]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/mmzone.h
page allocator: use allocation flags as an index to the zone watermark
[mirror_ubuntu-hirsute-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_RESERVE 3
42 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
43 #define MIGRATE_TYPES 5
44
45 #define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
49 extern int page_group_by_mobility_disabled;
50
51 static inline int get_pageblock_migratetype(struct page *page)
52 {
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
54 }
55
56 struct free_area {
57 struct list_head free_list[MIGRATE_TYPES];
58 unsigned long nr_free;
59 };
60
61 struct pglist_data;
62
63 /*
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
68 */
69 #if defined(CONFIG_SMP)
70 struct zone_padding {
71 char x[0];
72 } ____cacheline_internodealigned_in_smp;
73 #define ZONE_PADDING(name) struct zone_padding name;
74 #else
75 #define ZONE_PADDING(name)
76 #endif
77
78 enum zone_stat_item {
79 /* First 128 byte cacheline (assuming 64 bit words) */
80 NR_FREE_PAGES,
81 NR_LRU_BASE,
82 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
83 NR_ACTIVE_ANON, /* " " " " " */
84 NR_INACTIVE_FILE, /* " " " " " */
85 NR_ACTIVE_FILE, /* " " " " " */
86 #ifdef CONFIG_UNEVICTABLE_LRU
87 NR_UNEVICTABLE, /* " " " " " */
88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
89 #else
90 NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */
91 NR_MLOCK = NR_ACTIVE_FILE,
92 #endif
93 NR_ANON_PAGES, /* Mapped anonymous pages */
94 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
95 only modified from process context */
96 NR_FILE_PAGES,
97 NR_FILE_DIRTY,
98 NR_WRITEBACK,
99 NR_SLAB_RECLAIMABLE,
100 NR_SLAB_UNRECLAIMABLE,
101 NR_PAGETABLE, /* used for pagetables */
102 NR_UNSTABLE_NFS, /* NFS unstable pages */
103 NR_BOUNCE,
104 NR_VMSCAN_WRITE,
105 /* Second 128 byte cacheline */
106 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
107 #ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114 #endif
115 NR_VM_ZONE_STAT_ITEMS };
116
117 /*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126 #define LRU_BASE 0
127 #define LRU_ACTIVE 1
128 #define LRU_FILE 2
129
130 enum lru_list {
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
135 #ifdef CONFIG_UNEVICTABLE_LRU
136 LRU_UNEVICTABLE,
137 #else
138 LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */
139 #endif
140 NR_LRU_LISTS
141 };
142
143 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
144
145 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
146
147 static inline int is_file_lru(enum lru_list l)
148 {
149 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
150 }
151
152 static inline int is_active_lru(enum lru_list l)
153 {
154 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
155 }
156
157 static inline int is_unevictable_lru(enum lru_list l)
158 {
159 #ifdef CONFIG_UNEVICTABLE_LRU
160 return (l == LRU_UNEVICTABLE);
161 #else
162 return 0;
163 #endif
164 }
165
166 enum zone_watermarks {
167 WMARK_MIN,
168 WMARK_LOW,
169 WMARK_HIGH,
170 NR_WMARK
171 };
172
173 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
174 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
175 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
176
177 struct per_cpu_pages {
178 int count; /* number of pages in the list */
179 int high; /* high watermark, emptying needed */
180 int batch; /* chunk size for buddy add/remove */
181 struct list_head list; /* the list of pages */
182 };
183
184 struct per_cpu_pageset {
185 struct per_cpu_pages pcp;
186 #ifdef CONFIG_NUMA
187 s8 expire;
188 #endif
189 #ifdef CONFIG_SMP
190 s8 stat_threshold;
191 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
192 #endif
193 } ____cacheline_aligned_in_smp;
194
195 #ifdef CONFIG_NUMA
196 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
197 #else
198 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
199 #endif
200
201 #endif /* !__GENERATING_BOUNDS.H */
202
203 enum zone_type {
204 #ifdef CONFIG_ZONE_DMA
205 /*
206 * ZONE_DMA is used when there are devices that are not able
207 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
208 * carve out the portion of memory that is needed for these devices.
209 * The range is arch specific.
210 *
211 * Some examples
212 *
213 * Architecture Limit
214 * ---------------------------
215 * parisc, ia64, sparc <4G
216 * s390 <2G
217 * arm Various
218 * alpha Unlimited or 0-16MB.
219 *
220 * i386, x86_64 and multiple other arches
221 * <16M.
222 */
223 ZONE_DMA,
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 /*
227 * x86_64 needs two ZONE_DMAs because it supports devices that are
228 * only able to do DMA to the lower 16M but also 32 bit devices that
229 * can only do DMA areas below 4G.
230 */
231 ZONE_DMA32,
232 #endif
233 /*
234 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
235 * performed on pages in ZONE_NORMAL if the DMA devices support
236 * transfers to all addressable memory.
237 */
238 ZONE_NORMAL,
239 #ifdef CONFIG_HIGHMEM
240 /*
241 * A memory area that is only addressable by the kernel through
242 * mapping portions into its own address space. This is for example
243 * used by i386 to allow the kernel to address the memory beyond
244 * 900MB. The kernel will set up special mappings (page
245 * table entries on i386) for each page that the kernel needs to
246 * access.
247 */
248 ZONE_HIGHMEM,
249 #endif
250 ZONE_MOVABLE,
251 __MAX_NR_ZONES
252 };
253
254 #ifndef __GENERATING_BOUNDS_H
255
256 /*
257 * When a memory allocation must conform to specific limitations (such
258 * as being suitable for DMA) the caller will pass in hints to the
259 * allocator in the gfp_mask, in the zone modifier bits. These bits
260 * are used to select a priority ordered list of memory zones which
261 * match the requested limits. See gfp_zone() in include/linux/gfp.h
262 */
263
264 #if MAX_NR_ZONES < 2
265 #define ZONES_SHIFT 0
266 #elif MAX_NR_ZONES <= 2
267 #define ZONES_SHIFT 1
268 #elif MAX_NR_ZONES <= 4
269 #define ZONES_SHIFT 2
270 #else
271 #error ZONES_SHIFT -- too many zones configured adjust calculation
272 #endif
273
274 struct zone_reclaim_stat {
275 /*
276 * The pageout code in vmscan.c keeps track of how many of the
277 * mem/swap backed and file backed pages are refeferenced.
278 * The higher the rotated/scanned ratio, the more valuable
279 * that cache is.
280 *
281 * The anon LRU stats live in [0], file LRU stats in [1]
282 */
283 unsigned long recent_rotated[2];
284 unsigned long recent_scanned[2];
285 };
286
287 struct zone {
288 /* Fields commonly accessed by the page allocator */
289
290 /* zone watermarks, access with *_wmark_pages(zone) macros */
291 unsigned long watermark[NR_WMARK];
292
293 /*
294 * We don't know if the memory that we're going to allocate will be freeable
295 * or/and it will be released eventually, so to avoid totally wasting several
296 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
297 * to run OOM on the lower zones despite there's tons of freeable ram
298 * on the higher zones). This array is recalculated at runtime if the
299 * sysctl_lowmem_reserve_ratio sysctl changes.
300 */
301 unsigned long lowmem_reserve[MAX_NR_ZONES];
302
303 #ifdef CONFIG_NUMA
304 int node;
305 /*
306 * zone reclaim becomes active if more unmapped pages exist.
307 */
308 unsigned long min_unmapped_pages;
309 unsigned long min_slab_pages;
310 struct per_cpu_pageset *pageset[NR_CPUS];
311 #else
312 struct per_cpu_pageset pageset[NR_CPUS];
313 #endif
314 /*
315 * free areas of different sizes
316 */
317 spinlock_t lock;
318 #ifdef CONFIG_MEMORY_HOTPLUG
319 /* see spanned/present_pages for more description */
320 seqlock_t span_seqlock;
321 #endif
322 struct free_area free_area[MAX_ORDER];
323
324 #ifndef CONFIG_SPARSEMEM
325 /*
326 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
327 * In SPARSEMEM, this map is stored in struct mem_section
328 */
329 unsigned long *pageblock_flags;
330 #endif /* CONFIG_SPARSEMEM */
331
332
333 ZONE_PADDING(_pad1_)
334
335 /* Fields commonly accessed by the page reclaim scanner */
336 spinlock_t lru_lock;
337 struct {
338 struct list_head list;
339 unsigned long nr_scan;
340 } lru[NR_LRU_LISTS];
341
342 struct zone_reclaim_stat reclaim_stat;
343
344 unsigned long pages_scanned; /* since last reclaim */
345 unsigned long flags; /* zone flags, see below */
346
347 /* Zone statistics */
348 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
349
350 /*
351 * prev_priority holds the scanning priority for this zone. It is
352 * defined as the scanning priority at which we achieved our reclaim
353 * target at the previous try_to_free_pages() or balance_pgdat()
354 * invokation.
355 *
356 * We use prev_priority as a measure of how much stress page reclaim is
357 * under - it drives the swappiness decision: whether to unmap mapped
358 * pages.
359 *
360 * Access to both this field is quite racy even on uniprocessor. But
361 * it is expected to average out OK.
362 */
363 int prev_priority;
364
365 /*
366 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
367 * this zone's LRU. Maintained by the pageout code.
368 */
369 unsigned int inactive_ratio;
370
371
372 ZONE_PADDING(_pad2_)
373 /* Rarely used or read-mostly fields */
374
375 /*
376 * wait_table -- the array holding the hash table
377 * wait_table_hash_nr_entries -- the size of the hash table array
378 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
379 *
380 * The purpose of all these is to keep track of the people
381 * waiting for a page to become available and make them
382 * runnable again when possible. The trouble is that this
383 * consumes a lot of space, especially when so few things
384 * wait on pages at a given time. So instead of using
385 * per-page waitqueues, we use a waitqueue hash table.
386 *
387 * The bucket discipline is to sleep on the same queue when
388 * colliding and wake all in that wait queue when removing.
389 * When something wakes, it must check to be sure its page is
390 * truly available, a la thundering herd. The cost of a
391 * collision is great, but given the expected load of the
392 * table, they should be so rare as to be outweighed by the
393 * benefits from the saved space.
394 *
395 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
396 * primary users of these fields, and in mm/page_alloc.c
397 * free_area_init_core() performs the initialization of them.
398 */
399 wait_queue_head_t * wait_table;
400 unsigned long wait_table_hash_nr_entries;
401 unsigned long wait_table_bits;
402
403 /*
404 * Discontig memory support fields.
405 */
406 struct pglist_data *zone_pgdat;
407 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
408 unsigned long zone_start_pfn;
409
410 /*
411 * zone_start_pfn, spanned_pages and present_pages are all
412 * protected by span_seqlock. It is a seqlock because it has
413 * to be read outside of zone->lock, and it is done in the main
414 * allocator path. But, it is written quite infrequently.
415 *
416 * The lock is declared along with zone->lock because it is
417 * frequently read in proximity to zone->lock. It's good to
418 * give them a chance of being in the same cacheline.
419 */
420 unsigned long spanned_pages; /* total size, including holes */
421 unsigned long present_pages; /* amount of memory (excluding holes) */
422
423 /*
424 * rarely used fields:
425 */
426 const char *name;
427 } ____cacheline_internodealigned_in_smp;
428
429 typedef enum {
430 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
431 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
432 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
433 } zone_flags_t;
434
435 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
436 {
437 set_bit(flag, &zone->flags);
438 }
439
440 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
441 {
442 return test_and_set_bit(flag, &zone->flags);
443 }
444
445 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
446 {
447 clear_bit(flag, &zone->flags);
448 }
449
450 static inline int zone_is_all_unreclaimable(const struct zone *zone)
451 {
452 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
453 }
454
455 static inline int zone_is_reclaim_locked(const struct zone *zone)
456 {
457 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
458 }
459
460 static inline int zone_is_oom_locked(const struct zone *zone)
461 {
462 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
463 }
464
465 /*
466 * The "priority" of VM scanning is how much of the queues we will scan in one
467 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
468 * queues ("queue_length >> 12") during an aging round.
469 */
470 #define DEF_PRIORITY 12
471
472 /* Maximum number of zones on a zonelist */
473 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
474
475 #ifdef CONFIG_NUMA
476
477 /*
478 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
479 * allocations to a single node for GFP_THISNODE.
480 *
481 * [0] : Zonelist with fallback
482 * [1] : No fallback (GFP_THISNODE)
483 */
484 #define MAX_ZONELISTS 2
485
486
487 /*
488 * We cache key information from each zonelist for smaller cache
489 * footprint when scanning for free pages in get_page_from_freelist().
490 *
491 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
492 * up short of free memory since the last time (last_fullzone_zap)
493 * we zero'd fullzones.
494 * 2) The array z_to_n[] maps each zone in the zonelist to its node
495 * id, so that we can efficiently evaluate whether that node is
496 * set in the current tasks mems_allowed.
497 *
498 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
499 * indexed by a zones offset in the zonelist zones[] array.
500 *
501 * The get_page_from_freelist() routine does two scans. During the
502 * first scan, we skip zones whose corresponding bit in 'fullzones'
503 * is set or whose corresponding node in current->mems_allowed (which
504 * comes from cpusets) is not set. During the second scan, we bypass
505 * this zonelist_cache, to ensure we look methodically at each zone.
506 *
507 * Once per second, we zero out (zap) fullzones, forcing us to
508 * reconsider nodes that might have regained more free memory.
509 * The field last_full_zap is the time we last zapped fullzones.
510 *
511 * This mechanism reduces the amount of time we waste repeatedly
512 * reexaming zones for free memory when they just came up low on
513 * memory momentarilly ago.
514 *
515 * The zonelist_cache struct members logically belong in struct
516 * zonelist. However, the mempolicy zonelists constructed for
517 * MPOL_BIND are intentionally variable length (and usually much
518 * shorter). A general purpose mechanism for handling structs with
519 * multiple variable length members is more mechanism than we want
520 * here. We resort to some special case hackery instead.
521 *
522 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
523 * part because they are shorter), so we put the fixed length stuff
524 * at the front of the zonelist struct, ending in a variable length
525 * zones[], as is needed by MPOL_BIND.
526 *
527 * Then we put the optional zonelist cache on the end of the zonelist
528 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
529 * the fixed length portion at the front of the struct. This pointer
530 * both enables us to find the zonelist cache, and in the case of
531 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
532 * to know that the zonelist cache is not there.
533 *
534 * The end result is that struct zonelists come in two flavors:
535 * 1) The full, fixed length version, shown below, and
536 * 2) The custom zonelists for MPOL_BIND.
537 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
538 *
539 * Even though there may be multiple CPU cores on a node modifying
540 * fullzones or last_full_zap in the same zonelist_cache at the same
541 * time, we don't lock it. This is just hint data - if it is wrong now
542 * and then, the allocator will still function, perhaps a bit slower.
543 */
544
545
546 struct zonelist_cache {
547 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
548 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
549 unsigned long last_full_zap; /* when last zap'd (jiffies) */
550 };
551 #else
552 #define MAX_ZONELISTS 1
553 struct zonelist_cache;
554 #endif
555
556 /*
557 * This struct contains information about a zone in a zonelist. It is stored
558 * here to avoid dereferences into large structures and lookups of tables
559 */
560 struct zoneref {
561 struct zone *zone; /* Pointer to actual zone */
562 int zone_idx; /* zone_idx(zoneref->zone) */
563 };
564
565 /*
566 * One allocation request operates on a zonelist. A zonelist
567 * is a list of zones, the first one is the 'goal' of the
568 * allocation, the other zones are fallback zones, in decreasing
569 * priority.
570 *
571 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
572 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
573 * *
574 * To speed the reading of the zonelist, the zonerefs contain the zone index
575 * of the entry being read. Helper functions to access information given
576 * a struct zoneref are
577 *
578 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
579 * zonelist_zone_idx() - Return the index of the zone for an entry
580 * zonelist_node_idx() - Return the index of the node for an entry
581 */
582 struct zonelist {
583 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
584 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
585 #ifdef CONFIG_NUMA
586 struct zonelist_cache zlcache; // optional ...
587 #endif
588 };
589
590 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
591 struct node_active_region {
592 unsigned long start_pfn;
593 unsigned long end_pfn;
594 int nid;
595 };
596 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
597
598 #ifndef CONFIG_DISCONTIGMEM
599 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
600 extern struct page *mem_map;
601 #endif
602
603 /*
604 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
605 * (mostly NUMA machines?) to denote a higher-level memory zone than the
606 * zone denotes.
607 *
608 * On NUMA machines, each NUMA node would have a pg_data_t to describe
609 * it's memory layout.
610 *
611 * Memory statistics and page replacement data structures are maintained on a
612 * per-zone basis.
613 */
614 struct bootmem_data;
615 typedef struct pglist_data {
616 struct zone node_zones[MAX_NR_ZONES];
617 struct zonelist node_zonelists[MAX_ZONELISTS];
618 int nr_zones;
619 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
620 struct page *node_mem_map;
621 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
622 struct page_cgroup *node_page_cgroup;
623 #endif
624 #endif
625 struct bootmem_data *bdata;
626 #ifdef CONFIG_MEMORY_HOTPLUG
627 /*
628 * Must be held any time you expect node_start_pfn, node_present_pages
629 * or node_spanned_pages stay constant. Holding this will also
630 * guarantee that any pfn_valid() stays that way.
631 *
632 * Nests above zone->lock and zone->size_seqlock.
633 */
634 spinlock_t node_size_lock;
635 #endif
636 unsigned long node_start_pfn;
637 unsigned long node_present_pages; /* total number of physical pages */
638 unsigned long node_spanned_pages; /* total size of physical page
639 range, including holes */
640 int node_id;
641 wait_queue_head_t kswapd_wait;
642 struct task_struct *kswapd;
643 int kswapd_max_order;
644 } pg_data_t;
645
646 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
647 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
648 #ifdef CONFIG_FLAT_NODE_MEM_MAP
649 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
650 #else
651 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
652 #endif
653 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
654
655 #include <linux/memory_hotplug.h>
656
657 void get_zone_counts(unsigned long *active, unsigned long *inactive,
658 unsigned long *free);
659 void build_all_zonelists(void);
660 void wakeup_kswapd(struct zone *zone, int order);
661 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
662 int classzone_idx, int alloc_flags);
663 enum memmap_context {
664 MEMMAP_EARLY,
665 MEMMAP_HOTPLUG,
666 };
667 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
668 unsigned long size,
669 enum memmap_context context);
670
671 #ifdef CONFIG_HAVE_MEMORY_PRESENT
672 void memory_present(int nid, unsigned long start, unsigned long end);
673 #else
674 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
675 #endif
676
677 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
678 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
679 #endif
680
681 /*
682 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
683 */
684 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
685
686 static inline int populated_zone(struct zone *zone)
687 {
688 return (!!zone->present_pages);
689 }
690
691 extern int movable_zone;
692
693 static inline int zone_movable_is_highmem(void)
694 {
695 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
696 return movable_zone == ZONE_HIGHMEM;
697 #else
698 return 0;
699 #endif
700 }
701
702 static inline int is_highmem_idx(enum zone_type idx)
703 {
704 #ifdef CONFIG_HIGHMEM
705 return (idx == ZONE_HIGHMEM ||
706 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
707 #else
708 return 0;
709 #endif
710 }
711
712 static inline int is_normal_idx(enum zone_type idx)
713 {
714 return (idx == ZONE_NORMAL);
715 }
716
717 /**
718 * is_highmem - helper function to quickly check if a struct zone is a
719 * highmem zone or not. This is an attempt to keep references
720 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
721 * @zone - pointer to struct zone variable
722 */
723 static inline int is_highmem(struct zone *zone)
724 {
725 #ifdef CONFIG_HIGHMEM
726 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
727 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
728 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
729 zone_movable_is_highmem());
730 #else
731 return 0;
732 #endif
733 }
734
735 static inline int is_normal(struct zone *zone)
736 {
737 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
738 }
739
740 static inline int is_dma32(struct zone *zone)
741 {
742 #ifdef CONFIG_ZONE_DMA32
743 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
744 #else
745 return 0;
746 #endif
747 }
748
749 static inline int is_dma(struct zone *zone)
750 {
751 #ifdef CONFIG_ZONE_DMA
752 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
753 #else
754 return 0;
755 #endif
756 }
757
758 /* These two functions are used to setup the per zone pages min values */
759 struct ctl_table;
760 struct file;
761 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
762 void __user *, size_t *, loff_t *);
763 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
764 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
765 void __user *, size_t *, loff_t *);
766 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
767 void __user *, size_t *, loff_t *);
768 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
769 struct file *, void __user *, size_t *, loff_t *);
770 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
771 struct file *, void __user *, size_t *, loff_t *);
772
773 extern int numa_zonelist_order_handler(struct ctl_table *, int,
774 struct file *, void __user *, size_t *, loff_t *);
775 extern char numa_zonelist_order[];
776 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
777
778 #ifndef CONFIG_NEED_MULTIPLE_NODES
779
780 extern struct pglist_data contig_page_data;
781 #define NODE_DATA(nid) (&contig_page_data)
782 #define NODE_MEM_MAP(nid) mem_map
783
784 #else /* CONFIG_NEED_MULTIPLE_NODES */
785
786 #include <asm/mmzone.h>
787
788 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
789
790 extern struct pglist_data *first_online_pgdat(void);
791 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
792 extern struct zone *next_zone(struct zone *zone);
793
794 /**
795 * for_each_online_pgdat - helper macro to iterate over all online nodes
796 * @pgdat - pointer to a pg_data_t variable
797 */
798 #define for_each_online_pgdat(pgdat) \
799 for (pgdat = first_online_pgdat(); \
800 pgdat; \
801 pgdat = next_online_pgdat(pgdat))
802 /**
803 * for_each_zone - helper macro to iterate over all memory zones
804 * @zone - pointer to struct zone variable
805 *
806 * The user only needs to declare the zone variable, for_each_zone
807 * fills it in.
808 */
809 #define for_each_zone(zone) \
810 for (zone = (first_online_pgdat())->node_zones; \
811 zone; \
812 zone = next_zone(zone))
813
814 #define for_each_populated_zone(zone) \
815 for (zone = (first_online_pgdat())->node_zones; \
816 zone; \
817 zone = next_zone(zone)) \
818 if (!populated_zone(zone)) \
819 ; /* do nothing */ \
820 else
821
822 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
823 {
824 return zoneref->zone;
825 }
826
827 static inline int zonelist_zone_idx(struct zoneref *zoneref)
828 {
829 return zoneref->zone_idx;
830 }
831
832 static inline int zonelist_node_idx(struct zoneref *zoneref)
833 {
834 #ifdef CONFIG_NUMA
835 /* zone_to_nid not available in this context */
836 return zoneref->zone->node;
837 #else
838 return 0;
839 #endif /* CONFIG_NUMA */
840 }
841
842 /**
843 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
844 * @z - The cursor used as a starting point for the search
845 * @highest_zoneidx - The zone index of the highest zone to return
846 * @nodes - An optional nodemask to filter the zonelist with
847 * @zone - The first suitable zone found is returned via this parameter
848 *
849 * This function returns the next zone at or below a given zone index that is
850 * within the allowed nodemask using a cursor as the starting point for the
851 * search. The zoneref returned is a cursor that represents the current zone
852 * being examined. It should be advanced by one before calling
853 * next_zones_zonelist again.
854 */
855 struct zoneref *next_zones_zonelist(struct zoneref *z,
856 enum zone_type highest_zoneidx,
857 nodemask_t *nodes,
858 struct zone **zone);
859
860 /**
861 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
862 * @zonelist - The zonelist to search for a suitable zone
863 * @highest_zoneidx - The zone index of the highest zone to return
864 * @nodes - An optional nodemask to filter the zonelist with
865 * @zone - The first suitable zone found is returned via this parameter
866 *
867 * This function returns the first zone at or below a given zone index that is
868 * within the allowed nodemask. The zoneref returned is a cursor that can be
869 * used to iterate the zonelist with next_zones_zonelist by advancing it by
870 * one before calling.
871 */
872 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
873 enum zone_type highest_zoneidx,
874 nodemask_t *nodes,
875 struct zone **zone)
876 {
877 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
878 zone);
879 }
880
881 /**
882 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
883 * @zone - The current zone in the iterator
884 * @z - The current pointer within zonelist->zones being iterated
885 * @zlist - The zonelist being iterated
886 * @highidx - The zone index of the highest zone to return
887 * @nodemask - Nodemask allowed by the allocator
888 *
889 * This iterator iterates though all zones at or below a given zone index and
890 * within a given nodemask
891 */
892 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
893 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
894 zone; \
895 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
896
897 /**
898 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
899 * @zone - The current zone in the iterator
900 * @z - The current pointer within zonelist->zones being iterated
901 * @zlist - The zonelist being iterated
902 * @highidx - The zone index of the highest zone to return
903 *
904 * This iterator iterates though all zones at or below a given zone index.
905 */
906 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
907 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
908
909 #ifdef CONFIG_SPARSEMEM
910 #include <asm/sparsemem.h>
911 #endif
912
913 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
914 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
915 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
916 {
917 return 0;
918 }
919 #endif
920
921 #ifdef CONFIG_FLATMEM
922 #define pfn_to_nid(pfn) (0)
923 #endif
924
925 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
926 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
927
928 #ifdef CONFIG_SPARSEMEM
929
930 /*
931 * SECTION_SHIFT #bits space required to store a section #
932 *
933 * PA_SECTION_SHIFT physical address to/from section number
934 * PFN_SECTION_SHIFT pfn to/from section number
935 */
936 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
937
938 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
939 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
940
941 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
942
943 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
944 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
945
946 #define SECTION_BLOCKFLAGS_BITS \
947 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
948
949 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
950 #error Allocator MAX_ORDER exceeds SECTION_SIZE
951 #endif
952
953 struct page;
954 struct page_cgroup;
955 struct mem_section {
956 /*
957 * This is, logically, a pointer to an array of struct
958 * pages. However, it is stored with some other magic.
959 * (see sparse.c::sparse_init_one_section())
960 *
961 * Additionally during early boot we encode node id of
962 * the location of the section here to guide allocation.
963 * (see sparse.c::memory_present())
964 *
965 * Making it a UL at least makes someone do a cast
966 * before using it wrong.
967 */
968 unsigned long section_mem_map;
969
970 /* See declaration of similar field in struct zone */
971 unsigned long *pageblock_flags;
972 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
973 /*
974 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
975 * section. (see memcontrol.h/page_cgroup.h about this.)
976 */
977 struct page_cgroup *page_cgroup;
978 unsigned long pad;
979 #endif
980 };
981
982 #ifdef CONFIG_SPARSEMEM_EXTREME
983 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
984 #else
985 #define SECTIONS_PER_ROOT 1
986 #endif
987
988 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
989 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
990 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
991
992 #ifdef CONFIG_SPARSEMEM_EXTREME
993 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
994 #else
995 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
996 #endif
997
998 static inline struct mem_section *__nr_to_section(unsigned long nr)
999 {
1000 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1001 return NULL;
1002 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1003 }
1004 extern int __section_nr(struct mem_section* ms);
1005 extern unsigned long usemap_size(void);
1006
1007 /*
1008 * We use the lower bits of the mem_map pointer to store
1009 * a little bit of information. There should be at least
1010 * 3 bits here due to 32-bit alignment.
1011 */
1012 #define SECTION_MARKED_PRESENT (1UL<<0)
1013 #define SECTION_HAS_MEM_MAP (1UL<<1)
1014 #define SECTION_MAP_LAST_BIT (1UL<<2)
1015 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1016 #define SECTION_NID_SHIFT 2
1017
1018 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1019 {
1020 unsigned long map = section->section_mem_map;
1021 map &= SECTION_MAP_MASK;
1022 return (struct page *)map;
1023 }
1024
1025 static inline int present_section(struct mem_section *section)
1026 {
1027 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1028 }
1029
1030 static inline int present_section_nr(unsigned long nr)
1031 {
1032 return present_section(__nr_to_section(nr));
1033 }
1034
1035 static inline int valid_section(struct mem_section *section)
1036 {
1037 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1038 }
1039
1040 static inline int valid_section_nr(unsigned long nr)
1041 {
1042 return valid_section(__nr_to_section(nr));
1043 }
1044
1045 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1046 {
1047 return __nr_to_section(pfn_to_section_nr(pfn));
1048 }
1049
1050 static inline int pfn_valid(unsigned long pfn)
1051 {
1052 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1053 return 0;
1054 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1055 }
1056
1057 static inline int pfn_present(unsigned long pfn)
1058 {
1059 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1060 return 0;
1061 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1062 }
1063
1064 /*
1065 * These are _only_ used during initialisation, therefore they
1066 * can use __initdata ... They could have names to indicate
1067 * this restriction.
1068 */
1069 #ifdef CONFIG_NUMA
1070 #define pfn_to_nid(pfn) \
1071 ({ \
1072 unsigned long __pfn_to_nid_pfn = (pfn); \
1073 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1074 })
1075 #else
1076 #define pfn_to_nid(pfn) (0)
1077 #endif
1078
1079 #define early_pfn_valid(pfn) pfn_valid(pfn)
1080 void sparse_init(void);
1081 #else
1082 #define sparse_init() do {} while (0)
1083 #define sparse_index_init(_sec, _nid) do {} while (0)
1084 #endif /* CONFIG_SPARSEMEM */
1085
1086 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1087 bool early_pfn_in_nid(unsigned long pfn, int nid);
1088 #else
1089 #define early_pfn_in_nid(pfn, nid) (1)
1090 #endif
1091
1092 #ifndef early_pfn_valid
1093 #define early_pfn_valid(pfn) (1)
1094 #endif
1095
1096 void memory_present(int nid, unsigned long start, unsigned long end);
1097 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1098
1099 /*
1100 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1101 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1102 * pfn_valid_within() should be used in this case; we optimise this away
1103 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1104 */
1105 #ifdef CONFIG_HOLES_IN_ZONE
1106 #define pfn_valid_within(pfn) pfn_valid(pfn)
1107 #else
1108 #define pfn_valid_within(pfn) (1)
1109 #endif
1110
1111 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1112 /*
1113 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1114 * associated with it or not. In FLATMEM, it is expected that holes always
1115 * have valid memmap as long as there is valid PFNs either side of the hole.
1116 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1117 * entire section.
1118 *
1119 * However, an ARM, and maybe other embedded architectures in the future
1120 * free memmap backing holes to save memory on the assumption the memmap is
1121 * never used. The page_zone linkages are then broken even though pfn_valid()
1122 * returns true. A walker of the full memmap must then do this additional
1123 * check to ensure the memmap they are looking at is sane by making sure
1124 * the zone and PFN linkages are still valid. This is expensive, but walkers
1125 * of the full memmap are extremely rare.
1126 */
1127 int memmap_valid_within(unsigned long pfn,
1128 struct page *page, struct zone *zone);
1129 #else
1130 static inline int memmap_valid_within(unsigned long pfn,
1131 struct page *page, struct zone *zone)
1132 {
1133 return 1;
1134 }
1135 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1136
1137 #endif /* !__GENERATING_BOUNDS.H */
1138 #endif /* !__ASSEMBLY__ */
1139 #endif /* _LINUX_MMZONE_H */