]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mmzone.h
ceb86e9e14218ea81a342c23c40594a3dd64caaa
[mirror_ubuntu-artful-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum migratetype {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72 #else
73 # define is_migrate_cma(migratetype) false
74 # define is_migrate_cma_page(_page) false
75 #endif
76
77 static inline bool is_migrate_movable(int mt)
78 {
79 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
80 }
81
82 #define for_each_migratetype_order(order, type) \
83 for (order = 0; order < MAX_ORDER; order++) \
84 for (type = 0; type < MIGRATE_TYPES; type++)
85
86 extern int page_group_by_mobility_disabled;
87
88 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
89 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
90
91 #define get_pageblock_migratetype(page) \
92 get_pfnblock_flags_mask(page, page_to_pfn(page), \
93 PB_migrate_end, MIGRATETYPE_MASK)
94
95 struct free_area {
96 struct list_head free_list[MIGRATE_TYPES];
97 unsigned long nr_free;
98 };
99
100 struct pglist_data;
101
102 /*
103 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
104 * So add a wild amount of padding here to ensure that they fall into separate
105 * cachelines. There are very few zone structures in the machine, so space
106 * consumption is not a concern here.
107 */
108 #if defined(CONFIG_SMP)
109 struct zone_padding {
110 char x[0];
111 } ____cacheline_internodealigned_in_smp;
112 #define ZONE_PADDING(name) struct zone_padding name;
113 #else
114 #define ZONE_PADDING(name)
115 #endif
116
117 enum zone_stat_item {
118 /* First 128 byte cacheline (assuming 64 bit words) */
119 NR_FREE_PAGES,
120 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
121 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
122 NR_ZONE_ACTIVE_ANON,
123 NR_ZONE_INACTIVE_FILE,
124 NR_ZONE_ACTIVE_FILE,
125 NR_ZONE_UNEVICTABLE,
126 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
127 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
128 NR_PAGETABLE, /* used for pagetables */
129 NR_KERNEL_STACK_KB, /* measured in KiB */
130 /* Second 128 byte cacheline */
131 NR_BOUNCE,
132 #if IS_ENABLED(CONFIG_ZSMALLOC)
133 NR_ZSPAGES, /* allocated in zsmalloc */
134 #endif
135 #ifdef CONFIG_NUMA
136 NUMA_HIT, /* allocated in intended node */
137 NUMA_MISS, /* allocated in non intended node */
138 NUMA_FOREIGN, /* was intended here, hit elsewhere */
139 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
140 NUMA_LOCAL, /* allocation from local node */
141 NUMA_OTHER, /* allocation from other node */
142 #endif
143 NR_FREE_CMA_PAGES,
144 NR_VM_ZONE_STAT_ITEMS };
145
146 enum node_stat_item {
147 NR_LRU_BASE,
148 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
149 NR_ACTIVE_ANON, /* " " " " " */
150 NR_INACTIVE_FILE, /* " " " " " */
151 NR_ACTIVE_FILE, /* " " " " " */
152 NR_UNEVICTABLE, /* " " " " " */
153 NR_SLAB_RECLAIMABLE,
154 NR_SLAB_UNRECLAIMABLE,
155 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
156 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
157 WORKINGSET_REFAULT,
158 WORKINGSET_ACTIVATE,
159 WORKINGSET_NODERECLAIM,
160 NR_ANON_MAPPED, /* Mapped anonymous pages */
161 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
162 only modified from process context */
163 NR_FILE_PAGES,
164 NR_FILE_DIRTY,
165 NR_WRITEBACK,
166 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
167 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
168 NR_SHMEM_THPS,
169 NR_SHMEM_PMDMAPPED,
170 NR_ANON_THPS,
171 NR_UNSTABLE_NFS, /* NFS unstable pages */
172 NR_VMSCAN_WRITE,
173 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
174 NR_DIRTIED, /* page dirtyings since bootup */
175 NR_WRITTEN, /* page writings since bootup */
176 NR_VM_NODE_STAT_ITEMS
177 };
178
179 /*
180 * We do arithmetic on the LRU lists in various places in the code,
181 * so it is important to keep the active lists LRU_ACTIVE higher in
182 * the array than the corresponding inactive lists, and to keep
183 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
184 *
185 * This has to be kept in sync with the statistics in zone_stat_item
186 * above and the descriptions in vmstat_text in mm/vmstat.c
187 */
188 #define LRU_BASE 0
189 #define LRU_ACTIVE 1
190 #define LRU_FILE 2
191
192 enum lru_list {
193 LRU_INACTIVE_ANON = LRU_BASE,
194 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
195 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
196 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
197 LRU_UNEVICTABLE,
198 NR_LRU_LISTS
199 };
200
201 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
202
203 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
204
205 static inline int is_file_lru(enum lru_list lru)
206 {
207 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
208 }
209
210 static inline int is_active_lru(enum lru_list lru)
211 {
212 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
213 }
214
215 struct zone_reclaim_stat {
216 /*
217 * The pageout code in vmscan.c keeps track of how many of the
218 * mem/swap backed and file backed pages are referenced.
219 * The higher the rotated/scanned ratio, the more valuable
220 * that cache is.
221 *
222 * The anon LRU stats live in [0], file LRU stats in [1]
223 */
224 unsigned long recent_rotated[2];
225 unsigned long recent_scanned[2];
226 };
227
228 struct lruvec {
229 struct list_head lists[NR_LRU_LISTS];
230 struct zone_reclaim_stat reclaim_stat;
231 /* Evictions & activations on the inactive file list */
232 atomic_long_t inactive_age;
233 /* Refaults at the time of last reclaim cycle */
234 unsigned long refaults;
235 #ifdef CONFIG_MEMCG
236 struct pglist_data *pgdat;
237 #endif
238 };
239
240 /* Mask used at gathering information at once (see memcontrol.c) */
241 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
242 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
243 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
244
245 /* Isolate unmapped file */
246 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
247 /* Isolate for asynchronous migration */
248 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
249 /* Isolate unevictable pages */
250 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
251
252 /* LRU Isolation modes. */
253 typedef unsigned __bitwise isolate_mode_t;
254
255 enum zone_watermarks {
256 WMARK_MIN,
257 WMARK_LOW,
258 WMARK_HIGH,
259 NR_WMARK
260 };
261
262 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
263 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
264 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
265
266 struct per_cpu_pages {
267 int count; /* number of pages in the list */
268 int high; /* high watermark, emptying needed */
269 int batch; /* chunk size for buddy add/remove */
270
271 /* Lists of pages, one per migrate type stored on the pcp-lists */
272 struct list_head lists[MIGRATE_PCPTYPES];
273 };
274
275 struct per_cpu_pageset {
276 struct per_cpu_pages pcp;
277 #ifdef CONFIG_NUMA
278 s8 expire;
279 #endif
280 #ifdef CONFIG_SMP
281 s8 stat_threshold;
282 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
283 #endif
284 };
285
286 struct per_cpu_nodestat {
287 s8 stat_threshold;
288 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
289 };
290
291 #endif /* !__GENERATING_BOUNDS.H */
292
293 enum zone_type {
294 #ifdef CONFIG_ZONE_DMA
295 /*
296 * ZONE_DMA is used when there are devices that are not able
297 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
298 * carve out the portion of memory that is needed for these devices.
299 * The range is arch specific.
300 *
301 * Some examples
302 *
303 * Architecture Limit
304 * ---------------------------
305 * parisc, ia64, sparc <4G
306 * s390 <2G
307 * arm Various
308 * alpha Unlimited or 0-16MB.
309 *
310 * i386, x86_64 and multiple other arches
311 * <16M.
312 */
313 ZONE_DMA,
314 #endif
315 #ifdef CONFIG_ZONE_DMA32
316 /*
317 * x86_64 needs two ZONE_DMAs because it supports devices that are
318 * only able to do DMA to the lower 16M but also 32 bit devices that
319 * can only do DMA areas below 4G.
320 */
321 ZONE_DMA32,
322 #endif
323 /*
324 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
325 * performed on pages in ZONE_NORMAL if the DMA devices support
326 * transfers to all addressable memory.
327 */
328 ZONE_NORMAL,
329 #ifdef CONFIG_HIGHMEM
330 /*
331 * A memory area that is only addressable by the kernel through
332 * mapping portions into its own address space. This is for example
333 * used by i386 to allow the kernel to address the memory beyond
334 * 900MB. The kernel will set up special mappings (page
335 * table entries on i386) for each page that the kernel needs to
336 * access.
337 */
338 ZONE_HIGHMEM,
339 #endif
340 ZONE_MOVABLE,
341 #ifdef CONFIG_ZONE_DEVICE
342 ZONE_DEVICE,
343 #endif
344 __MAX_NR_ZONES
345
346 };
347
348 #ifndef __GENERATING_BOUNDS_H
349
350 struct zone {
351 /* Read-mostly fields */
352
353 /* zone watermarks, access with *_wmark_pages(zone) macros */
354 unsigned long watermark[NR_WMARK];
355
356 unsigned long nr_reserved_highatomic;
357
358 /*
359 * We don't know if the memory that we're going to allocate will be
360 * freeable or/and it will be released eventually, so to avoid totally
361 * wasting several GB of ram we must reserve some of the lower zone
362 * memory (otherwise we risk to run OOM on the lower zones despite
363 * there being tons of freeable ram on the higher zones). This array is
364 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
365 * changes.
366 */
367 long lowmem_reserve[MAX_NR_ZONES];
368
369 #ifdef CONFIG_NUMA
370 int node;
371 #endif
372 struct pglist_data *zone_pgdat;
373 struct per_cpu_pageset __percpu *pageset;
374
375 #ifndef CONFIG_SPARSEMEM
376 /*
377 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
378 * In SPARSEMEM, this map is stored in struct mem_section
379 */
380 unsigned long *pageblock_flags;
381 #endif /* CONFIG_SPARSEMEM */
382
383 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
384 unsigned long zone_start_pfn;
385
386 /*
387 * spanned_pages is the total pages spanned by the zone, including
388 * holes, which is calculated as:
389 * spanned_pages = zone_end_pfn - zone_start_pfn;
390 *
391 * present_pages is physical pages existing within the zone, which
392 * is calculated as:
393 * present_pages = spanned_pages - absent_pages(pages in holes);
394 *
395 * managed_pages is present pages managed by the buddy system, which
396 * is calculated as (reserved_pages includes pages allocated by the
397 * bootmem allocator):
398 * managed_pages = present_pages - reserved_pages;
399 *
400 * So present_pages may be used by memory hotplug or memory power
401 * management logic to figure out unmanaged pages by checking
402 * (present_pages - managed_pages). And managed_pages should be used
403 * by page allocator and vm scanner to calculate all kinds of watermarks
404 * and thresholds.
405 *
406 * Locking rules:
407 *
408 * zone_start_pfn and spanned_pages are protected by span_seqlock.
409 * It is a seqlock because it has to be read outside of zone->lock,
410 * and it is done in the main allocator path. But, it is written
411 * quite infrequently.
412 *
413 * The span_seq lock is declared along with zone->lock because it is
414 * frequently read in proximity to zone->lock. It's good to
415 * give them a chance of being in the same cacheline.
416 *
417 * Write access to present_pages at runtime should be protected by
418 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
419 * present_pages should get_online_mems() to get a stable value.
420 *
421 * Read access to managed_pages should be safe because it's unsigned
422 * long. Write access to zone->managed_pages and totalram_pages are
423 * protected by managed_page_count_lock at runtime. Idealy only
424 * adjust_managed_page_count() should be used instead of directly
425 * touching zone->managed_pages and totalram_pages.
426 */
427 unsigned long managed_pages;
428 unsigned long spanned_pages;
429 unsigned long present_pages;
430
431 const char *name;
432
433 #ifdef CONFIG_MEMORY_ISOLATION
434 /*
435 * Number of isolated pageblock. It is used to solve incorrect
436 * freepage counting problem due to racy retrieving migratetype
437 * of pageblock. Protected by zone->lock.
438 */
439 unsigned long nr_isolate_pageblock;
440 #endif
441
442 #ifdef CONFIG_MEMORY_HOTPLUG
443 /* see spanned/present_pages for more description */
444 seqlock_t span_seqlock;
445 #endif
446
447 int initialized;
448
449 /* Write-intensive fields used from the page allocator */
450 ZONE_PADDING(_pad1_)
451
452 /* free areas of different sizes */
453 struct free_area free_area[MAX_ORDER];
454
455 /* zone flags, see below */
456 unsigned long flags;
457
458 /* Primarily protects free_area */
459 spinlock_t lock;
460
461 /* Write-intensive fields used by compaction and vmstats. */
462 ZONE_PADDING(_pad2_)
463
464 /*
465 * When free pages are below this point, additional steps are taken
466 * when reading the number of free pages to avoid per-cpu counter
467 * drift allowing watermarks to be breached
468 */
469 unsigned long percpu_drift_mark;
470
471 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
472 /* pfn where compaction free scanner should start */
473 unsigned long compact_cached_free_pfn;
474 /* pfn where async and sync compaction migration scanner should start */
475 unsigned long compact_cached_migrate_pfn[2];
476 #endif
477
478 #ifdef CONFIG_COMPACTION
479 /*
480 * On compaction failure, 1<<compact_defer_shift compactions
481 * are skipped before trying again. The number attempted since
482 * last failure is tracked with compact_considered.
483 */
484 unsigned int compact_considered;
485 unsigned int compact_defer_shift;
486 int compact_order_failed;
487 #endif
488
489 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
490 /* Set to true when the PG_migrate_skip bits should be cleared */
491 bool compact_blockskip_flush;
492 #endif
493
494 bool contiguous;
495
496 ZONE_PADDING(_pad3_)
497 /* Zone statistics */
498 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
499 } ____cacheline_internodealigned_in_smp;
500
501 enum pgdat_flags {
502 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
503 * a congested BDI
504 */
505 PGDAT_DIRTY, /* reclaim scanning has recently found
506 * many dirty file pages at the tail
507 * of the LRU.
508 */
509 PGDAT_WRITEBACK, /* reclaim scanning has recently found
510 * many pages under writeback
511 */
512 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
513 };
514
515 static inline unsigned long zone_end_pfn(const struct zone *zone)
516 {
517 return zone->zone_start_pfn + zone->spanned_pages;
518 }
519
520 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
521 {
522 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
523 }
524
525 static inline bool zone_is_initialized(struct zone *zone)
526 {
527 return zone->initialized;
528 }
529
530 static inline bool zone_is_empty(struct zone *zone)
531 {
532 return zone->spanned_pages == 0;
533 }
534
535 /*
536 * The "priority" of VM scanning is how much of the queues we will scan in one
537 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
538 * queues ("queue_length >> 12") during an aging round.
539 */
540 #define DEF_PRIORITY 12
541
542 /* Maximum number of zones on a zonelist */
543 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
544
545 enum {
546 ZONELIST_FALLBACK, /* zonelist with fallback */
547 #ifdef CONFIG_NUMA
548 /*
549 * The NUMA zonelists are doubled because we need zonelists that
550 * restrict the allocations to a single node for __GFP_THISNODE.
551 */
552 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
553 #endif
554 MAX_ZONELISTS
555 };
556
557 /*
558 * This struct contains information about a zone in a zonelist. It is stored
559 * here to avoid dereferences into large structures and lookups of tables
560 */
561 struct zoneref {
562 struct zone *zone; /* Pointer to actual zone */
563 int zone_idx; /* zone_idx(zoneref->zone) */
564 };
565
566 /*
567 * One allocation request operates on a zonelist. A zonelist
568 * is a list of zones, the first one is the 'goal' of the
569 * allocation, the other zones are fallback zones, in decreasing
570 * priority.
571 *
572 * To speed the reading of the zonelist, the zonerefs contain the zone index
573 * of the entry being read. Helper functions to access information given
574 * a struct zoneref are
575 *
576 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
577 * zonelist_zone_idx() - Return the index of the zone for an entry
578 * zonelist_node_idx() - Return the index of the node for an entry
579 */
580 struct zonelist {
581 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
582 };
583
584 #ifndef CONFIG_DISCONTIGMEM
585 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
586 extern struct page *mem_map;
587 #endif
588
589 /*
590 * On NUMA machines, each NUMA node would have a pg_data_t to describe
591 * it's memory layout. On UMA machines there is a single pglist_data which
592 * describes the whole memory.
593 *
594 * Memory statistics and page replacement data structures are maintained on a
595 * per-zone basis.
596 */
597 struct bootmem_data;
598 typedef struct pglist_data {
599 struct zone node_zones[MAX_NR_ZONES];
600 struct zonelist node_zonelists[MAX_ZONELISTS];
601 int nr_zones;
602 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
603 struct page *node_mem_map;
604 #ifdef CONFIG_PAGE_EXTENSION
605 struct page_ext *node_page_ext;
606 #endif
607 #endif
608 #ifndef CONFIG_NO_BOOTMEM
609 struct bootmem_data *bdata;
610 #endif
611 #ifdef CONFIG_MEMORY_HOTPLUG
612 /*
613 * Must be held any time you expect node_start_pfn, node_present_pages
614 * or node_spanned_pages stay constant. Holding this will also
615 * guarantee that any pfn_valid() stays that way.
616 *
617 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
618 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
619 *
620 * Nests above zone->lock and zone->span_seqlock
621 */
622 spinlock_t node_size_lock;
623 #endif
624 unsigned long node_start_pfn;
625 unsigned long node_present_pages; /* total number of physical pages */
626 unsigned long node_spanned_pages; /* total size of physical page
627 range, including holes */
628 int node_id;
629 wait_queue_head_t kswapd_wait;
630 wait_queue_head_t pfmemalloc_wait;
631 struct task_struct *kswapd; /* Protected by
632 mem_hotplug_begin/end() */
633 int kswapd_order;
634 enum zone_type kswapd_classzone_idx;
635
636 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
637
638 #ifdef CONFIG_COMPACTION
639 int kcompactd_max_order;
640 enum zone_type kcompactd_classzone_idx;
641 wait_queue_head_t kcompactd_wait;
642 struct task_struct *kcompactd;
643 #endif
644 #ifdef CONFIG_NUMA_BALANCING
645 /* Lock serializing the migrate rate limiting window */
646 spinlock_t numabalancing_migrate_lock;
647
648 /* Rate limiting time interval */
649 unsigned long numabalancing_migrate_next_window;
650
651 /* Number of pages migrated during the rate limiting time interval */
652 unsigned long numabalancing_migrate_nr_pages;
653 #endif
654 /*
655 * This is a per-node reserve of pages that are not available
656 * to userspace allocations.
657 */
658 unsigned long totalreserve_pages;
659
660 #ifdef CONFIG_NUMA
661 /*
662 * zone reclaim becomes active if more unmapped pages exist.
663 */
664 unsigned long min_unmapped_pages;
665 unsigned long min_slab_pages;
666 #endif /* CONFIG_NUMA */
667
668 /* Write-intensive fields used by page reclaim */
669 ZONE_PADDING(_pad1_)
670 spinlock_t lru_lock;
671
672 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
673 /*
674 * If memory initialisation on large machines is deferred then this
675 * is the first PFN that needs to be initialised.
676 */
677 unsigned long first_deferred_pfn;
678 unsigned long static_init_size;
679 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
680
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 spinlock_t split_queue_lock;
683 struct list_head split_queue;
684 unsigned long split_queue_len;
685 #endif
686
687 /* Fields commonly accessed by the page reclaim scanner */
688 struct lruvec lruvec;
689
690 /*
691 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
692 * this node's LRU. Maintained by the pageout code.
693 */
694 unsigned int inactive_ratio;
695
696 unsigned long flags;
697
698 ZONE_PADDING(_pad2_)
699
700 /* Per-node vmstats */
701 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
702 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
703 } pg_data_t;
704
705 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
706 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
707 #ifdef CONFIG_FLAT_NODE_MEM_MAP
708 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
709 #else
710 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
711 #endif
712 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
713
714 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
715 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
716 static inline spinlock_t *zone_lru_lock(struct zone *zone)
717 {
718 return &zone->zone_pgdat->lru_lock;
719 }
720
721 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
722 {
723 return &pgdat->lruvec;
724 }
725
726 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
727 {
728 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
729 }
730
731 static inline bool pgdat_is_empty(pg_data_t *pgdat)
732 {
733 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
734 }
735
736 static inline int zone_id(const struct zone *zone)
737 {
738 struct pglist_data *pgdat = zone->zone_pgdat;
739
740 return zone - pgdat->node_zones;
741 }
742
743 #ifdef CONFIG_ZONE_DEVICE
744 static inline bool is_dev_zone(const struct zone *zone)
745 {
746 return zone_id(zone) == ZONE_DEVICE;
747 }
748 #else
749 static inline bool is_dev_zone(const struct zone *zone)
750 {
751 return false;
752 }
753 #endif
754
755 #include <linux/memory_hotplug.h>
756
757 extern struct mutex zonelists_mutex;
758 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
759 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
760 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
761 int classzone_idx, unsigned int alloc_flags,
762 long free_pages);
763 bool zone_watermark_ok(struct zone *z, unsigned int order,
764 unsigned long mark, int classzone_idx,
765 unsigned int alloc_flags);
766 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
767 unsigned long mark, int classzone_idx);
768 enum memmap_context {
769 MEMMAP_EARLY,
770 MEMMAP_HOTPLUG,
771 };
772 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
773 unsigned long size);
774
775 extern void lruvec_init(struct lruvec *lruvec);
776
777 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
778 {
779 #ifdef CONFIG_MEMCG
780 return lruvec->pgdat;
781 #else
782 return container_of(lruvec, struct pglist_data, lruvec);
783 #endif
784 }
785
786 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
787
788 #ifdef CONFIG_HAVE_MEMORY_PRESENT
789 void memory_present(int nid, unsigned long start, unsigned long end);
790 #else
791 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
792 #endif
793
794 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
795 int local_memory_node(int node_id);
796 #else
797 static inline int local_memory_node(int node_id) { return node_id; };
798 #endif
799
800 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
801 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
802 #endif
803
804 /*
805 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
806 */
807 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
808
809 /*
810 * Returns true if a zone has pages managed by the buddy allocator.
811 * All the reclaim decisions have to use this function rather than
812 * populated_zone(). If the whole zone is reserved then we can easily
813 * end up with populated_zone() && !managed_zone().
814 */
815 static inline bool managed_zone(struct zone *zone)
816 {
817 return zone->managed_pages;
818 }
819
820 /* Returns true if a zone has memory */
821 static inline bool populated_zone(struct zone *zone)
822 {
823 return zone->present_pages;
824 }
825
826 extern int movable_zone;
827
828 #ifdef CONFIG_HIGHMEM
829 static inline int zone_movable_is_highmem(void)
830 {
831 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
832 return movable_zone == ZONE_HIGHMEM;
833 #else
834 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
835 #endif
836 }
837 #endif
838
839 static inline int is_highmem_idx(enum zone_type idx)
840 {
841 #ifdef CONFIG_HIGHMEM
842 return (idx == ZONE_HIGHMEM ||
843 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
844 #else
845 return 0;
846 #endif
847 }
848
849 /**
850 * is_highmem - helper function to quickly check if a struct zone is a
851 * highmem zone or not. This is an attempt to keep references
852 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
853 * @zone - pointer to struct zone variable
854 */
855 static inline int is_highmem(struct zone *zone)
856 {
857 #ifdef CONFIG_HIGHMEM
858 return is_highmem_idx(zone_idx(zone));
859 #else
860 return 0;
861 #endif
862 }
863
864 /* These two functions are used to setup the per zone pages min values */
865 struct ctl_table;
866 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
867 void __user *, size_t *, loff_t *);
868 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
869 void __user *, size_t *, loff_t *);
870 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
871 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
872 void __user *, size_t *, loff_t *);
873 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
874 void __user *, size_t *, loff_t *);
875 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
876 void __user *, size_t *, loff_t *);
877 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
878 void __user *, size_t *, loff_t *);
879
880 extern int numa_zonelist_order_handler(struct ctl_table *, int,
881 void __user *, size_t *, loff_t *);
882 extern char numa_zonelist_order[];
883 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
884
885 #ifndef CONFIG_NEED_MULTIPLE_NODES
886
887 extern struct pglist_data contig_page_data;
888 #define NODE_DATA(nid) (&contig_page_data)
889 #define NODE_MEM_MAP(nid) mem_map
890
891 #else /* CONFIG_NEED_MULTIPLE_NODES */
892
893 #include <asm/mmzone.h>
894
895 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
896
897 extern struct pglist_data *first_online_pgdat(void);
898 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
899 extern struct zone *next_zone(struct zone *zone);
900
901 /**
902 * for_each_online_pgdat - helper macro to iterate over all online nodes
903 * @pgdat - pointer to a pg_data_t variable
904 */
905 #define for_each_online_pgdat(pgdat) \
906 for (pgdat = first_online_pgdat(); \
907 pgdat; \
908 pgdat = next_online_pgdat(pgdat))
909 /**
910 * for_each_zone - helper macro to iterate over all memory zones
911 * @zone - pointer to struct zone variable
912 *
913 * The user only needs to declare the zone variable, for_each_zone
914 * fills it in.
915 */
916 #define for_each_zone(zone) \
917 for (zone = (first_online_pgdat())->node_zones; \
918 zone; \
919 zone = next_zone(zone))
920
921 #define for_each_populated_zone(zone) \
922 for (zone = (first_online_pgdat())->node_zones; \
923 zone; \
924 zone = next_zone(zone)) \
925 if (!populated_zone(zone)) \
926 ; /* do nothing */ \
927 else
928
929 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
930 {
931 return zoneref->zone;
932 }
933
934 static inline int zonelist_zone_idx(struct zoneref *zoneref)
935 {
936 return zoneref->zone_idx;
937 }
938
939 static inline int zonelist_node_idx(struct zoneref *zoneref)
940 {
941 #ifdef CONFIG_NUMA
942 /* zone_to_nid not available in this context */
943 return zoneref->zone->node;
944 #else
945 return 0;
946 #endif /* CONFIG_NUMA */
947 }
948
949 struct zoneref *__next_zones_zonelist(struct zoneref *z,
950 enum zone_type highest_zoneidx,
951 nodemask_t *nodes);
952
953 /**
954 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
955 * @z - The cursor used as a starting point for the search
956 * @highest_zoneidx - The zone index of the highest zone to return
957 * @nodes - An optional nodemask to filter the zonelist with
958 *
959 * This function returns the next zone at or below a given zone index that is
960 * within the allowed nodemask using a cursor as the starting point for the
961 * search. The zoneref returned is a cursor that represents the current zone
962 * being examined. It should be advanced by one before calling
963 * next_zones_zonelist again.
964 */
965 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
966 enum zone_type highest_zoneidx,
967 nodemask_t *nodes)
968 {
969 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
970 return z;
971 return __next_zones_zonelist(z, highest_zoneidx, nodes);
972 }
973
974 /**
975 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
976 * @zonelist - The zonelist to search for a suitable zone
977 * @highest_zoneidx - The zone index of the highest zone to return
978 * @nodes - An optional nodemask to filter the zonelist with
979 * @return - Zoneref pointer for the first suitable zone found (see below)
980 *
981 * This function returns the first zone at or below a given zone index that is
982 * within the allowed nodemask. The zoneref returned is a cursor that can be
983 * used to iterate the zonelist with next_zones_zonelist by advancing it by
984 * one before calling.
985 *
986 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
987 * never NULL). This may happen either genuinely, or due to concurrent nodemask
988 * update due to cpuset modification.
989 */
990 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
991 enum zone_type highest_zoneidx,
992 nodemask_t *nodes)
993 {
994 return next_zones_zonelist(zonelist->_zonerefs,
995 highest_zoneidx, nodes);
996 }
997
998 /**
999 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1000 * @zone - The current zone in the iterator
1001 * @z - The current pointer within zonelist->zones being iterated
1002 * @zlist - The zonelist being iterated
1003 * @highidx - The zone index of the highest zone to return
1004 * @nodemask - Nodemask allowed by the allocator
1005 *
1006 * This iterator iterates though all zones at or below a given zone index and
1007 * within a given nodemask
1008 */
1009 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1010 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1011 zone; \
1012 z = next_zones_zonelist(++z, highidx, nodemask), \
1013 zone = zonelist_zone(z))
1014
1015 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1016 for (zone = z->zone; \
1017 zone; \
1018 z = next_zones_zonelist(++z, highidx, nodemask), \
1019 zone = zonelist_zone(z))
1020
1021
1022 /**
1023 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1024 * @zone - The current zone in the iterator
1025 * @z - The current pointer within zonelist->zones being iterated
1026 * @zlist - The zonelist being iterated
1027 * @highidx - The zone index of the highest zone to return
1028 *
1029 * This iterator iterates though all zones at or below a given zone index.
1030 */
1031 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1032 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1033
1034 #ifdef CONFIG_SPARSEMEM
1035 #include <asm/sparsemem.h>
1036 #endif
1037
1038 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1039 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1040 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1041 {
1042 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1043 return 0;
1044 }
1045 #endif
1046
1047 #ifdef CONFIG_FLATMEM
1048 #define pfn_to_nid(pfn) (0)
1049 #endif
1050
1051 #ifdef CONFIG_SPARSEMEM
1052
1053 /*
1054 * SECTION_SHIFT #bits space required to store a section #
1055 *
1056 * PA_SECTION_SHIFT physical address to/from section number
1057 * PFN_SECTION_SHIFT pfn to/from section number
1058 */
1059 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1060 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1061
1062 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1063
1064 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1065 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1066
1067 #define SECTION_BLOCKFLAGS_BITS \
1068 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1069
1070 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1071 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1072 #endif
1073
1074 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1075 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1076
1077 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1078 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1079
1080 struct page;
1081 struct page_ext;
1082 struct mem_section {
1083 /*
1084 * This is, logically, a pointer to an array of struct
1085 * pages. However, it is stored with some other magic.
1086 * (see sparse.c::sparse_init_one_section())
1087 *
1088 * Additionally during early boot we encode node id of
1089 * the location of the section here to guide allocation.
1090 * (see sparse.c::memory_present())
1091 *
1092 * Making it a UL at least makes someone do a cast
1093 * before using it wrong.
1094 */
1095 unsigned long section_mem_map;
1096
1097 /* See declaration of similar field in struct zone */
1098 unsigned long *pageblock_flags;
1099 #ifdef CONFIG_PAGE_EXTENSION
1100 /*
1101 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1102 * section. (see page_ext.h about this.)
1103 */
1104 struct page_ext *page_ext;
1105 unsigned long pad;
1106 #endif
1107 /*
1108 * WARNING: mem_section must be a power-of-2 in size for the
1109 * calculation and use of SECTION_ROOT_MASK to make sense.
1110 */
1111 };
1112
1113 #ifdef CONFIG_SPARSEMEM_EXTREME
1114 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1115 #else
1116 #define SECTIONS_PER_ROOT 1
1117 #endif
1118
1119 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1120 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1121 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1122
1123 #ifdef CONFIG_SPARSEMEM_EXTREME
1124 extern struct mem_section **mem_section;
1125 #else
1126 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1127 #endif
1128
1129 static inline struct mem_section *__nr_to_section(unsigned long nr)
1130 {
1131 #ifdef CONFIG_SPARSEMEM_EXTREME
1132 if (!mem_section)
1133 return NULL;
1134 #endif
1135 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1136 return NULL;
1137 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1138 }
1139 extern int __section_nr(struct mem_section* ms);
1140 extern unsigned long usemap_size(void);
1141
1142 /*
1143 * We use the lower bits of the mem_map pointer to store
1144 * a little bit of information. There should be at least
1145 * 3 bits here due to 32-bit alignment.
1146 */
1147 #define SECTION_MARKED_PRESENT (1UL<<0)
1148 #define SECTION_HAS_MEM_MAP (1UL<<1)
1149 #define SECTION_IS_ONLINE (1UL<<2)
1150 #define SECTION_MAP_LAST_BIT (1UL<<3)
1151 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1152 #define SECTION_NID_SHIFT 3
1153
1154 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1155 {
1156 unsigned long map = section->section_mem_map;
1157 map &= SECTION_MAP_MASK;
1158 return (struct page *)map;
1159 }
1160
1161 static inline int present_section(struct mem_section *section)
1162 {
1163 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1164 }
1165
1166 static inline int present_section_nr(unsigned long nr)
1167 {
1168 return present_section(__nr_to_section(nr));
1169 }
1170
1171 static inline int valid_section(struct mem_section *section)
1172 {
1173 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1174 }
1175
1176 static inline int valid_section_nr(unsigned long nr)
1177 {
1178 return valid_section(__nr_to_section(nr));
1179 }
1180
1181 static inline int online_section(struct mem_section *section)
1182 {
1183 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1184 }
1185
1186 static inline int online_section_nr(unsigned long nr)
1187 {
1188 return online_section(__nr_to_section(nr));
1189 }
1190
1191 #ifdef CONFIG_MEMORY_HOTPLUG
1192 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1193 #ifdef CONFIG_MEMORY_HOTREMOVE
1194 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1195 #endif
1196 #endif
1197
1198 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1199 {
1200 return __nr_to_section(pfn_to_section_nr(pfn));
1201 }
1202
1203 extern int __highest_present_section_nr;
1204
1205 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1206 static inline int pfn_valid(unsigned long pfn)
1207 {
1208 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1209 return 0;
1210 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1211 }
1212 #endif
1213
1214 static inline int pfn_present(unsigned long pfn)
1215 {
1216 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1217 return 0;
1218 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1219 }
1220
1221 /*
1222 * These are _only_ used during initialisation, therefore they
1223 * can use __initdata ... They could have names to indicate
1224 * this restriction.
1225 */
1226 #ifdef CONFIG_NUMA
1227 #define pfn_to_nid(pfn) \
1228 ({ \
1229 unsigned long __pfn_to_nid_pfn = (pfn); \
1230 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1231 })
1232 #else
1233 #define pfn_to_nid(pfn) (0)
1234 #endif
1235
1236 #define early_pfn_valid(pfn) pfn_valid(pfn)
1237 void sparse_init(void);
1238 #else
1239 #define sparse_init() do {} while (0)
1240 #define sparse_index_init(_sec, _nid) do {} while (0)
1241 #endif /* CONFIG_SPARSEMEM */
1242
1243 /*
1244 * During memory init memblocks map pfns to nids. The search is expensive and
1245 * this caches recent lookups. The implementation of __early_pfn_to_nid
1246 * may treat start/end as pfns or sections.
1247 */
1248 struct mminit_pfnnid_cache {
1249 unsigned long last_start;
1250 unsigned long last_end;
1251 int last_nid;
1252 };
1253
1254 #ifndef early_pfn_valid
1255 #define early_pfn_valid(pfn) (1)
1256 #endif
1257
1258 void memory_present(int nid, unsigned long start, unsigned long end);
1259 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1260
1261 /*
1262 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1263 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1264 * pfn_valid_within() should be used in this case; we optimise this away
1265 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1266 */
1267 #ifdef CONFIG_HOLES_IN_ZONE
1268 #define pfn_valid_within(pfn) pfn_valid(pfn)
1269 #else
1270 #define pfn_valid_within(pfn) (1)
1271 #endif
1272
1273 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1274 /*
1275 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1276 * associated with it or not. This means that a struct page exists for this
1277 * pfn. The caller cannot assume the page is fully initialized in general.
1278 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1279 * will ensure the struct page is fully online and initialized. Special pages
1280 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1281 *
1282 * In FLATMEM, it is expected that holes always have valid memmap as long as
1283 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1284 * that a valid section has a memmap for the entire section.
1285 *
1286 * However, an ARM, and maybe other embedded architectures in the future
1287 * free memmap backing holes to save memory on the assumption the memmap is
1288 * never used. The page_zone linkages are then broken even though pfn_valid()
1289 * returns true. A walker of the full memmap must then do this additional
1290 * check to ensure the memmap they are looking at is sane by making sure
1291 * the zone and PFN linkages are still valid. This is expensive, but walkers
1292 * of the full memmap are extremely rare.
1293 */
1294 bool memmap_valid_within(unsigned long pfn,
1295 struct page *page, struct zone *zone);
1296 #else
1297 static inline bool memmap_valid_within(unsigned long pfn,
1298 struct page *page, struct zone *zone)
1299 {
1300 return true;
1301 }
1302 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1303
1304 #endif /* !__GENERATING_BOUNDS.H */
1305 #endif /* !__ASSEMBLY__ */
1306 #endif /* _LINUX_MMZONE_H */