]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/mmzone.h
Merge origin/master into drm-misc-fixes
[mirror_ubuntu-artful-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum migratetype {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72 #else
73 # define is_migrate_cma(migratetype) false
74 # define is_migrate_cma_page(_page) false
75 #endif
76
77 static inline bool is_migrate_movable(int mt)
78 {
79 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
80 }
81
82 #define for_each_migratetype_order(order, type) \
83 for (order = 0; order < MAX_ORDER; order++) \
84 for (type = 0; type < MIGRATE_TYPES; type++)
85
86 extern int page_group_by_mobility_disabled;
87
88 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
89 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
90
91 #define get_pageblock_migratetype(page) \
92 get_pfnblock_flags_mask(page, page_to_pfn(page), \
93 PB_migrate_end, MIGRATETYPE_MASK)
94
95 struct free_area {
96 struct list_head free_list[MIGRATE_TYPES];
97 unsigned long nr_free;
98 };
99
100 struct pglist_data;
101
102 /*
103 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
104 * So add a wild amount of padding here to ensure that they fall into separate
105 * cachelines. There are very few zone structures in the machine, so space
106 * consumption is not a concern here.
107 */
108 #if defined(CONFIG_SMP)
109 struct zone_padding {
110 char x[0];
111 } ____cacheline_internodealigned_in_smp;
112 #define ZONE_PADDING(name) struct zone_padding name;
113 #else
114 #define ZONE_PADDING(name)
115 #endif
116
117 enum zone_stat_item {
118 /* First 128 byte cacheline (assuming 64 bit words) */
119 NR_FREE_PAGES,
120 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
121 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
122 NR_ZONE_ACTIVE_ANON,
123 NR_ZONE_INACTIVE_FILE,
124 NR_ZONE_ACTIVE_FILE,
125 NR_ZONE_UNEVICTABLE,
126 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
127 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
128 NR_PAGETABLE, /* used for pagetables */
129 NR_KERNEL_STACK_KB, /* measured in KiB */
130 /* Second 128 byte cacheline */
131 NR_BOUNCE,
132 #if IS_ENABLED(CONFIG_ZSMALLOC)
133 NR_ZSPAGES, /* allocated in zsmalloc */
134 #endif
135 #ifdef CONFIG_NUMA
136 NUMA_HIT, /* allocated in intended node */
137 NUMA_MISS, /* allocated in non intended node */
138 NUMA_FOREIGN, /* was intended here, hit elsewhere */
139 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
140 NUMA_LOCAL, /* allocation from local node */
141 NUMA_OTHER, /* allocation from other node */
142 #endif
143 NR_FREE_CMA_PAGES,
144 NR_VM_ZONE_STAT_ITEMS };
145
146 enum node_stat_item {
147 NR_LRU_BASE,
148 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
149 NR_ACTIVE_ANON, /* " " " " " */
150 NR_INACTIVE_FILE, /* " " " " " */
151 NR_ACTIVE_FILE, /* " " " " " */
152 NR_UNEVICTABLE, /* " " " " " */
153 NR_SLAB_RECLAIMABLE,
154 NR_SLAB_UNRECLAIMABLE,
155 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
156 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
157 WORKINGSET_REFAULT,
158 WORKINGSET_ACTIVATE,
159 WORKINGSET_NODERECLAIM,
160 NR_ANON_MAPPED, /* Mapped anonymous pages */
161 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
162 only modified from process context */
163 NR_FILE_PAGES,
164 NR_FILE_DIRTY,
165 NR_WRITEBACK,
166 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
167 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
168 NR_SHMEM_THPS,
169 NR_SHMEM_PMDMAPPED,
170 NR_ANON_THPS,
171 NR_UNSTABLE_NFS, /* NFS unstable pages */
172 NR_VMSCAN_WRITE,
173 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
174 NR_DIRTIED, /* page dirtyings since bootup */
175 NR_WRITTEN, /* page writings since bootup */
176 NR_VM_NODE_STAT_ITEMS
177 };
178
179 /*
180 * We do arithmetic on the LRU lists in various places in the code,
181 * so it is important to keep the active lists LRU_ACTIVE higher in
182 * the array than the corresponding inactive lists, and to keep
183 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
184 *
185 * This has to be kept in sync with the statistics in zone_stat_item
186 * above and the descriptions in vmstat_text in mm/vmstat.c
187 */
188 #define LRU_BASE 0
189 #define LRU_ACTIVE 1
190 #define LRU_FILE 2
191
192 enum lru_list {
193 LRU_INACTIVE_ANON = LRU_BASE,
194 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
195 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
196 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
197 LRU_UNEVICTABLE,
198 NR_LRU_LISTS
199 };
200
201 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
202
203 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
204
205 static inline int is_file_lru(enum lru_list lru)
206 {
207 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
208 }
209
210 static inline int is_active_lru(enum lru_list lru)
211 {
212 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
213 }
214
215 struct zone_reclaim_stat {
216 /*
217 * The pageout code in vmscan.c keeps track of how many of the
218 * mem/swap backed and file backed pages are referenced.
219 * The higher the rotated/scanned ratio, the more valuable
220 * that cache is.
221 *
222 * The anon LRU stats live in [0], file LRU stats in [1]
223 */
224 unsigned long recent_rotated[2];
225 unsigned long recent_scanned[2];
226 };
227
228 struct lruvec {
229 struct list_head lists[NR_LRU_LISTS];
230 struct zone_reclaim_stat reclaim_stat;
231 /* Evictions & activations on the inactive file list */
232 atomic_long_t inactive_age;
233 /* Refaults at the time of last reclaim cycle */
234 unsigned long refaults;
235 #ifdef CONFIG_MEMCG
236 struct pglist_data *pgdat;
237 #endif
238 };
239
240 /* Mask used at gathering information at once (see memcontrol.c) */
241 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
242 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
243 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
244
245 /* Isolate unmapped file */
246 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
247 /* Isolate for asynchronous migration */
248 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
249 /* Isolate unevictable pages */
250 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
251
252 /* LRU Isolation modes. */
253 typedef unsigned __bitwise isolate_mode_t;
254
255 enum zone_watermarks {
256 WMARK_MIN,
257 WMARK_LOW,
258 WMARK_HIGH,
259 NR_WMARK
260 };
261
262 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
263 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
264 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
265
266 struct per_cpu_pages {
267 int count; /* number of pages in the list */
268 int high; /* high watermark, emptying needed */
269 int batch; /* chunk size for buddy add/remove */
270
271 /* Lists of pages, one per migrate type stored on the pcp-lists */
272 struct list_head lists[MIGRATE_PCPTYPES];
273 };
274
275 struct per_cpu_pageset {
276 struct per_cpu_pages pcp;
277 #ifdef CONFIG_NUMA
278 s8 expire;
279 #endif
280 #ifdef CONFIG_SMP
281 s8 stat_threshold;
282 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
283 #endif
284 };
285
286 struct per_cpu_nodestat {
287 s8 stat_threshold;
288 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
289 };
290
291 #endif /* !__GENERATING_BOUNDS.H */
292
293 enum zone_type {
294 #ifdef CONFIG_ZONE_DMA
295 /*
296 * ZONE_DMA is used when there are devices that are not able
297 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
298 * carve out the portion of memory that is needed for these devices.
299 * The range is arch specific.
300 *
301 * Some examples
302 *
303 * Architecture Limit
304 * ---------------------------
305 * parisc, ia64, sparc <4G
306 * s390 <2G
307 * arm Various
308 * alpha Unlimited or 0-16MB.
309 *
310 * i386, x86_64 and multiple other arches
311 * <16M.
312 */
313 ZONE_DMA,
314 #endif
315 #ifdef CONFIG_ZONE_DMA32
316 /*
317 * x86_64 needs two ZONE_DMAs because it supports devices that are
318 * only able to do DMA to the lower 16M but also 32 bit devices that
319 * can only do DMA areas below 4G.
320 */
321 ZONE_DMA32,
322 #endif
323 /*
324 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
325 * performed on pages in ZONE_NORMAL if the DMA devices support
326 * transfers to all addressable memory.
327 */
328 ZONE_NORMAL,
329 #ifdef CONFIG_HIGHMEM
330 /*
331 * A memory area that is only addressable by the kernel through
332 * mapping portions into its own address space. This is for example
333 * used by i386 to allow the kernel to address the memory beyond
334 * 900MB. The kernel will set up special mappings (page
335 * table entries on i386) for each page that the kernel needs to
336 * access.
337 */
338 ZONE_HIGHMEM,
339 #endif
340 ZONE_MOVABLE,
341 #ifdef CONFIG_ZONE_DEVICE
342 ZONE_DEVICE,
343 #endif
344 __MAX_NR_ZONES
345
346 };
347
348 #ifndef __GENERATING_BOUNDS_H
349
350 struct zone {
351 /* Read-mostly fields */
352
353 /* zone watermarks, access with *_wmark_pages(zone) macros */
354 unsigned long watermark[NR_WMARK];
355
356 unsigned long nr_reserved_highatomic;
357
358 /*
359 * We don't know if the memory that we're going to allocate will be
360 * freeable or/and it will be released eventually, so to avoid totally
361 * wasting several GB of ram we must reserve some of the lower zone
362 * memory (otherwise we risk to run OOM on the lower zones despite
363 * there being tons of freeable ram on the higher zones). This array is
364 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
365 * changes.
366 */
367 long lowmem_reserve[MAX_NR_ZONES];
368
369 #ifdef CONFIG_NUMA
370 int node;
371 #endif
372 struct pglist_data *zone_pgdat;
373 struct per_cpu_pageset __percpu *pageset;
374
375 #ifndef CONFIG_SPARSEMEM
376 /*
377 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
378 * In SPARSEMEM, this map is stored in struct mem_section
379 */
380 unsigned long *pageblock_flags;
381 #endif /* CONFIG_SPARSEMEM */
382
383 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
384 unsigned long zone_start_pfn;
385
386 /*
387 * spanned_pages is the total pages spanned by the zone, including
388 * holes, which is calculated as:
389 * spanned_pages = zone_end_pfn - zone_start_pfn;
390 *
391 * present_pages is physical pages existing within the zone, which
392 * is calculated as:
393 * present_pages = spanned_pages - absent_pages(pages in holes);
394 *
395 * managed_pages is present pages managed by the buddy system, which
396 * is calculated as (reserved_pages includes pages allocated by the
397 * bootmem allocator):
398 * managed_pages = present_pages - reserved_pages;
399 *
400 * So present_pages may be used by memory hotplug or memory power
401 * management logic to figure out unmanaged pages by checking
402 * (present_pages - managed_pages). And managed_pages should be used
403 * by page allocator and vm scanner to calculate all kinds of watermarks
404 * and thresholds.
405 *
406 * Locking rules:
407 *
408 * zone_start_pfn and spanned_pages are protected by span_seqlock.
409 * It is a seqlock because it has to be read outside of zone->lock,
410 * and it is done in the main allocator path. But, it is written
411 * quite infrequently.
412 *
413 * The span_seq lock is declared along with zone->lock because it is
414 * frequently read in proximity to zone->lock. It's good to
415 * give them a chance of being in the same cacheline.
416 *
417 * Write access to present_pages at runtime should be protected by
418 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
419 * present_pages should get_online_mems() to get a stable value.
420 *
421 * Read access to managed_pages should be safe because it's unsigned
422 * long. Write access to zone->managed_pages and totalram_pages are
423 * protected by managed_page_count_lock at runtime. Idealy only
424 * adjust_managed_page_count() should be used instead of directly
425 * touching zone->managed_pages and totalram_pages.
426 */
427 unsigned long managed_pages;
428 unsigned long spanned_pages;
429 unsigned long present_pages;
430
431 const char *name;
432
433 #ifdef CONFIG_MEMORY_ISOLATION
434 /*
435 * Number of isolated pageblock. It is used to solve incorrect
436 * freepage counting problem due to racy retrieving migratetype
437 * of pageblock. Protected by zone->lock.
438 */
439 unsigned long nr_isolate_pageblock;
440 #endif
441
442 #ifdef CONFIG_MEMORY_HOTPLUG
443 /* see spanned/present_pages for more description */
444 seqlock_t span_seqlock;
445 #endif
446
447 int initialized;
448
449 /* Write-intensive fields used from the page allocator */
450 ZONE_PADDING(_pad1_)
451
452 /* free areas of different sizes */
453 struct free_area free_area[MAX_ORDER];
454
455 /* zone flags, see below */
456 unsigned long flags;
457
458 /* Primarily protects free_area */
459 spinlock_t lock;
460
461 /* Write-intensive fields used by compaction and vmstats. */
462 ZONE_PADDING(_pad2_)
463
464 /*
465 * When free pages are below this point, additional steps are taken
466 * when reading the number of free pages to avoid per-cpu counter
467 * drift allowing watermarks to be breached
468 */
469 unsigned long percpu_drift_mark;
470
471 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
472 /* pfn where compaction free scanner should start */
473 unsigned long compact_cached_free_pfn;
474 /* pfn where async and sync compaction migration scanner should start */
475 unsigned long compact_cached_migrate_pfn[2];
476 #endif
477
478 #ifdef CONFIG_COMPACTION
479 /*
480 * On compaction failure, 1<<compact_defer_shift compactions
481 * are skipped before trying again. The number attempted since
482 * last failure is tracked with compact_considered.
483 */
484 unsigned int compact_considered;
485 unsigned int compact_defer_shift;
486 int compact_order_failed;
487 #endif
488
489 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
490 /* Set to true when the PG_migrate_skip bits should be cleared */
491 bool compact_blockskip_flush;
492 #endif
493
494 bool contiguous;
495
496 ZONE_PADDING(_pad3_)
497 /* Zone statistics */
498 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
499 } ____cacheline_internodealigned_in_smp;
500
501 enum pgdat_flags {
502 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
503 * a congested BDI
504 */
505 PGDAT_DIRTY, /* reclaim scanning has recently found
506 * many dirty file pages at the tail
507 * of the LRU.
508 */
509 PGDAT_WRITEBACK, /* reclaim scanning has recently found
510 * many pages under writeback
511 */
512 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
513 };
514
515 static inline unsigned long zone_end_pfn(const struct zone *zone)
516 {
517 return zone->zone_start_pfn + zone->spanned_pages;
518 }
519
520 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
521 {
522 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
523 }
524
525 static inline bool zone_is_initialized(struct zone *zone)
526 {
527 return zone->initialized;
528 }
529
530 static inline bool zone_is_empty(struct zone *zone)
531 {
532 return zone->spanned_pages == 0;
533 }
534
535 /*
536 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
537 * intersection with the given zone
538 */
539 static inline bool zone_intersects(struct zone *zone,
540 unsigned long start_pfn, unsigned long nr_pages)
541 {
542 if (zone_is_empty(zone))
543 return false;
544 if (start_pfn >= zone_end_pfn(zone) ||
545 start_pfn + nr_pages <= zone->zone_start_pfn)
546 return false;
547
548 return true;
549 }
550
551 /*
552 * The "priority" of VM scanning is how much of the queues we will scan in one
553 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
554 * queues ("queue_length >> 12") during an aging round.
555 */
556 #define DEF_PRIORITY 12
557
558 /* Maximum number of zones on a zonelist */
559 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
560
561 enum {
562 ZONELIST_FALLBACK, /* zonelist with fallback */
563 #ifdef CONFIG_NUMA
564 /*
565 * The NUMA zonelists are doubled because we need zonelists that
566 * restrict the allocations to a single node for __GFP_THISNODE.
567 */
568 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
569 #endif
570 MAX_ZONELISTS
571 };
572
573 /*
574 * This struct contains information about a zone in a zonelist. It is stored
575 * here to avoid dereferences into large structures and lookups of tables
576 */
577 struct zoneref {
578 struct zone *zone; /* Pointer to actual zone */
579 int zone_idx; /* zone_idx(zoneref->zone) */
580 };
581
582 /*
583 * One allocation request operates on a zonelist. A zonelist
584 * is a list of zones, the first one is the 'goal' of the
585 * allocation, the other zones are fallback zones, in decreasing
586 * priority.
587 *
588 * To speed the reading of the zonelist, the zonerefs contain the zone index
589 * of the entry being read. Helper functions to access information given
590 * a struct zoneref are
591 *
592 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
593 * zonelist_zone_idx() - Return the index of the zone for an entry
594 * zonelist_node_idx() - Return the index of the node for an entry
595 */
596 struct zonelist {
597 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
598 };
599
600 #ifndef CONFIG_DISCONTIGMEM
601 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
602 extern struct page *mem_map;
603 #endif
604
605 /*
606 * On NUMA machines, each NUMA node would have a pg_data_t to describe
607 * it's memory layout. On UMA machines there is a single pglist_data which
608 * describes the whole memory.
609 *
610 * Memory statistics and page replacement data structures are maintained on a
611 * per-zone basis.
612 */
613 struct bootmem_data;
614 typedef struct pglist_data {
615 struct zone node_zones[MAX_NR_ZONES];
616 struct zonelist node_zonelists[MAX_ZONELISTS];
617 int nr_zones;
618 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
619 struct page *node_mem_map;
620 #ifdef CONFIG_PAGE_EXTENSION
621 struct page_ext *node_page_ext;
622 #endif
623 #endif
624 #ifndef CONFIG_NO_BOOTMEM
625 struct bootmem_data *bdata;
626 #endif
627 #ifdef CONFIG_MEMORY_HOTPLUG
628 /*
629 * Must be held any time you expect node_start_pfn, node_present_pages
630 * or node_spanned_pages stay constant. Holding this will also
631 * guarantee that any pfn_valid() stays that way.
632 *
633 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
634 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
635 *
636 * Nests above zone->lock and zone->span_seqlock
637 */
638 spinlock_t node_size_lock;
639 #endif
640 unsigned long node_start_pfn;
641 unsigned long node_present_pages; /* total number of physical pages */
642 unsigned long node_spanned_pages; /* total size of physical page
643 range, including holes */
644 int node_id;
645 wait_queue_head_t kswapd_wait;
646 wait_queue_head_t pfmemalloc_wait;
647 struct task_struct *kswapd; /* Protected by
648 mem_hotplug_begin/end() */
649 int kswapd_order;
650 enum zone_type kswapd_classzone_idx;
651
652 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
653
654 #ifdef CONFIG_COMPACTION
655 int kcompactd_max_order;
656 enum zone_type kcompactd_classzone_idx;
657 wait_queue_head_t kcompactd_wait;
658 struct task_struct *kcompactd;
659 #endif
660 #ifdef CONFIG_NUMA_BALANCING
661 /* Lock serializing the migrate rate limiting window */
662 spinlock_t numabalancing_migrate_lock;
663
664 /* Rate limiting time interval */
665 unsigned long numabalancing_migrate_next_window;
666
667 /* Number of pages migrated during the rate limiting time interval */
668 unsigned long numabalancing_migrate_nr_pages;
669 #endif
670 /*
671 * This is a per-node reserve of pages that are not available
672 * to userspace allocations.
673 */
674 unsigned long totalreserve_pages;
675
676 #ifdef CONFIG_NUMA
677 /*
678 * zone reclaim becomes active if more unmapped pages exist.
679 */
680 unsigned long min_unmapped_pages;
681 unsigned long min_slab_pages;
682 #endif /* CONFIG_NUMA */
683
684 /* Write-intensive fields used by page reclaim */
685 ZONE_PADDING(_pad1_)
686 spinlock_t lru_lock;
687
688 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
689 /*
690 * If memory initialisation on large machines is deferred then this
691 * is the first PFN that needs to be initialised.
692 */
693 unsigned long first_deferred_pfn;
694 unsigned long static_init_size;
695 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
696
697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
698 spinlock_t split_queue_lock;
699 struct list_head split_queue;
700 unsigned long split_queue_len;
701 #endif
702
703 /* Fields commonly accessed by the page reclaim scanner */
704 struct lruvec lruvec;
705
706 /*
707 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
708 * this node's LRU. Maintained by the pageout code.
709 */
710 unsigned int inactive_ratio;
711
712 unsigned long flags;
713
714 ZONE_PADDING(_pad2_)
715
716 /* Per-node vmstats */
717 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
718 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
719 } pg_data_t;
720
721 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
722 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
723 #ifdef CONFIG_FLAT_NODE_MEM_MAP
724 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
725 #else
726 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
727 #endif
728 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
729
730 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
731 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
732 static inline spinlock_t *zone_lru_lock(struct zone *zone)
733 {
734 return &zone->zone_pgdat->lru_lock;
735 }
736
737 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
738 {
739 return &pgdat->lruvec;
740 }
741
742 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
743 {
744 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
745 }
746
747 static inline bool pgdat_is_empty(pg_data_t *pgdat)
748 {
749 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
750 }
751
752 static inline int zone_id(const struct zone *zone)
753 {
754 struct pglist_data *pgdat = zone->zone_pgdat;
755
756 return zone - pgdat->node_zones;
757 }
758
759 #ifdef CONFIG_ZONE_DEVICE
760 static inline bool is_dev_zone(const struct zone *zone)
761 {
762 return zone_id(zone) == ZONE_DEVICE;
763 }
764 #else
765 static inline bool is_dev_zone(const struct zone *zone)
766 {
767 return false;
768 }
769 #endif
770
771 #include <linux/memory_hotplug.h>
772
773 extern struct mutex zonelists_mutex;
774 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
775 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
776 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
777 int classzone_idx, unsigned int alloc_flags,
778 long free_pages);
779 bool zone_watermark_ok(struct zone *z, unsigned int order,
780 unsigned long mark, int classzone_idx,
781 unsigned int alloc_flags);
782 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
783 unsigned long mark, int classzone_idx);
784 enum memmap_context {
785 MEMMAP_EARLY,
786 MEMMAP_HOTPLUG,
787 };
788 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
789 unsigned long size);
790
791 extern void lruvec_init(struct lruvec *lruvec);
792
793 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
794 {
795 #ifdef CONFIG_MEMCG
796 return lruvec->pgdat;
797 #else
798 return container_of(lruvec, struct pglist_data, lruvec);
799 #endif
800 }
801
802 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
803
804 #ifdef CONFIG_HAVE_MEMORY_PRESENT
805 void memory_present(int nid, unsigned long start, unsigned long end);
806 #else
807 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
808 #endif
809
810 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
811 int local_memory_node(int node_id);
812 #else
813 static inline int local_memory_node(int node_id) { return node_id; };
814 #endif
815
816 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
817 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
818 #endif
819
820 /*
821 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
822 */
823 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
824
825 /*
826 * Returns true if a zone has pages managed by the buddy allocator.
827 * All the reclaim decisions have to use this function rather than
828 * populated_zone(). If the whole zone is reserved then we can easily
829 * end up with populated_zone() && !managed_zone().
830 */
831 static inline bool managed_zone(struct zone *zone)
832 {
833 return zone->managed_pages;
834 }
835
836 /* Returns true if a zone has memory */
837 static inline bool populated_zone(struct zone *zone)
838 {
839 return zone->present_pages;
840 }
841
842 extern int movable_zone;
843
844 #ifdef CONFIG_HIGHMEM
845 static inline int zone_movable_is_highmem(void)
846 {
847 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
848 return movable_zone == ZONE_HIGHMEM;
849 #else
850 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
851 #endif
852 }
853 #endif
854
855 static inline int is_highmem_idx(enum zone_type idx)
856 {
857 #ifdef CONFIG_HIGHMEM
858 return (idx == ZONE_HIGHMEM ||
859 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
860 #else
861 return 0;
862 #endif
863 }
864
865 /**
866 * is_highmem - helper function to quickly check if a struct zone is a
867 * highmem zone or not. This is an attempt to keep references
868 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
869 * @zone - pointer to struct zone variable
870 */
871 static inline int is_highmem(struct zone *zone)
872 {
873 #ifdef CONFIG_HIGHMEM
874 return is_highmem_idx(zone_idx(zone));
875 #else
876 return 0;
877 #endif
878 }
879
880 /* These two functions are used to setup the per zone pages min values */
881 struct ctl_table;
882 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
883 void __user *, size_t *, loff_t *);
884 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
885 void __user *, size_t *, loff_t *);
886 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
887 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
888 void __user *, size_t *, loff_t *);
889 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
890 void __user *, size_t *, loff_t *);
891 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
892 void __user *, size_t *, loff_t *);
893 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
894 void __user *, size_t *, loff_t *);
895
896 extern int numa_zonelist_order_handler(struct ctl_table *, int,
897 void __user *, size_t *, loff_t *);
898 extern char numa_zonelist_order[];
899 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
900
901 #ifndef CONFIG_NEED_MULTIPLE_NODES
902
903 extern struct pglist_data contig_page_data;
904 #define NODE_DATA(nid) (&contig_page_data)
905 #define NODE_MEM_MAP(nid) mem_map
906
907 #else /* CONFIG_NEED_MULTIPLE_NODES */
908
909 #include <asm/mmzone.h>
910
911 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
912
913 extern struct pglist_data *first_online_pgdat(void);
914 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
915 extern struct zone *next_zone(struct zone *zone);
916
917 /**
918 * for_each_online_pgdat - helper macro to iterate over all online nodes
919 * @pgdat - pointer to a pg_data_t variable
920 */
921 #define for_each_online_pgdat(pgdat) \
922 for (pgdat = first_online_pgdat(); \
923 pgdat; \
924 pgdat = next_online_pgdat(pgdat))
925 /**
926 * for_each_zone - helper macro to iterate over all memory zones
927 * @zone - pointer to struct zone variable
928 *
929 * The user only needs to declare the zone variable, for_each_zone
930 * fills it in.
931 */
932 #define for_each_zone(zone) \
933 for (zone = (first_online_pgdat())->node_zones; \
934 zone; \
935 zone = next_zone(zone))
936
937 #define for_each_populated_zone(zone) \
938 for (zone = (first_online_pgdat())->node_zones; \
939 zone; \
940 zone = next_zone(zone)) \
941 if (!populated_zone(zone)) \
942 ; /* do nothing */ \
943 else
944
945 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
946 {
947 return zoneref->zone;
948 }
949
950 static inline int zonelist_zone_idx(struct zoneref *zoneref)
951 {
952 return zoneref->zone_idx;
953 }
954
955 static inline int zonelist_node_idx(struct zoneref *zoneref)
956 {
957 #ifdef CONFIG_NUMA
958 /* zone_to_nid not available in this context */
959 return zoneref->zone->node;
960 #else
961 return 0;
962 #endif /* CONFIG_NUMA */
963 }
964
965 struct zoneref *__next_zones_zonelist(struct zoneref *z,
966 enum zone_type highest_zoneidx,
967 nodemask_t *nodes);
968
969 /**
970 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
971 * @z - The cursor used as a starting point for the search
972 * @highest_zoneidx - The zone index of the highest zone to return
973 * @nodes - An optional nodemask to filter the zonelist with
974 *
975 * This function returns the next zone at or below a given zone index that is
976 * within the allowed nodemask using a cursor as the starting point for the
977 * search. The zoneref returned is a cursor that represents the current zone
978 * being examined. It should be advanced by one before calling
979 * next_zones_zonelist again.
980 */
981 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
982 enum zone_type highest_zoneidx,
983 nodemask_t *nodes)
984 {
985 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
986 return z;
987 return __next_zones_zonelist(z, highest_zoneidx, nodes);
988 }
989
990 /**
991 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
992 * @zonelist - The zonelist to search for a suitable zone
993 * @highest_zoneidx - The zone index of the highest zone to return
994 * @nodes - An optional nodemask to filter the zonelist with
995 * @return - Zoneref pointer for the first suitable zone found (see below)
996 *
997 * This function returns the first zone at or below a given zone index that is
998 * within the allowed nodemask. The zoneref returned is a cursor that can be
999 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1000 * one before calling.
1001 *
1002 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1003 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1004 * update due to cpuset modification.
1005 */
1006 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1007 enum zone_type highest_zoneidx,
1008 nodemask_t *nodes)
1009 {
1010 return next_zones_zonelist(zonelist->_zonerefs,
1011 highest_zoneidx, nodes);
1012 }
1013
1014 /**
1015 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1016 * @zone - The current zone in the iterator
1017 * @z - The current pointer within zonelist->zones being iterated
1018 * @zlist - The zonelist being iterated
1019 * @highidx - The zone index of the highest zone to return
1020 * @nodemask - Nodemask allowed by the allocator
1021 *
1022 * This iterator iterates though all zones at or below a given zone index and
1023 * within a given nodemask
1024 */
1025 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1026 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1027 zone; \
1028 z = next_zones_zonelist(++z, highidx, nodemask), \
1029 zone = zonelist_zone(z))
1030
1031 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1032 for (zone = z->zone; \
1033 zone; \
1034 z = next_zones_zonelist(++z, highidx, nodemask), \
1035 zone = zonelist_zone(z))
1036
1037
1038 /**
1039 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1040 * @zone - The current zone in the iterator
1041 * @z - The current pointer within zonelist->zones being iterated
1042 * @zlist - The zonelist being iterated
1043 * @highidx - The zone index of the highest zone to return
1044 *
1045 * This iterator iterates though all zones at or below a given zone index.
1046 */
1047 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1048 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1049
1050 #ifdef CONFIG_SPARSEMEM
1051 #include <asm/sparsemem.h>
1052 #endif
1053
1054 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1055 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1056 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1057 {
1058 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1059 return 0;
1060 }
1061 #endif
1062
1063 #ifdef CONFIG_FLATMEM
1064 #define pfn_to_nid(pfn) (0)
1065 #endif
1066
1067 #ifdef CONFIG_SPARSEMEM
1068
1069 /*
1070 * SECTION_SHIFT #bits space required to store a section #
1071 *
1072 * PA_SECTION_SHIFT physical address to/from section number
1073 * PFN_SECTION_SHIFT pfn to/from section number
1074 */
1075 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1076 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1077
1078 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1079
1080 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1081 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1082
1083 #define SECTION_BLOCKFLAGS_BITS \
1084 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1085
1086 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1087 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1088 #endif
1089
1090 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1091 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1092
1093 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1094 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1095
1096 struct page;
1097 struct page_ext;
1098 struct mem_section {
1099 /*
1100 * This is, logically, a pointer to an array of struct
1101 * pages. However, it is stored with some other magic.
1102 * (see sparse.c::sparse_init_one_section())
1103 *
1104 * Additionally during early boot we encode node id of
1105 * the location of the section here to guide allocation.
1106 * (see sparse.c::memory_present())
1107 *
1108 * Making it a UL at least makes someone do a cast
1109 * before using it wrong.
1110 */
1111 unsigned long section_mem_map;
1112
1113 /* See declaration of similar field in struct zone */
1114 unsigned long *pageblock_flags;
1115 #ifdef CONFIG_PAGE_EXTENSION
1116 /*
1117 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1118 * section. (see page_ext.h about this.)
1119 */
1120 struct page_ext *page_ext;
1121 unsigned long pad;
1122 #endif
1123 /*
1124 * WARNING: mem_section must be a power-of-2 in size for the
1125 * calculation and use of SECTION_ROOT_MASK to make sense.
1126 */
1127 };
1128
1129 #ifdef CONFIG_SPARSEMEM_EXTREME
1130 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1131 #else
1132 #define SECTIONS_PER_ROOT 1
1133 #endif
1134
1135 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1136 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1137 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1138
1139 #ifdef CONFIG_SPARSEMEM_EXTREME
1140 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1141 #else
1142 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1143 #endif
1144
1145 static inline struct mem_section *__nr_to_section(unsigned long nr)
1146 {
1147 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1148 return NULL;
1149 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1150 }
1151 extern int __section_nr(struct mem_section* ms);
1152 extern unsigned long usemap_size(void);
1153
1154 /*
1155 * We use the lower bits of the mem_map pointer to store
1156 * a little bit of information. There should be at least
1157 * 3 bits here due to 32-bit alignment.
1158 */
1159 #define SECTION_MARKED_PRESENT (1UL<<0)
1160 #define SECTION_HAS_MEM_MAP (1UL<<1)
1161 #define SECTION_IS_ONLINE (1UL<<2)
1162 #define SECTION_MAP_LAST_BIT (1UL<<3)
1163 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1164 #define SECTION_NID_SHIFT 3
1165
1166 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1167 {
1168 unsigned long map = section->section_mem_map;
1169 map &= SECTION_MAP_MASK;
1170 return (struct page *)map;
1171 }
1172
1173 static inline int present_section(struct mem_section *section)
1174 {
1175 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1176 }
1177
1178 static inline int present_section_nr(unsigned long nr)
1179 {
1180 return present_section(__nr_to_section(nr));
1181 }
1182
1183 static inline int valid_section(struct mem_section *section)
1184 {
1185 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1186 }
1187
1188 static inline int valid_section_nr(unsigned long nr)
1189 {
1190 return valid_section(__nr_to_section(nr));
1191 }
1192
1193 static inline int online_section(struct mem_section *section)
1194 {
1195 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1196 }
1197
1198 static inline int online_section_nr(unsigned long nr)
1199 {
1200 return online_section(__nr_to_section(nr));
1201 }
1202
1203 #ifdef CONFIG_MEMORY_HOTPLUG
1204 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1205 #ifdef CONFIG_MEMORY_HOTREMOVE
1206 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1207 #endif
1208 #endif
1209
1210 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1211 {
1212 return __nr_to_section(pfn_to_section_nr(pfn));
1213 }
1214
1215 extern int __highest_present_section_nr;
1216
1217 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1218 static inline int pfn_valid(unsigned long pfn)
1219 {
1220 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1221 return 0;
1222 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1223 }
1224 #endif
1225
1226 static inline int pfn_present(unsigned long pfn)
1227 {
1228 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1229 return 0;
1230 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1231 }
1232
1233 /*
1234 * These are _only_ used during initialisation, therefore they
1235 * can use __initdata ... They could have names to indicate
1236 * this restriction.
1237 */
1238 #ifdef CONFIG_NUMA
1239 #define pfn_to_nid(pfn) \
1240 ({ \
1241 unsigned long __pfn_to_nid_pfn = (pfn); \
1242 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1243 })
1244 #else
1245 #define pfn_to_nid(pfn) (0)
1246 #endif
1247
1248 #define early_pfn_valid(pfn) pfn_valid(pfn)
1249 void sparse_init(void);
1250 #else
1251 #define sparse_init() do {} while (0)
1252 #define sparse_index_init(_sec, _nid) do {} while (0)
1253 #endif /* CONFIG_SPARSEMEM */
1254
1255 /*
1256 * During memory init memblocks map pfns to nids. The search is expensive and
1257 * this caches recent lookups. The implementation of __early_pfn_to_nid
1258 * may treat start/end as pfns or sections.
1259 */
1260 struct mminit_pfnnid_cache {
1261 unsigned long last_start;
1262 unsigned long last_end;
1263 int last_nid;
1264 };
1265
1266 #ifndef early_pfn_valid
1267 #define early_pfn_valid(pfn) (1)
1268 #endif
1269
1270 void memory_present(int nid, unsigned long start, unsigned long end);
1271 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1272
1273 /*
1274 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1275 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1276 * pfn_valid_within() should be used in this case; we optimise this away
1277 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1278 */
1279 #ifdef CONFIG_HOLES_IN_ZONE
1280 #define pfn_valid_within(pfn) pfn_valid(pfn)
1281 #else
1282 #define pfn_valid_within(pfn) (1)
1283 #endif
1284
1285 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1286 /*
1287 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1288 * associated with it or not. This means that a struct page exists for this
1289 * pfn. The caller cannot assume the page is fully initialized in general.
1290 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1291 * will ensure the struct page is fully online and initialized. Special pages
1292 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1293 *
1294 * In FLATMEM, it is expected that holes always have valid memmap as long as
1295 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1296 * that a valid section has a memmap for the entire section.
1297 *
1298 * However, an ARM, and maybe other embedded architectures in the future
1299 * free memmap backing holes to save memory on the assumption the memmap is
1300 * never used. The page_zone linkages are then broken even though pfn_valid()
1301 * returns true. A walker of the full memmap must then do this additional
1302 * check to ensure the memmap they are looking at is sane by making sure
1303 * the zone and PFN linkages are still valid. This is expensive, but walkers
1304 * of the full memmap are extremely rare.
1305 */
1306 bool memmap_valid_within(unsigned long pfn,
1307 struct page *page, struct zone *zone);
1308 #else
1309 static inline bool memmap_valid_within(unsigned long pfn,
1310 struct page *page, struct zone *zone)
1311 {
1312 return true;
1313 }
1314 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1315
1316 #endif /* !__GENERATING_BOUNDS.H */
1317 #endif /* !__ASSEMBLY__ */
1318 #endif /* _LINUX_MMZONE_H */