extern int __highest_present_section_nr;
1229
1230 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1231 static inline int pfn_valid(unsigned long pfn)
1232 {
1233 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1234 return 0;
1235 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1236 }
1237 #endif
1238
1239 static inline int pfn_present(unsigned long pfn)
1240 {
1241 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1242 return 0;
1243 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1244 }
1245
1246 /*
1247 * These are _only_ used during initialisation, therefore they
1248 * can use __initdata ... They could have names to indicate
1249 * this restriction.
1250 */
1251 #ifdef CONFIG_NUMA
1252 #define pfn_to_nid(pfn) \
1253 ({ \
1254 unsigned long __pfn_to_nid_pfn = (pfn); \
1255 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1256 })
1257 #else
1258 #define pfn_to_nid(pfn) (0)
1259 #endif
1260
1261 #define early_pfn_valid(pfn) pfn_valid(pfn)
1262 void sparse_init(void);
1263 #else
1264 #define sparse_init() do {} while (0)
1265 #define sparse_index_init(_sec, _nid) do {} while (0)
1266 #endif /* CONFIG_SPARSEMEM */
1267
1268 /*
1269 * During memory init memblocks map pfns to nids. The search is expensive and
1270 * this caches recent lookups. The implementation of __early_pfn_to_nid
1271 * may treat start/end as pfns or sections.
1272 */
1273 struct mminit_pfnnid_cache {
1274 unsigned long last_start;
1275 unsigned long last_end;
1276 int last_nid;
1277 };
1278
1279 #ifndef early_pfn_valid
1280 #define early_pfn_valid(pfn) (1)
1281 #endif
1282
1283 void memory_present(int nid, unsigned long start, unsigned long end);
1284 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1285
1286 /*
1287 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1288 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1289 * pfn_valid_within() should be used in this case; we optimise this away
1290 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1291 */
1292 #ifdef CONFIG_HOLES_IN_ZONE
1293 #define pfn_valid_within(pfn) pfn_valid(pfn)
1294 #else
1295 #define pfn_valid_within(pfn) (1)
1296 #endif
1297
1298 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1299 /*
1300 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1301 * associated with it or not. This means that a struct page exists for this
1302 * pfn. The caller cannot assume the page is fully initialized in general.
1303 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1304 * will ensure the struct page is fully online and initialized. Special pages
1305 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1306 *
1307 * In FLATMEM, it is expected that holes always have valid memmap as long as
1308 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1309 * that a valid section has a memmap for the entire section.
1310 *
1311 * However, an ARM, and maybe other embedded architectures in the future
1312 * free memmap backing holes to save memory on the assumption the memmap is
1313 * never used. The page_zone linkages are then broken even though pfn_valid()
1314 * returns true. A walker of the full memmap must then do this additional
1315 * check to ensure the memmap they are looking at is sane by making sure
1316 * the zone and PFN linkages are still valid. This is expensive, but walkers
1317 * of the full memmap are extremely rare.
1318 */
1319 bool memmap_valid_within(unsigned long pfn,
1320 struct page *page, struct zone *zone);
1321 #else
1322 static inline bool memmap_valid_within(unsigned long pfn,
1323 struct page *page, struct zone *zone)
1324 {
1325 return true;
1326 }
1327 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1328
1329 #endif /* !__GENERATING_BOUNDS.H */
1330 #endif /* !__ASSEMBLY__ */
1331 #endif /* _LINUX_MMZONE_H */