]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/mmzone.h
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-jammy-kernel.git] / include / linux / mmzone.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24
25 /* Free memory management - zoned buddy allocator. */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33 /*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40
41 enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65 #endif
66 MIGRATE_TYPES
67 };
68
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71
72 #ifdef CONFIG_CMA
73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 # define is_migrate_cma(migratetype) false
77 # define is_migrate_cma_page(_page) false
78 #endif
79
80 static inline bool is_migrate_movable(int mt)
81 {
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84
85 #define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89 extern int page_group_by_mobility_disabled;
90
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
94 #define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), \
96 PB_migrate_end, MIGRATETYPE_MASK)
97
98 struct free_area {
99 struct list_head free_list[MIGRATE_TYPES];
100 unsigned long nr_free;
101 };
102
103 /* Used for pages not on another list */
104 static inline void add_to_free_area(struct page *page, struct free_area *area,
105 int migratetype)
106 {
107 list_add(&page->lru, &area->free_list[migratetype]);
108 area->nr_free++;
109 }
110
111 /* Used for pages not on another list */
112 static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 int migratetype)
114 {
115 list_add_tail(&page->lru, &area->free_list[migratetype]);
116 area->nr_free++;
117 }
118
119 #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120 /* Used to preserve page allocation order entropy */
121 void add_to_free_area_random(struct page *page, struct free_area *area,
122 int migratetype);
123 #else
124 static inline void add_to_free_area_random(struct page *page,
125 struct free_area *area, int migratetype)
126 {
127 add_to_free_area(page, area, migratetype);
128 }
129 #endif
130
131 /* Used for pages which are on another list */
132 static inline void move_to_free_area(struct page *page, struct free_area *area,
133 int migratetype)
134 {
135 list_move(&page->lru, &area->free_list[migratetype]);
136 }
137
138 static inline struct page *get_page_from_free_area(struct free_area *area,
139 int migratetype)
140 {
141 return list_first_entry_or_null(&area->free_list[migratetype],
142 struct page, lru);
143 }
144
145 static inline void del_page_from_free_area(struct page *page,
146 struct free_area *area)
147 {
148 list_del(&page->lru);
149 __ClearPageBuddy(page);
150 set_page_private(page, 0);
151 area->nr_free--;
152 }
153
154 static inline bool free_area_empty(struct free_area *area, int migratetype)
155 {
156 return list_empty(&area->free_list[migratetype]);
157 }
158
159 struct pglist_data;
160
161 /*
162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163 * So add a wild amount of padding here to ensure that they fall into separate
164 * cachelines. There are very few zone structures in the machine, so space
165 * consumption is not a concern here.
166 */
167 #if defined(CONFIG_SMP)
168 struct zone_padding {
169 char x[0];
170 } ____cacheline_internodealigned_in_smp;
171 #define ZONE_PADDING(name) struct zone_padding name;
172 #else
173 #define ZONE_PADDING(name)
174 #endif
175
176 #ifdef CONFIG_NUMA
177 enum numa_stat_item {
178 NUMA_HIT, /* allocated in intended node */
179 NUMA_MISS, /* allocated in non intended node */
180 NUMA_FOREIGN, /* was intended here, hit elsewhere */
181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
182 NUMA_LOCAL, /* allocation from local node */
183 NUMA_OTHER, /* allocation from other node */
184 NR_VM_NUMA_STAT_ITEMS
185 };
186 #else
187 #define NR_VM_NUMA_STAT_ITEMS 0
188 #endif
189
190 enum zone_stat_item {
191 /* First 128 byte cacheline (assuming 64 bit words) */
192 NR_FREE_PAGES,
193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 NR_ZONE_ACTIVE_ANON,
196 NR_ZONE_INACTIVE_FILE,
197 NR_ZONE_ACTIVE_FILE,
198 NR_ZONE_UNEVICTABLE,
199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
201 NR_PAGETABLE, /* used for pagetables */
202 NR_KERNEL_STACK_KB, /* measured in KiB */
203 /* Second 128 byte cacheline */
204 NR_BOUNCE,
205 #if IS_ENABLED(CONFIG_ZSMALLOC)
206 NR_ZSPAGES, /* allocated in zsmalloc */
207 #endif
208 NR_FREE_CMA_PAGES,
209 NR_VM_ZONE_STAT_ITEMS };
210
211 enum node_stat_item {
212 NR_LRU_BASE,
213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 NR_ACTIVE_ANON, /* " " " " " */
215 NR_INACTIVE_FILE, /* " " " " " */
216 NR_ACTIVE_FILE, /* " " " " " */
217 NR_UNEVICTABLE, /* " " " " " */
218 NR_SLAB_RECLAIMABLE,
219 NR_SLAB_UNRECLAIMABLE,
220 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
221 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
222 WORKINGSET_NODES,
223 WORKINGSET_REFAULT,
224 WORKINGSET_ACTIVATE,
225 WORKINGSET_RESTORE,
226 WORKINGSET_NODERECLAIM,
227 NR_ANON_MAPPED, /* Mapped anonymous pages */
228 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
229 only modified from process context */
230 NR_FILE_PAGES,
231 NR_FILE_DIRTY,
232 NR_WRITEBACK,
233 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
234 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
235 NR_SHMEM_THPS,
236 NR_SHMEM_PMDMAPPED,
237 NR_ANON_THPS,
238 NR_UNSTABLE_NFS, /* NFS unstable pages */
239 NR_VMSCAN_WRITE,
240 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
241 NR_DIRTIED, /* page dirtyings since bootup */
242 NR_WRITTEN, /* page writings since bootup */
243 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
244 NR_VM_NODE_STAT_ITEMS
245 };
246
247 /*
248 * We do arithmetic on the LRU lists in various places in the code,
249 * so it is important to keep the active lists LRU_ACTIVE higher in
250 * the array than the corresponding inactive lists, and to keep
251 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
252 *
253 * This has to be kept in sync with the statistics in zone_stat_item
254 * above and the descriptions in vmstat_text in mm/vmstat.c
255 */
256 #define LRU_BASE 0
257 #define LRU_ACTIVE 1
258 #define LRU_FILE 2
259
260 enum lru_list {
261 LRU_INACTIVE_ANON = LRU_BASE,
262 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
263 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
264 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
265 LRU_UNEVICTABLE,
266 NR_LRU_LISTS
267 };
268
269 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
270
271 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
272
273 static inline int is_file_lru(enum lru_list lru)
274 {
275 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
276 }
277
278 static inline int is_active_lru(enum lru_list lru)
279 {
280 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
281 }
282
283 struct zone_reclaim_stat {
284 /*
285 * The pageout code in vmscan.c keeps track of how many of the
286 * mem/swap backed and file backed pages are referenced.
287 * The higher the rotated/scanned ratio, the more valuable
288 * that cache is.
289 *
290 * The anon LRU stats live in [0], file LRU stats in [1]
291 */
292 unsigned long recent_rotated[2];
293 unsigned long recent_scanned[2];
294 };
295
296 struct lruvec {
297 struct list_head lists[NR_LRU_LISTS];
298 struct zone_reclaim_stat reclaim_stat;
299 /* Evictions & activations on the inactive file list */
300 atomic_long_t inactive_age;
301 /* Refaults at the time of last reclaim cycle */
302 unsigned long refaults;
303 #ifdef CONFIG_MEMCG
304 struct pglist_data *pgdat;
305 #endif
306 };
307
308 /* Isolate unmapped file */
309 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
310 /* Isolate for asynchronous migration */
311 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
312 /* Isolate unevictable pages */
313 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
314
315 /* LRU Isolation modes. */
316 typedef unsigned __bitwise isolate_mode_t;
317
318 enum zone_watermarks {
319 WMARK_MIN,
320 WMARK_LOW,
321 WMARK_HIGH,
322 NR_WMARK
323 };
324
325 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
326 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
327 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
328 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
329
330 struct per_cpu_pages {
331 int count; /* number of pages in the list */
332 int high; /* high watermark, emptying needed */
333 int batch; /* chunk size for buddy add/remove */
334
335 /* Lists of pages, one per migrate type stored on the pcp-lists */
336 struct list_head lists[MIGRATE_PCPTYPES];
337 };
338
339 struct per_cpu_pageset {
340 struct per_cpu_pages pcp;
341 #ifdef CONFIG_NUMA
342 s8 expire;
343 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
344 #endif
345 #ifdef CONFIG_SMP
346 s8 stat_threshold;
347 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
348 #endif
349 };
350
351 struct per_cpu_nodestat {
352 s8 stat_threshold;
353 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
354 };
355
356 #endif /* !__GENERATING_BOUNDS.H */
357
358 enum zone_type {
359 #ifdef CONFIG_ZONE_DMA
360 /*
361 * ZONE_DMA is used when there are devices that are not able
362 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
363 * carve out the portion of memory that is needed for these devices.
364 * The range is arch specific.
365 *
366 * Some examples
367 *
368 * Architecture Limit
369 * ---------------------------
370 * parisc, ia64, sparc <4G
371 * s390, powerpc <2G
372 * arm Various
373 * alpha Unlimited or 0-16MB.
374 *
375 * i386, x86_64 and multiple other arches
376 * <16M.
377 */
378 ZONE_DMA,
379 #endif
380 #ifdef CONFIG_ZONE_DMA32
381 /*
382 * x86_64 needs two ZONE_DMAs because it supports devices that are
383 * only able to do DMA to the lower 16M but also 32 bit devices that
384 * can only do DMA areas below 4G.
385 */
386 ZONE_DMA32,
387 #endif
388 /*
389 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
390 * performed on pages in ZONE_NORMAL if the DMA devices support
391 * transfers to all addressable memory.
392 */
393 ZONE_NORMAL,
394 #ifdef CONFIG_HIGHMEM
395 /*
396 * A memory area that is only addressable by the kernel through
397 * mapping portions into its own address space. This is for example
398 * used by i386 to allow the kernel to address the memory beyond
399 * 900MB. The kernel will set up special mappings (page
400 * table entries on i386) for each page that the kernel needs to
401 * access.
402 */
403 ZONE_HIGHMEM,
404 #endif
405 ZONE_MOVABLE,
406 #ifdef CONFIG_ZONE_DEVICE
407 ZONE_DEVICE,
408 #endif
409 __MAX_NR_ZONES
410
411 };
412
413 #ifndef __GENERATING_BOUNDS_H
414
415 struct zone {
416 /* Read-mostly fields */
417
418 /* zone watermarks, access with *_wmark_pages(zone) macros */
419 unsigned long _watermark[NR_WMARK];
420 unsigned long watermark_boost;
421
422 unsigned long nr_reserved_highatomic;
423
424 /*
425 * We don't know if the memory that we're going to allocate will be
426 * freeable or/and it will be released eventually, so to avoid totally
427 * wasting several GB of ram we must reserve some of the lower zone
428 * memory (otherwise we risk to run OOM on the lower zones despite
429 * there being tons of freeable ram on the higher zones). This array is
430 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
431 * changes.
432 */
433 long lowmem_reserve[MAX_NR_ZONES];
434
435 #ifdef CONFIG_NUMA
436 int node;
437 #endif
438 struct pglist_data *zone_pgdat;
439 struct per_cpu_pageset __percpu *pageset;
440
441 #ifndef CONFIG_SPARSEMEM
442 /*
443 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
444 * In SPARSEMEM, this map is stored in struct mem_section
445 */
446 unsigned long *pageblock_flags;
447 #endif /* CONFIG_SPARSEMEM */
448
449 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
450 unsigned long zone_start_pfn;
451
452 /*
453 * spanned_pages is the total pages spanned by the zone, including
454 * holes, which is calculated as:
455 * spanned_pages = zone_end_pfn - zone_start_pfn;
456 *
457 * present_pages is physical pages existing within the zone, which
458 * is calculated as:
459 * present_pages = spanned_pages - absent_pages(pages in holes);
460 *
461 * managed_pages is present pages managed by the buddy system, which
462 * is calculated as (reserved_pages includes pages allocated by the
463 * bootmem allocator):
464 * managed_pages = present_pages - reserved_pages;
465 *
466 * So present_pages may be used by memory hotplug or memory power
467 * management logic to figure out unmanaged pages by checking
468 * (present_pages - managed_pages). And managed_pages should be used
469 * by page allocator and vm scanner to calculate all kinds of watermarks
470 * and thresholds.
471 *
472 * Locking rules:
473 *
474 * zone_start_pfn and spanned_pages are protected by span_seqlock.
475 * It is a seqlock because it has to be read outside of zone->lock,
476 * and it is done in the main allocator path. But, it is written
477 * quite infrequently.
478 *
479 * The span_seq lock is declared along with zone->lock because it is
480 * frequently read in proximity to zone->lock. It's good to
481 * give them a chance of being in the same cacheline.
482 *
483 * Write access to present_pages at runtime should be protected by
484 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
485 * present_pages should get_online_mems() to get a stable value.
486 */
487 atomic_long_t managed_pages;
488 unsigned long spanned_pages;
489 unsigned long present_pages;
490
491 const char *name;
492
493 #ifdef CONFIG_MEMORY_ISOLATION
494 /*
495 * Number of isolated pageblock. It is used to solve incorrect
496 * freepage counting problem due to racy retrieving migratetype
497 * of pageblock. Protected by zone->lock.
498 */
499 unsigned long nr_isolate_pageblock;
500 #endif
501
502 #ifdef CONFIG_MEMORY_HOTPLUG
503 /* see spanned/present_pages for more description */
504 seqlock_t span_seqlock;
505 #endif
506
507 int initialized;
508
509 /* Write-intensive fields used from the page allocator */
510 ZONE_PADDING(_pad1_)
511
512 /* free areas of different sizes */
513 struct free_area free_area[MAX_ORDER];
514
515 /* zone flags, see below */
516 unsigned long flags;
517
518 /* Primarily protects free_area */
519 spinlock_t lock;
520
521 /* Write-intensive fields used by compaction and vmstats. */
522 ZONE_PADDING(_pad2_)
523
524 /*
525 * When free pages are below this point, additional steps are taken
526 * when reading the number of free pages to avoid per-cpu counter
527 * drift allowing watermarks to be breached
528 */
529 unsigned long percpu_drift_mark;
530
531 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
532 /* pfn where compaction free scanner should start */
533 unsigned long compact_cached_free_pfn;
534 /* pfn where async and sync compaction migration scanner should start */
535 unsigned long compact_cached_migrate_pfn[2];
536 unsigned long compact_init_migrate_pfn;
537 unsigned long compact_init_free_pfn;
538 #endif
539
540 #ifdef CONFIG_COMPACTION
541 /*
542 * On compaction failure, 1<<compact_defer_shift compactions
543 * are skipped before trying again. The number attempted since
544 * last failure is tracked with compact_considered.
545 */
546 unsigned int compact_considered;
547 unsigned int compact_defer_shift;
548 int compact_order_failed;
549 #endif
550
551 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
552 /* Set to true when the PG_migrate_skip bits should be cleared */
553 bool compact_blockskip_flush;
554 #endif
555
556 bool contiguous;
557
558 ZONE_PADDING(_pad3_)
559 /* Zone statistics */
560 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
561 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
562 } ____cacheline_internodealigned_in_smp;
563
564 enum pgdat_flags {
565 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
566 * a congested BDI
567 */
568 PGDAT_DIRTY, /* reclaim scanning has recently found
569 * many dirty file pages at the tail
570 * of the LRU.
571 */
572 PGDAT_WRITEBACK, /* reclaim scanning has recently found
573 * many pages under writeback
574 */
575 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
576 };
577
578 enum zone_flags {
579 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
580 * Cleared when kswapd is woken.
581 */
582 };
583
584 static inline unsigned long zone_managed_pages(struct zone *zone)
585 {
586 return (unsigned long)atomic_long_read(&zone->managed_pages);
587 }
588
589 static inline unsigned long zone_end_pfn(const struct zone *zone)
590 {
591 return zone->zone_start_pfn + zone->spanned_pages;
592 }
593
594 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
595 {
596 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
597 }
598
599 static inline bool zone_is_initialized(struct zone *zone)
600 {
601 return zone->initialized;
602 }
603
604 static inline bool zone_is_empty(struct zone *zone)
605 {
606 return zone->spanned_pages == 0;
607 }
608
609 /*
610 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
611 * intersection with the given zone
612 */
613 static inline bool zone_intersects(struct zone *zone,
614 unsigned long start_pfn, unsigned long nr_pages)
615 {
616 if (zone_is_empty(zone))
617 return false;
618 if (start_pfn >= zone_end_pfn(zone) ||
619 start_pfn + nr_pages <= zone->zone_start_pfn)
620 return false;
621
622 return true;
623 }
624
625 /*
626 * The "priority" of VM scanning is how much of the queues we will scan in one
627 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
628 * queues ("queue_length >> 12") during an aging round.
629 */
630 #define DEF_PRIORITY 12
631
632 /* Maximum number of zones on a zonelist */
633 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
634
635 enum {
636 ZONELIST_FALLBACK, /* zonelist with fallback */
637 #ifdef CONFIG_NUMA
638 /*
639 * The NUMA zonelists are doubled because we need zonelists that
640 * restrict the allocations to a single node for __GFP_THISNODE.
641 */
642 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
643 #endif
644 MAX_ZONELISTS
645 };
646
647 /*
648 * This struct contains information about a zone in a zonelist. It is stored
649 * here to avoid dereferences into large structures and lookups of tables
650 */
651 struct zoneref {
652 struct zone *zone; /* Pointer to actual zone */
653 int zone_idx; /* zone_idx(zoneref->zone) */
654 };
655
656 /*
657 * One allocation request operates on a zonelist. A zonelist
658 * is a list of zones, the first one is the 'goal' of the
659 * allocation, the other zones are fallback zones, in decreasing
660 * priority.
661 *
662 * To speed the reading of the zonelist, the zonerefs contain the zone index
663 * of the entry being read. Helper functions to access information given
664 * a struct zoneref are
665 *
666 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
667 * zonelist_zone_idx() - Return the index of the zone for an entry
668 * zonelist_node_idx() - Return the index of the node for an entry
669 */
670 struct zonelist {
671 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
672 };
673
674 #ifndef CONFIG_DISCONTIGMEM
675 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
676 extern struct page *mem_map;
677 #endif
678
679 /*
680 * On NUMA machines, each NUMA node would have a pg_data_t to describe
681 * it's memory layout. On UMA machines there is a single pglist_data which
682 * describes the whole memory.
683 *
684 * Memory statistics and page replacement data structures are maintained on a
685 * per-zone basis.
686 */
687 struct bootmem_data;
688 typedef struct pglist_data {
689 struct zone node_zones[MAX_NR_ZONES];
690 struct zonelist node_zonelists[MAX_ZONELISTS];
691 int nr_zones;
692 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
693 struct page *node_mem_map;
694 #ifdef CONFIG_PAGE_EXTENSION
695 struct page_ext *node_page_ext;
696 #endif
697 #endif
698 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
699 /*
700 * Must be held any time you expect node_start_pfn,
701 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
702 *
703 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
704 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
705 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
706 *
707 * Nests above zone->lock and zone->span_seqlock
708 */
709 spinlock_t node_size_lock;
710 #endif
711 unsigned long node_start_pfn;
712 unsigned long node_present_pages; /* total number of physical pages */
713 unsigned long node_spanned_pages; /* total size of physical page
714 range, including holes */
715 int node_id;
716 wait_queue_head_t kswapd_wait;
717 wait_queue_head_t pfmemalloc_wait;
718 struct task_struct *kswapd; /* Protected by
719 mem_hotplug_begin/end() */
720 int kswapd_order;
721 enum zone_type kswapd_classzone_idx;
722
723 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
724
725 #ifdef CONFIG_COMPACTION
726 int kcompactd_max_order;
727 enum zone_type kcompactd_classzone_idx;
728 wait_queue_head_t kcompactd_wait;
729 struct task_struct *kcompactd;
730 #endif
731 /*
732 * This is a per-node reserve of pages that are not available
733 * to userspace allocations.
734 */
735 unsigned long totalreserve_pages;
736
737 #ifdef CONFIG_NUMA
738 /*
739 * zone reclaim becomes active if more unmapped pages exist.
740 */
741 unsigned long min_unmapped_pages;
742 unsigned long min_slab_pages;
743 #endif /* CONFIG_NUMA */
744
745 /* Write-intensive fields used by page reclaim */
746 ZONE_PADDING(_pad1_)
747 spinlock_t lru_lock;
748
749 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
750 /*
751 * If memory initialisation on large machines is deferred then this
752 * is the first PFN that needs to be initialised.
753 */
754 unsigned long first_deferred_pfn;
755 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
756
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 spinlock_t split_queue_lock;
759 struct list_head split_queue;
760 unsigned long split_queue_len;
761 #endif
762
763 /* Fields commonly accessed by the page reclaim scanner */
764 struct lruvec lruvec;
765
766 unsigned long flags;
767
768 ZONE_PADDING(_pad2_)
769
770 /* Per-node vmstats */
771 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
772 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
773 } pg_data_t;
774
775 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
776 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
777 #ifdef CONFIG_FLAT_NODE_MEM_MAP
778 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
779 #else
780 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
781 #endif
782 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
783
784 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
785 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
786
787 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
788 {
789 return &pgdat->lruvec;
790 }
791
792 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
793 {
794 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
795 }
796
797 static inline bool pgdat_is_empty(pg_data_t *pgdat)
798 {
799 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
800 }
801
802 #include <linux/memory_hotplug.h>
803
804 void build_all_zonelists(pg_data_t *pgdat);
805 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
806 enum zone_type classzone_idx);
807 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
808 int classzone_idx, unsigned int alloc_flags,
809 long free_pages);
810 bool zone_watermark_ok(struct zone *z, unsigned int order,
811 unsigned long mark, int classzone_idx,
812 unsigned int alloc_flags);
813 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
814 unsigned long mark, int classzone_idx);
815 enum memmap_context {
816 MEMMAP_EARLY,
817 MEMMAP_HOTPLUG,
818 };
819 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
820 unsigned long size);
821
822 extern void lruvec_init(struct lruvec *lruvec);
823
824 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
825 {
826 #ifdef CONFIG_MEMCG
827 return lruvec->pgdat;
828 #else
829 return container_of(lruvec, struct pglist_data, lruvec);
830 #endif
831 }
832
833 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
834
835 #ifdef CONFIG_HAVE_MEMORY_PRESENT
836 void memory_present(int nid, unsigned long start, unsigned long end);
837 #else
838 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
839 #endif
840
841 #if defined(CONFIG_SPARSEMEM)
842 void memblocks_present(void);
843 #else
844 static inline void memblocks_present(void) {}
845 #endif
846
847 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
848 int local_memory_node(int node_id);
849 #else
850 static inline int local_memory_node(int node_id) { return node_id; };
851 #endif
852
853 /*
854 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
855 */
856 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
857
858 /*
859 * Returns true if a zone has pages managed by the buddy allocator.
860 * All the reclaim decisions have to use this function rather than
861 * populated_zone(). If the whole zone is reserved then we can easily
862 * end up with populated_zone() && !managed_zone().
863 */
864 static inline bool managed_zone(struct zone *zone)
865 {
866 return zone_managed_pages(zone);
867 }
868
869 /* Returns true if a zone has memory */
870 static inline bool populated_zone(struct zone *zone)
871 {
872 return zone->present_pages;
873 }
874
875 #ifdef CONFIG_NUMA
876 static inline int zone_to_nid(struct zone *zone)
877 {
878 return zone->node;
879 }
880
881 static inline void zone_set_nid(struct zone *zone, int nid)
882 {
883 zone->node = nid;
884 }
885 #else
886 static inline int zone_to_nid(struct zone *zone)
887 {
888 return 0;
889 }
890
891 static inline void zone_set_nid(struct zone *zone, int nid) {}
892 #endif
893
894 extern int movable_zone;
895
896 #ifdef CONFIG_HIGHMEM
897 static inline int zone_movable_is_highmem(void)
898 {
899 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
900 return movable_zone == ZONE_HIGHMEM;
901 #else
902 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
903 #endif
904 }
905 #endif
906
907 static inline int is_highmem_idx(enum zone_type idx)
908 {
909 #ifdef CONFIG_HIGHMEM
910 return (idx == ZONE_HIGHMEM ||
911 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
912 #else
913 return 0;
914 #endif
915 }
916
917 /**
918 * is_highmem - helper function to quickly check if a struct zone is a
919 * highmem zone or not. This is an attempt to keep references
920 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
921 * @zone - pointer to struct zone variable
922 */
923 static inline int is_highmem(struct zone *zone)
924 {
925 #ifdef CONFIG_HIGHMEM
926 return is_highmem_idx(zone_idx(zone));
927 #else
928 return 0;
929 #endif
930 }
931
932 /* These two functions are used to setup the per zone pages min values */
933 struct ctl_table;
934 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
935 void __user *, size_t *, loff_t *);
936 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
937 void __user *, size_t *, loff_t *);
938 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
939 void __user *, size_t *, loff_t *);
940 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
941 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
942 void __user *, size_t *, loff_t *);
943 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
944 void __user *, size_t *, loff_t *);
945 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
946 void __user *, size_t *, loff_t *);
947 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
948 void __user *, size_t *, loff_t *);
949
950 extern int numa_zonelist_order_handler(struct ctl_table *, int,
951 void __user *, size_t *, loff_t *);
952 extern char numa_zonelist_order[];
953 #define NUMA_ZONELIST_ORDER_LEN 16
954
955 #ifndef CONFIG_NEED_MULTIPLE_NODES
956
957 extern struct pglist_data contig_page_data;
958 #define NODE_DATA(nid) (&contig_page_data)
959 #define NODE_MEM_MAP(nid) mem_map
960
961 #else /* CONFIG_NEED_MULTIPLE_NODES */
962
963 #include <asm/mmzone.h>
964
965 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
966
967 extern struct pglist_data *first_online_pgdat(void);
968 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
969 extern struct zone *next_zone(struct zone *zone);
970
971 /**
972 * for_each_online_pgdat - helper macro to iterate over all online nodes
973 * @pgdat - pointer to a pg_data_t variable
974 */
975 #define for_each_online_pgdat(pgdat) \
976 for (pgdat = first_online_pgdat(); \
977 pgdat; \
978 pgdat = next_online_pgdat(pgdat))
979 /**
980 * for_each_zone - helper macro to iterate over all memory zones
981 * @zone - pointer to struct zone variable
982 *
983 * The user only needs to declare the zone variable, for_each_zone
984 * fills it in.
985 */
986 #define for_each_zone(zone) \
987 for (zone = (first_online_pgdat())->node_zones; \
988 zone; \
989 zone = next_zone(zone))
990
991 #define for_each_populated_zone(zone) \
992 for (zone = (first_online_pgdat())->node_zones; \
993 zone; \
994 zone = next_zone(zone)) \
995 if (!populated_zone(zone)) \
996 ; /* do nothing */ \
997 else
998
999 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1000 {
1001 return zoneref->zone;
1002 }
1003
1004 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1005 {
1006 return zoneref->zone_idx;
1007 }
1008
1009 static inline int zonelist_node_idx(struct zoneref *zoneref)
1010 {
1011 return zone_to_nid(zoneref->zone);
1012 }
1013
1014 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1015 enum zone_type highest_zoneidx,
1016 nodemask_t *nodes);
1017
1018 /**
1019 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1020 * @z - The cursor used as a starting point for the search
1021 * @highest_zoneidx - The zone index of the highest zone to return
1022 * @nodes - An optional nodemask to filter the zonelist with
1023 *
1024 * This function returns the next zone at or below a given zone index that is
1025 * within the allowed nodemask using a cursor as the starting point for the
1026 * search. The zoneref returned is a cursor that represents the current zone
1027 * being examined. It should be advanced by one before calling
1028 * next_zones_zonelist again.
1029 */
1030 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1031 enum zone_type highest_zoneidx,
1032 nodemask_t *nodes)
1033 {
1034 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1035 return z;
1036 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1037 }
1038
1039 /**
1040 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1041 * @zonelist - The zonelist to search for a suitable zone
1042 * @highest_zoneidx - The zone index of the highest zone to return
1043 * @nodes - An optional nodemask to filter the zonelist with
1044 * @return - Zoneref pointer for the first suitable zone found (see below)
1045 *
1046 * This function returns the first zone at or below a given zone index that is
1047 * within the allowed nodemask. The zoneref returned is a cursor that can be
1048 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1049 * one before calling.
1050 *
1051 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1052 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1053 * update due to cpuset modification.
1054 */
1055 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1056 enum zone_type highest_zoneidx,
1057 nodemask_t *nodes)
1058 {
1059 return next_zones_zonelist(zonelist->_zonerefs,
1060 highest_zoneidx, nodes);
1061 }
1062
1063 /**
1064 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1065 * @zone - The current zone in the iterator
1066 * @z - The current pointer within zonelist->zones being iterated
1067 * @zlist - The zonelist being iterated
1068 * @highidx - The zone index of the highest zone to return
1069 * @nodemask - Nodemask allowed by the allocator
1070 *
1071 * This iterator iterates though all zones at or below a given zone index and
1072 * within a given nodemask
1073 */
1074 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1075 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1076 zone; \
1077 z = next_zones_zonelist(++z, highidx, nodemask), \
1078 zone = zonelist_zone(z))
1079
1080 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1081 for (zone = z->zone; \
1082 zone; \
1083 z = next_zones_zonelist(++z, highidx, nodemask), \
1084 zone = zonelist_zone(z))
1085
1086
1087 /**
1088 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1089 * @zone - The current zone in the iterator
1090 * @z - The current pointer within zonelist->zones being iterated
1091 * @zlist - The zonelist being iterated
1092 * @highidx - The zone index of the highest zone to return
1093 *
1094 * This iterator iterates though all zones at or below a given zone index.
1095 */
1096 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1097 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1098
1099 #ifdef CONFIG_SPARSEMEM
1100 #include <asm/sparsemem.h>
1101 #endif
1102
1103 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1104 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1105 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1106 {
1107 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1108 return 0;
1109 }
1110 #endif
1111
1112 #ifdef CONFIG_FLATMEM
1113 #define pfn_to_nid(pfn) (0)
1114 #endif
1115
1116 #ifdef CONFIG_SPARSEMEM
1117
1118 /*
1119 * SECTION_SHIFT #bits space required to store a section #
1120 *
1121 * PA_SECTION_SHIFT physical address to/from section number
1122 * PFN_SECTION_SHIFT pfn to/from section number
1123 */
1124 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1125 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1126
1127 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1128
1129 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1130 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1131
1132 #define SECTION_BLOCKFLAGS_BITS \
1133 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1134
1135 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1136 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1137 #endif
1138
1139 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1140 {
1141 return pfn >> PFN_SECTION_SHIFT;
1142 }
1143 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1144 {
1145 return sec << PFN_SECTION_SHIFT;
1146 }
1147
1148 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1149 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1150
1151 #define SUBSECTION_SHIFT 21
1152
1153 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1154 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1155 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1156
1157 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1158 #error Subsection size exceeds section size
1159 #else
1160 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1161 #endif
1162
1163 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1164 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1165
1166 struct mem_section_usage {
1167 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1168 /* See declaration of similar field in struct zone */
1169 unsigned long pageblock_flags[0];
1170 };
1171
1172 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1173
1174 struct page;
1175 struct page_ext;
1176 struct mem_section {
1177 /*
1178 * This is, logically, a pointer to an array of struct
1179 * pages. However, it is stored with some other magic.
1180 * (see sparse.c::sparse_init_one_section())
1181 *
1182 * Additionally during early boot we encode node id of
1183 * the location of the section here to guide allocation.
1184 * (see sparse.c::memory_present())
1185 *
1186 * Making it a UL at least makes someone do a cast
1187 * before using it wrong.
1188 */
1189 unsigned long section_mem_map;
1190
1191 struct mem_section_usage *usage;
1192 #ifdef CONFIG_PAGE_EXTENSION
1193 /*
1194 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1195 * section. (see page_ext.h about this.)
1196 */
1197 struct page_ext *page_ext;
1198 unsigned long pad;
1199 #endif
1200 /*
1201 * WARNING: mem_section must be a power-of-2 in size for the
1202 * calculation and use of SECTION_ROOT_MASK to make sense.
1203 */
1204 };
1205
1206 #ifdef CONFIG_SPARSEMEM_EXTREME
1207 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1208 #else
1209 #define SECTIONS_PER_ROOT 1
1210 #endif
1211
1212 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1213 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1214 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1215
1216 #ifdef CONFIG_SPARSEMEM_EXTREME
1217 extern struct mem_section **mem_section;
1218 #else
1219 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1220 #endif
1221
1222 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1223 {
1224 return ms->usage->pageblock_flags;
1225 }
1226
1227 static inline struct mem_section *__nr_to_section(unsigned long nr)
1228 {
1229 #ifdef CONFIG_SPARSEMEM_EXTREME
1230 if (!mem_section)
1231 return NULL;
1232 #endif
1233 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1234 return NULL;
1235 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1236 }
1237 extern unsigned long __section_nr(struct mem_section *ms);
1238 extern size_t mem_section_usage_size(void);
1239
1240 /*
1241 * We use the lower bits of the mem_map pointer to store
1242 * a little bit of information. The pointer is calculated
1243 * as mem_map - section_nr_to_pfn(pnum). The result is
1244 * aligned to the minimum alignment of the two values:
1245 * 1. All mem_map arrays are page-aligned.
1246 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1247 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1248 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1249 * worst combination is powerpc with 256k pages,
1250 * which results in PFN_SECTION_SHIFT equal 6.
1251 * To sum it up, at least 6 bits are available.
1252 */
1253 #define SECTION_MARKED_PRESENT (1UL<<0)
1254 #define SECTION_HAS_MEM_MAP (1UL<<1)
1255 #define SECTION_IS_ONLINE (1UL<<2)
1256 #define SECTION_IS_EARLY (1UL<<3)
1257 #define SECTION_MAP_LAST_BIT (1UL<<4)
1258 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1259 #define SECTION_NID_SHIFT 3
1260
1261 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1262 {
1263 unsigned long map = section->section_mem_map;
1264 map &= SECTION_MAP_MASK;
1265 return (struct page *)map;
1266 }
1267
1268 static inline int present_section(struct mem_section *section)
1269 {
1270 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1271 }
1272
1273 static inline int present_section_nr(unsigned long nr)
1274 {
1275 return present_section(__nr_to_section(nr));
1276 }
1277
1278 static inline int valid_section(struct mem_section *section)
1279 {
1280 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1281 }
1282
1283 static inline int early_section(struct mem_section *section)
1284 {
1285 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1286 }
1287
1288 static inline int valid_section_nr(unsigned long nr)
1289 {
1290 return valid_section(__nr_to_section(nr));
1291 }
1292
1293 static inline int online_section(struct mem_section *section)
1294 {
1295 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1296 }
1297
1298 static inline int online_section_nr(unsigned long nr)
1299 {
1300 return online_section(__nr_to_section(nr));
1301 }
1302
1303 #ifdef CONFIG_MEMORY_HOTPLUG
1304 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1305 #ifdef CONFIG_MEMORY_HOTREMOVE
1306 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1307 #endif
1308 #endif
1309
1310 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1311 {
1312 return __nr_to_section(pfn_to_section_nr(pfn));
1313 }
1314
1315 extern unsigned long __highest_present_section_nr;
1316
1317 static inline int subsection_map_index(unsigned long pfn)
1318 {
1319 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1320 }
1321
1322 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1323 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1324 {
1325 int idx = subsection_map_index(pfn);
1326
1327 return test_bit(idx, ms->usage->subsection_map);
1328 }
1329 #else
1330 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1331 {
1332 return 1;
1333 }
1334 #endif
1335
1336 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1337 static inline int pfn_valid(unsigned long pfn)
1338 {
1339 struct mem_section *ms;
1340
1341 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1342 return 0;
1343 ms = __nr_to_section(pfn_to_section_nr(pfn));
1344 if (!valid_section(ms))
1345 return 0;
1346 /*
1347 * Traditionally early sections always returned pfn_valid() for
1348 * the entire section-sized span.
1349 */
1350 return early_section(ms) || pfn_section_valid(ms, pfn);
1351 }
1352 #endif
1353
1354 static inline int pfn_present(unsigned long pfn)
1355 {
1356 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1357 return 0;
1358 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1359 }
1360
1361 /*
1362 * These are _only_ used during initialisation, therefore they
1363 * can use __initdata ... They could have names to indicate
1364 * this restriction.
1365 */
1366 #ifdef CONFIG_NUMA
1367 #define pfn_to_nid(pfn) \
1368 ({ \
1369 unsigned long __pfn_to_nid_pfn = (pfn); \
1370 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1371 })
1372 #else
1373 #define pfn_to_nid(pfn) (0)
1374 #endif
1375
1376 #define early_pfn_valid(pfn) pfn_valid(pfn)
1377 void sparse_init(void);
1378 #else
1379 #define sparse_init() do {} while (0)
1380 #define sparse_index_init(_sec, _nid) do {} while (0)
1381 #define pfn_present pfn_valid
1382 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1383 #endif /* CONFIG_SPARSEMEM */
1384
1385 /*
1386 * During memory init memblocks map pfns to nids. The search is expensive and
1387 * this caches recent lookups. The implementation of __early_pfn_to_nid
1388 * may treat start/end as pfns or sections.
1389 */
1390 struct mminit_pfnnid_cache {
1391 unsigned long last_start;
1392 unsigned long last_end;
1393 int last_nid;
1394 };
1395
1396 #ifndef early_pfn_valid
1397 #define early_pfn_valid(pfn) (1)
1398 #endif
1399
1400 void memory_present(int nid, unsigned long start, unsigned long end);
1401
1402 /*
1403 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1404 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1405 * pfn_valid_within() should be used in this case; we optimise this away
1406 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1407 */
1408 #ifdef CONFIG_HOLES_IN_ZONE
1409 #define pfn_valid_within(pfn) pfn_valid(pfn)
1410 #else
1411 #define pfn_valid_within(pfn) (1)
1412 #endif
1413
1414 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1415 /*
1416 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1417 * associated with it or not. This means that a struct page exists for this
1418 * pfn. The caller cannot assume the page is fully initialized in general.
1419 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1420 * will ensure the struct page is fully online and initialized. Special pages
1421 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1422 *
1423 * In FLATMEM, it is expected that holes always have valid memmap as long as
1424 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1425 * that a valid section has a memmap for the entire section.
1426 *
1427 * However, an ARM, and maybe other embedded architectures in the future
1428 * free memmap backing holes to save memory on the assumption the memmap is
1429 * never used. The page_zone linkages are then broken even though pfn_valid()
1430 * returns true. A walker of the full memmap must then do this additional
1431 * check to ensure the memmap they are looking at is sane by making sure
1432 * the zone and PFN linkages are still valid. This is expensive, but walkers
1433 * of the full memmap are extremely rare.
1434 */
1435 bool memmap_valid_within(unsigned long pfn,
1436 struct page *page, struct zone *zone);
1437 #else
1438 static inline bool memmap_valid_within(unsigned long pfn,
1439 struct page *page, struct zone *zone)
1440 {
1441 return true;
1442 }
1443 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1444
1445 #endif /* !__GENERATING_BOUNDS.H */
1446 #endif /* !__ASSEMBLY__ */
1447 #endif /* _LINUX_MMZONE_H */