]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mmzone.h
mm: use two zonelist that are filtered by GFP mask
[mirror_ubuntu-artful-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <asm/atomic.h>
19 #include <asm/page.h>
20
21 /* Free memory management - zoned buddy allocator. */
22 #ifndef CONFIG_FORCE_MAX_ZONEORDER
23 #define MAX_ORDER 11
24 #else
25 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
26 #endif
27 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
28
29 /*
30 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
31 * costly to service. That is between allocation orders which should
32 * coelesce naturally under reasonable reclaim pressure and those which
33 * will not.
34 */
35 #define PAGE_ALLOC_COSTLY_ORDER 3
36
37 #define MIGRATE_UNMOVABLE 0
38 #define MIGRATE_RECLAIMABLE 1
39 #define MIGRATE_MOVABLE 2
40 #define MIGRATE_RESERVE 3
41 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
42 #define MIGRATE_TYPES 5
43
44 #define for_each_migratetype_order(order, type) \
45 for (order = 0; order < MAX_ORDER; order++) \
46 for (type = 0; type < MIGRATE_TYPES; type++)
47
48 extern int page_group_by_mobility_disabled;
49
50 static inline int get_pageblock_migratetype(struct page *page)
51 {
52 if (unlikely(page_group_by_mobility_disabled))
53 return MIGRATE_UNMOVABLE;
54
55 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
56 }
57
58 struct free_area {
59 struct list_head free_list[MIGRATE_TYPES];
60 unsigned long nr_free;
61 };
62
63 struct pglist_data;
64
65 /*
66 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
67 * So add a wild amount of padding here to ensure that they fall into separate
68 * cachelines. There are very few zone structures in the machine, so space
69 * consumption is not a concern here.
70 */
71 #if defined(CONFIG_SMP)
72 struct zone_padding {
73 char x[0];
74 } ____cacheline_internodealigned_in_smp;
75 #define ZONE_PADDING(name) struct zone_padding name;
76 #else
77 #define ZONE_PADDING(name)
78 #endif
79
80 enum zone_stat_item {
81 /* First 128 byte cacheline (assuming 64 bit words) */
82 NR_FREE_PAGES,
83 NR_INACTIVE,
84 NR_ACTIVE,
85 NR_ANON_PAGES, /* Mapped anonymous pages */
86 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
87 only modified from process context */
88 NR_FILE_PAGES,
89 NR_FILE_DIRTY,
90 NR_WRITEBACK,
91 /* Second 128 byte cacheline */
92 NR_SLAB_RECLAIMABLE,
93 NR_SLAB_UNRECLAIMABLE,
94 NR_PAGETABLE, /* used for pagetables */
95 NR_UNSTABLE_NFS, /* NFS unstable pages */
96 NR_BOUNCE,
97 NR_VMSCAN_WRITE,
98 #ifdef CONFIG_NUMA
99 NUMA_HIT, /* allocated in intended node */
100 NUMA_MISS, /* allocated in non intended node */
101 NUMA_FOREIGN, /* was intended here, hit elsewhere */
102 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
103 NUMA_LOCAL, /* allocation from local node */
104 NUMA_OTHER, /* allocation from other node */
105 #endif
106 NR_VM_ZONE_STAT_ITEMS };
107
108 struct per_cpu_pages {
109 int count; /* number of pages in the list */
110 int high; /* high watermark, emptying needed */
111 int batch; /* chunk size for buddy add/remove */
112 struct list_head list; /* the list of pages */
113 };
114
115 struct per_cpu_pageset {
116 struct per_cpu_pages pcp;
117 #ifdef CONFIG_NUMA
118 s8 expire;
119 #endif
120 #ifdef CONFIG_SMP
121 s8 stat_threshold;
122 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
123 #endif
124 } ____cacheline_aligned_in_smp;
125
126 #ifdef CONFIG_NUMA
127 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
128 #else
129 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
130 #endif
131
132 enum zone_type {
133 #ifdef CONFIG_ZONE_DMA
134 /*
135 * ZONE_DMA is used when there are devices that are not able
136 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
137 * carve out the portion of memory that is needed for these devices.
138 * The range is arch specific.
139 *
140 * Some examples
141 *
142 * Architecture Limit
143 * ---------------------------
144 * parisc, ia64, sparc <4G
145 * s390 <2G
146 * arm Various
147 * alpha Unlimited or 0-16MB.
148 *
149 * i386, x86_64 and multiple other arches
150 * <16M.
151 */
152 ZONE_DMA,
153 #endif
154 #ifdef CONFIG_ZONE_DMA32
155 /*
156 * x86_64 needs two ZONE_DMAs because it supports devices that are
157 * only able to do DMA to the lower 16M but also 32 bit devices that
158 * can only do DMA areas below 4G.
159 */
160 ZONE_DMA32,
161 #endif
162 /*
163 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
164 * performed on pages in ZONE_NORMAL if the DMA devices support
165 * transfers to all addressable memory.
166 */
167 ZONE_NORMAL,
168 #ifdef CONFIG_HIGHMEM
169 /*
170 * A memory area that is only addressable by the kernel through
171 * mapping portions into its own address space. This is for example
172 * used by i386 to allow the kernel to address the memory beyond
173 * 900MB. The kernel will set up special mappings (page
174 * table entries on i386) for each page that the kernel needs to
175 * access.
176 */
177 ZONE_HIGHMEM,
178 #endif
179 ZONE_MOVABLE,
180 MAX_NR_ZONES
181 };
182
183 /*
184 * When a memory allocation must conform to specific limitations (such
185 * as being suitable for DMA) the caller will pass in hints to the
186 * allocator in the gfp_mask, in the zone modifier bits. These bits
187 * are used to select a priority ordered list of memory zones which
188 * match the requested limits. See gfp_zone() in include/linux/gfp.h
189 */
190
191 /*
192 * Count the active zones. Note that the use of defined(X) outside
193 * #if and family is not necessarily defined so ensure we cannot use
194 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
195 */
196 #define __ZONE_COUNT ( \
197 defined(CONFIG_ZONE_DMA) \
198 + defined(CONFIG_ZONE_DMA32) \
199 + 1 \
200 + defined(CONFIG_HIGHMEM) \
201 + 1 \
202 )
203 #if __ZONE_COUNT < 2
204 #define ZONES_SHIFT 0
205 #elif __ZONE_COUNT <= 2
206 #define ZONES_SHIFT 1
207 #elif __ZONE_COUNT <= 4
208 #define ZONES_SHIFT 2
209 #else
210 #error ZONES_SHIFT -- too many zones configured adjust calculation
211 #endif
212 #undef __ZONE_COUNT
213
214 struct zone {
215 /* Fields commonly accessed by the page allocator */
216 unsigned long pages_min, pages_low, pages_high;
217 /*
218 * We don't know if the memory that we're going to allocate will be freeable
219 * or/and it will be released eventually, so to avoid totally wasting several
220 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
221 * to run OOM on the lower zones despite there's tons of freeable ram
222 * on the higher zones). This array is recalculated at runtime if the
223 * sysctl_lowmem_reserve_ratio sysctl changes.
224 */
225 unsigned long lowmem_reserve[MAX_NR_ZONES];
226
227 #ifdef CONFIG_NUMA
228 int node;
229 /*
230 * zone reclaim becomes active if more unmapped pages exist.
231 */
232 unsigned long min_unmapped_pages;
233 unsigned long min_slab_pages;
234 struct per_cpu_pageset *pageset[NR_CPUS];
235 #else
236 struct per_cpu_pageset pageset[NR_CPUS];
237 #endif
238 /*
239 * free areas of different sizes
240 */
241 spinlock_t lock;
242 #ifdef CONFIG_MEMORY_HOTPLUG
243 /* see spanned/present_pages for more description */
244 seqlock_t span_seqlock;
245 #endif
246 struct free_area free_area[MAX_ORDER];
247
248 #ifndef CONFIG_SPARSEMEM
249 /*
250 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
251 * In SPARSEMEM, this map is stored in struct mem_section
252 */
253 unsigned long *pageblock_flags;
254 #endif /* CONFIG_SPARSEMEM */
255
256
257 ZONE_PADDING(_pad1_)
258
259 /* Fields commonly accessed by the page reclaim scanner */
260 spinlock_t lru_lock;
261 struct list_head active_list;
262 struct list_head inactive_list;
263 unsigned long nr_scan_active;
264 unsigned long nr_scan_inactive;
265 unsigned long pages_scanned; /* since last reclaim */
266 unsigned long flags; /* zone flags, see below */
267
268 /* Zone statistics */
269 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
270
271 /*
272 * prev_priority holds the scanning priority for this zone. It is
273 * defined as the scanning priority at which we achieved our reclaim
274 * target at the previous try_to_free_pages() or balance_pgdat()
275 * invokation.
276 *
277 * We use prev_priority as a measure of how much stress page reclaim is
278 * under - it drives the swappiness decision: whether to unmap mapped
279 * pages.
280 *
281 * Access to both this field is quite racy even on uniprocessor. But
282 * it is expected to average out OK.
283 */
284 int prev_priority;
285
286
287 ZONE_PADDING(_pad2_)
288 /* Rarely used or read-mostly fields */
289
290 /*
291 * wait_table -- the array holding the hash table
292 * wait_table_hash_nr_entries -- the size of the hash table array
293 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
294 *
295 * The purpose of all these is to keep track of the people
296 * waiting for a page to become available and make them
297 * runnable again when possible. The trouble is that this
298 * consumes a lot of space, especially when so few things
299 * wait on pages at a given time. So instead of using
300 * per-page waitqueues, we use a waitqueue hash table.
301 *
302 * The bucket discipline is to sleep on the same queue when
303 * colliding and wake all in that wait queue when removing.
304 * When something wakes, it must check to be sure its page is
305 * truly available, a la thundering herd. The cost of a
306 * collision is great, but given the expected load of the
307 * table, they should be so rare as to be outweighed by the
308 * benefits from the saved space.
309 *
310 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
311 * primary users of these fields, and in mm/page_alloc.c
312 * free_area_init_core() performs the initialization of them.
313 */
314 wait_queue_head_t * wait_table;
315 unsigned long wait_table_hash_nr_entries;
316 unsigned long wait_table_bits;
317
318 /*
319 * Discontig memory support fields.
320 */
321 struct pglist_data *zone_pgdat;
322 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
323 unsigned long zone_start_pfn;
324
325 /*
326 * zone_start_pfn, spanned_pages and present_pages are all
327 * protected by span_seqlock. It is a seqlock because it has
328 * to be read outside of zone->lock, and it is done in the main
329 * allocator path. But, it is written quite infrequently.
330 *
331 * The lock is declared along with zone->lock because it is
332 * frequently read in proximity to zone->lock. It's good to
333 * give them a chance of being in the same cacheline.
334 */
335 unsigned long spanned_pages; /* total size, including holes */
336 unsigned long present_pages; /* amount of memory (excluding holes) */
337
338 /*
339 * rarely used fields:
340 */
341 const char *name;
342 } ____cacheline_internodealigned_in_smp;
343
344 typedef enum {
345 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
346 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
347 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
348 } zone_flags_t;
349
350 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
351 {
352 set_bit(flag, &zone->flags);
353 }
354
355 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
356 {
357 return test_and_set_bit(flag, &zone->flags);
358 }
359
360 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
361 {
362 clear_bit(flag, &zone->flags);
363 }
364
365 static inline int zone_is_all_unreclaimable(const struct zone *zone)
366 {
367 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
368 }
369
370 static inline int zone_is_reclaim_locked(const struct zone *zone)
371 {
372 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
373 }
374
375 static inline int zone_is_oom_locked(const struct zone *zone)
376 {
377 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
378 }
379
380 /*
381 * The "priority" of VM scanning is how much of the queues we will scan in one
382 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
383 * queues ("queue_length >> 12") during an aging round.
384 */
385 #define DEF_PRIORITY 12
386
387 /* Maximum number of zones on a zonelist */
388 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
389
390 #ifdef CONFIG_NUMA
391
392 /*
393 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
394 * allocations to a single node for GFP_THISNODE.
395 *
396 * [0] : Zonelist with fallback
397 * [1] : No fallback (GFP_THISNODE)
398 */
399 #define MAX_ZONELISTS 2
400
401
402 /*
403 * We cache key information from each zonelist for smaller cache
404 * footprint when scanning for free pages in get_page_from_freelist().
405 *
406 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
407 * up short of free memory since the last time (last_fullzone_zap)
408 * we zero'd fullzones.
409 * 2) The array z_to_n[] maps each zone in the zonelist to its node
410 * id, so that we can efficiently evaluate whether that node is
411 * set in the current tasks mems_allowed.
412 *
413 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
414 * indexed by a zones offset in the zonelist zones[] array.
415 *
416 * The get_page_from_freelist() routine does two scans. During the
417 * first scan, we skip zones whose corresponding bit in 'fullzones'
418 * is set or whose corresponding node in current->mems_allowed (which
419 * comes from cpusets) is not set. During the second scan, we bypass
420 * this zonelist_cache, to ensure we look methodically at each zone.
421 *
422 * Once per second, we zero out (zap) fullzones, forcing us to
423 * reconsider nodes that might have regained more free memory.
424 * The field last_full_zap is the time we last zapped fullzones.
425 *
426 * This mechanism reduces the amount of time we waste repeatedly
427 * reexaming zones for free memory when they just came up low on
428 * memory momentarilly ago.
429 *
430 * The zonelist_cache struct members logically belong in struct
431 * zonelist. However, the mempolicy zonelists constructed for
432 * MPOL_BIND are intentionally variable length (and usually much
433 * shorter). A general purpose mechanism for handling structs with
434 * multiple variable length members is more mechanism than we want
435 * here. We resort to some special case hackery instead.
436 *
437 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
438 * part because they are shorter), so we put the fixed length stuff
439 * at the front of the zonelist struct, ending in a variable length
440 * zones[], as is needed by MPOL_BIND.
441 *
442 * Then we put the optional zonelist cache on the end of the zonelist
443 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
444 * the fixed length portion at the front of the struct. This pointer
445 * both enables us to find the zonelist cache, and in the case of
446 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
447 * to know that the zonelist cache is not there.
448 *
449 * The end result is that struct zonelists come in two flavors:
450 * 1) The full, fixed length version, shown below, and
451 * 2) The custom zonelists for MPOL_BIND.
452 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
453 *
454 * Even though there may be multiple CPU cores on a node modifying
455 * fullzones or last_full_zap in the same zonelist_cache at the same
456 * time, we don't lock it. This is just hint data - if it is wrong now
457 * and then, the allocator will still function, perhaps a bit slower.
458 */
459
460
461 struct zonelist_cache {
462 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
463 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
464 unsigned long last_full_zap; /* when last zap'd (jiffies) */
465 };
466 #else
467 #define MAX_ZONELISTS 1
468 struct zonelist_cache;
469 #endif
470
471 /*
472 * One allocation request operates on a zonelist. A zonelist
473 * is a list of zones, the first one is the 'goal' of the
474 * allocation, the other zones are fallback zones, in decreasing
475 * priority.
476 *
477 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
478 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
479 */
480
481 struct zonelist {
482 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
483 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
484 #ifdef CONFIG_NUMA
485 struct zonelist_cache zlcache; // optional ...
486 #endif
487 };
488
489 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
490 struct node_active_region {
491 unsigned long start_pfn;
492 unsigned long end_pfn;
493 int nid;
494 };
495 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
496
497 #ifndef CONFIG_DISCONTIGMEM
498 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
499 extern struct page *mem_map;
500 #endif
501
502 /*
503 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
504 * (mostly NUMA machines?) to denote a higher-level memory zone than the
505 * zone denotes.
506 *
507 * On NUMA machines, each NUMA node would have a pg_data_t to describe
508 * it's memory layout.
509 *
510 * Memory statistics and page replacement data structures are maintained on a
511 * per-zone basis.
512 */
513 struct bootmem_data;
514 typedef struct pglist_data {
515 struct zone node_zones[MAX_NR_ZONES];
516 struct zonelist node_zonelists[MAX_ZONELISTS];
517 int nr_zones;
518 #ifdef CONFIG_FLAT_NODE_MEM_MAP
519 struct page *node_mem_map;
520 #endif
521 struct bootmem_data *bdata;
522 #ifdef CONFIG_MEMORY_HOTPLUG
523 /*
524 * Must be held any time you expect node_start_pfn, node_present_pages
525 * or node_spanned_pages stay constant. Holding this will also
526 * guarantee that any pfn_valid() stays that way.
527 *
528 * Nests above zone->lock and zone->size_seqlock.
529 */
530 spinlock_t node_size_lock;
531 #endif
532 unsigned long node_start_pfn;
533 unsigned long node_present_pages; /* total number of physical pages */
534 unsigned long node_spanned_pages; /* total size of physical page
535 range, including holes */
536 int node_id;
537 wait_queue_head_t kswapd_wait;
538 struct task_struct *kswapd;
539 int kswapd_max_order;
540 } pg_data_t;
541
542 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
543 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
544 #ifdef CONFIG_FLAT_NODE_MEM_MAP
545 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
546 #else
547 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
548 #endif
549 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
550
551 #include <linux/memory_hotplug.h>
552
553 void get_zone_counts(unsigned long *active, unsigned long *inactive,
554 unsigned long *free);
555 void build_all_zonelists(void);
556 void wakeup_kswapd(struct zone *zone, int order);
557 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
558 int classzone_idx, int alloc_flags);
559 enum memmap_context {
560 MEMMAP_EARLY,
561 MEMMAP_HOTPLUG,
562 };
563 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
564 unsigned long size,
565 enum memmap_context context);
566
567 #ifdef CONFIG_HAVE_MEMORY_PRESENT
568 void memory_present(int nid, unsigned long start, unsigned long end);
569 #else
570 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
571 #endif
572
573 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
574 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
575 #endif
576
577 /*
578 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
579 */
580 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
581
582 static inline int populated_zone(struct zone *zone)
583 {
584 return (!!zone->present_pages);
585 }
586
587 extern int movable_zone;
588
589 static inline int zone_movable_is_highmem(void)
590 {
591 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
592 return movable_zone == ZONE_HIGHMEM;
593 #else
594 return 0;
595 #endif
596 }
597
598 static inline int is_highmem_idx(enum zone_type idx)
599 {
600 #ifdef CONFIG_HIGHMEM
601 return (idx == ZONE_HIGHMEM ||
602 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
603 #else
604 return 0;
605 #endif
606 }
607
608 static inline int is_normal_idx(enum zone_type idx)
609 {
610 return (idx == ZONE_NORMAL);
611 }
612
613 /**
614 * is_highmem - helper function to quickly check if a struct zone is a
615 * highmem zone or not. This is an attempt to keep references
616 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
617 * @zone - pointer to struct zone variable
618 */
619 static inline int is_highmem(struct zone *zone)
620 {
621 #ifdef CONFIG_HIGHMEM
622 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
623 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
624 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
625 zone_movable_is_highmem());
626 #else
627 return 0;
628 #endif
629 }
630
631 static inline int is_normal(struct zone *zone)
632 {
633 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
634 }
635
636 static inline int is_dma32(struct zone *zone)
637 {
638 #ifdef CONFIG_ZONE_DMA32
639 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
640 #else
641 return 0;
642 #endif
643 }
644
645 static inline int is_dma(struct zone *zone)
646 {
647 #ifdef CONFIG_ZONE_DMA
648 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
649 #else
650 return 0;
651 #endif
652 }
653
654 /* These two functions are used to setup the per zone pages min values */
655 struct ctl_table;
656 struct file;
657 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
658 void __user *, size_t *, loff_t *);
659 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
660 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
661 void __user *, size_t *, loff_t *);
662 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
663 void __user *, size_t *, loff_t *);
664 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
665 struct file *, void __user *, size_t *, loff_t *);
666 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
667 struct file *, void __user *, size_t *, loff_t *);
668
669 extern int numa_zonelist_order_handler(struct ctl_table *, int,
670 struct file *, void __user *, size_t *, loff_t *);
671 extern char numa_zonelist_order[];
672 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
673
674 #include <linux/topology.h>
675 /* Returns the number of the current Node. */
676 #ifndef numa_node_id
677 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
678 #endif
679
680 #ifndef CONFIG_NEED_MULTIPLE_NODES
681
682 extern struct pglist_data contig_page_data;
683 #define NODE_DATA(nid) (&contig_page_data)
684 #define NODE_MEM_MAP(nid) mem_map
685
686 #else /* CONFIG_NEED_MULTIPLE_NODES */
687
688 #include <asm/mmzone.h>
689
690 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
691
692 extern struct pglist_data *first_online_pgdat(void);
693 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
694 extern struct zone *next_zone(struct zone *zone);
695
696 /**
697 * for_each_pgdat - helper macro to iterate over all nodes
698 * @pgdat - pointer to a pg_data_t variable
699 */
700 #define for_each_online_pgdat(pgdat) \
701 for (pgdat = first_online_pgdat(); \
702 pgdat; \
703 pgdat = next_online_pgdat(pgdat))
704 /**
705 * for_each_zone - helper macro to iterate over all memory zones
706 * @zone - pointer to struct zone variable
707 *
708 * The user only needs to declare the zone variable, for_each_zone
709 * fills it in.
710 */
711 #define for_each_zone(zone) \
712 for (zone = (first_online_pgdat())->node_zones; \
713 zone; \
714 zone = next_zone(zone))
715
716 /* Returns the first zone at or below highest_zoneidx in a zonelist */
717 static inline struct zone **first_zones_zonelist(struct zonelist *zonelist,
718 enum zone_type highest_zoneidx)
719 {
720 struct zone **z;
721
722 /* Find the first suitable zone to use for the allocation */
723 z = zonelist->zones;
724 while (*z && zone_idx(*z) > highest_zoneidx)
725 z++;
726
727 return z;
728 }
729
730 /* Returns the next zone at or below highest_zoneidx in a zonelist */
731 static inline struct zone **next_zones_zonelist(struct zone **z,
732 enum zone_type highest_zoneidx)
733 {
734 /* Find the next suitable zone to use for the allocation */
735 while (*z && zone_idx(*z) > highest_zoneidx)
736 z++;
737
738 return z;
739 }
740
741 /**
742 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
743 * @zone - The current zone in the iterator
744 * @z - The current pointer within zonelist->zones being iterated
745 * @zlist - The zonelist being iterated
746 * @highidx - The zone index of the highest zone to return
747 *
748 * This iterator iterates though all zones at or below a given zone index.
749 */
750 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
751 for (z = first_zones_zonelist(zlist, highidx), zone = *z++; \
752 zone; \
753 z = next_zones_zonelist(z, highidx), zone = *z++)
754
755 #ifdef CONFIG_SPARSEMEM
756 #include <asm/sparsemem.h>
757 #endif
758
759 #if BITS_PER_LONG == 32
760 /*
761 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
762 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
763 */
764 #define FLAGS_RESERVED 9
765
766 #elif BITS_PER_LONG == 64
767 /*
768 * with 64 bit flags field, there's plenty of room.
769 */
770 #define FLAGS_RESERVED 32
771
772 #else
773
774 #error BITS_PER_LONG not defined
775
776 #endif
777
778 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
779 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
780 #define early_pfn_to_nid(nid) (0UL)
781 #endif
782
783 #ifdef CONFIG_FLATMEM
784 #define pfn_to_nid(pfn) (0)
785 #endif
786
787 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
788 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
789
790 #ifdef CONFIG_SPARSEMEM
791
792 /*
793 * SECTION_SHIFT #bits space required to store a section #
794 *
795 * PA_SECTION_SHIFT physical address to/from section number
796 * PFN_SECTION_SHIFT pfn to/from section number
797 */
798 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
799
800 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
801 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
802
803 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
804
805 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
806 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
807
808 #define SECTION_BLOCKFLAGS_BITS \
809 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
810
811 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
812 #error Allocator MAX_ORDER exceeds SECTION_SIZE
813 #endif
814
815 struct page;
816 struct mem_section {
817 /*
818 * This is, logically, a pointer to an array of struct
819 * pages. However, it is stored with some other magic.
820 * (see sparse.c::sparse_init_one_section())
821 *
822 * Additionally during early boot we encode node id of
823 * the location of the section here to guide allocation.
824 * (see sparse.c::memory_present())
825 *
826 * Making it a UL at least makes someone do a cast
827 * before using it wrong.
828 */
829 unsigned long section_mem_map;
830
831 /* See declaration of similar field in struct zone */
832 unsigned long *pageblock_flags;
833 };
834
835 #ifdef CONFIG_SPARSEMEM_EXTREME
836 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
837 #else
838 #define SECTIONS_PER_ROOT 1
839 #endif
840
841 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
842 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
843 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
844
845 #ifdef CONFIG_SPARSEMEM_EXTREME
846 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
847 #else
848 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
849 #endif
850
851 static inline struct mem_section *__nr_to_section(unsigned long nr)
852 {
853 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
854 return NULL;
855 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
856 }
857 extern int __section_nr(struct mem_section* ms);
858
859 /*
860 * We use the lower bits of the mem_map pointer to store
861 * a little bit of information. There should be at least
862 * 3 bits here due to 32-bit alignment.
863 */
864 #define SECTION_MARKED_PRESENT (1UL<<0)
865 #define SECTION_HAS_MEM_MAP (1UL<<1)
866 #define SECTION_MAP_LAST_BIT (1UL<<2)
867 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
868 #define SECTION_NID_SHIFT 2
869
870 static inline struct page *__section_mem_map_addr(struct mem_section *section)
871 {
872 unsigned long map = section->section_mem_map;
873 map &= SECTION_MAP_MASK;
874 return (struct page *)map;
875 }
876
877 static inline int present_section(struct mem_section *section)
878 {
879 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
880 }
881
882 static inline int present_section_nr(unsigned long nr)
883 {
884 return present_section(__nr_to_section(nr));
885 }
886
887 static inline int valid_section(struct mem_section *section)
888 {
889 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
890 }
891
892 static inline int valid_section_nr(unsigned long nr)
893 {
894 return valid_section(__nr_to_section(nr));
895 }
896
897 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
898 {
899 return __nr_to_section(pfn_to_section_nr(pfn));
900 }
901
902 static inline int pfn_valid(unsigned long pfn)
903 {
904 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
905 return 0;
906 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
907 }
908
909 static inline int pfn_present(unsigned long pfn)
910 {
911 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
912 return 0;
913 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
914 }
915
916 /*
917 * These are _only_ used during initialisation, therefore they
918 * can use __initdata ... They could have names to indicate
919 * this restriction.
920 */
921 #ifdef CONFIG_NUMA
922 #define pfn_to_nid(pfn) \
923 ({ \
924 unsigned long __pfn_to_nid_pfn = (pfn); \
925 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
926 })
927 #else
928 #define pfn_to_nid(pfn) (0)
929 #endif
930
931 #define early_pfn_valid(pfn) pfn_valid(pfn)
932 void sparse_init(void);
933 #else
934 #define sparse_init() do {} while (0)
935 #define sparse_index_init(_sec, _nid) do {} while (0)
936 #endif /* CONFIG_SPARSEMEM */
937
938 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
939 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
940 #else
941 #define early_pfn_in_nid(pfn, nid) (1)
942 #endif
943
944 #ifndef early_pfn_valid
945 #define early_pfn_valid(pfn) (1)
946 #endif
947
948 void memory_present(int nid, unsigned long start, unsigned long end);
949 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
950
951 /*
952 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
953 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
954 * pfn_valid_within() should be used in this case; we optimise this away
955 * when we have no holes within a MAX_ORDER_NR_PAGES block.
956 */
957 #ifdef CONFIG_HOLES_IN_ZONE
958 #define pfn_valid_within(pfn) pfn_valid(pfn)
959 #else
960 #define pfn_valid_within(pfn) (1)
961 #endif
962
963 #endif /* !__ASSEMBLY__ */
964 #endif /* __KERNEL__ */
965 #endif /* _LINUX_MMZONE_H */