]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - include/linux/mmzone.h
[PATCH] x86_64: Speed up numa_node_id by putting it directly into the PDA
[mirror_ubuntu-hirsute-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/config.h>
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <asm/atomic.h>
17
18 /* Free memory management - zoned buddy allocator. */
19 #ifndef CONFIG_FORCE_MAX_ZONEORDER
20 #define MAX_ORDER 11
21 #else
22 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
23 #endif
24
25 struct free_area {
26 struct list_head free_list;
27 unsigned long nr_free;
28 };
29
30 struct pglist_data;
31
32 /*
33 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
34 * So add a wild amount of padding here to ensure that they fall into separate
35 * cachelines. There are very few zone structures in the machine, so space
36 * consumption is not a concern here.
37 */
38 #if defined(CONFIG_SMP)
39 struct zone_padding {
40 char x[0];
41 } ____cacheline_maxaligned_in_smp;
42 #define ZONE_PADDING(name) struct zone_padding name;
43 #else
44 #define ZONE_PADDING(name)
45 #endif
46
47 struct per_cpu_pages {
48 int count; /* number of pages in the list */
49 int low; /* low watermark, refill needed */
50 int high; /* high watermark, emptying needed */
51 int batch; /* chunk size for buddy add/remove */
52 struct list_head list; /* the list of pages */
53 };
54
55 struct per_cpu_pageset {
56 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
57 #ifdef CONFIG_NUMA
58 unsigned long numa_hit; /* allocated in intended node */
59 unsigned long numa_miss; /* allocated in non intended node */
60 unsigned long numa_foreign; /* was intended here, hit elsewhere */
61 unsigned long interleave_hit; /* interleaver prefered this zone */
62 unsigned long local_node; /* allocation from local node */
63 unsigned long other_node; /* allocation from other node */
64 #endif
65 } ____cacheline_aligned_in_smp;
66
67 #ifdef CONFIG_NUMA
68 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
69 #else
70 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
71 #endif
72
73 #define ZONE_DMA 0
74 #define ZONE_DMA32 1
75 #define ZONE_NORMAL 2
76 #define ZONE_HIGHMEM 3
77
78 #define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */
79 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
80
81
82 /*
83 * When a memory allocation must conform to specific limitations (such
84 * as being suitable for DMA) the caller will pass in hints to the
85 * allocator in the gfp_mask, in the zone modifier bits. These bits
86 * are used to select a priority ordered list of memory zones which
87 * match the requested limits. GFP_ZONEMASK defines which bits within
88 * the gfp_mask should be considered as zone modifiers. Each valid
89 * combination of the zone modifier bits has a corresponding list
90 * of zones (in node_zonelists). Thus for two zone modifiers there
91 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
92 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
93 * combinations of zone modifiers in "zone modifier space".
94 */
95 #define GFP_ZONEMASK 0x03
96 /*
97 * As an optimisation any zone modifier bits which are only valid when
98 * no other zone modifier bits are set (loners) should be placed in
99 * the highest order bits of this field. This allows us to reduce the
100 * extent of the zonelists thus saving space. For example in the case
101 * of three zone modifier bits, we could require up to eight zonelists.
102 * If the left most zone modifier is a "loner" then the highest valid
103 * zonelist would be four allowing us to allocate only five zonelists.
104 * Use the first form when the left most bit is not a "loner", otherwise
105 * use the second.
106 */
107 /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
108 #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
109
110 /*
111 * On machines where it is needed (eg PCs) we divide physical memory
112 * into multiple physical zones. On a PC we have 4 zones:
113 *
114 * ZONE_DMA < 16 MB ISA DMA capable memory
115 * ZONE_DMA32 0 MB Empty
116 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
117 * ZONE_HIGHMEM > 896 MB only page cache and user processes
118 */
119
120 struct zone {
121 /* Fields commonly accessed by the page allocator */
122 unsigned long free_pages;
123 unsigned long pages_min, pages_low, pages_high;
124 /*
125 * We don't know if the memory that we're going to allocate will be freeable
126 * or/and it will be released eventually, so to avoid totally wasting several
127 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
128 * to run OOM on the lower zones despite there's tons of freeable ram
129 * on the higher zones). This array is recalculated at runtime if the
130 * sysctl_lowmem_reserve_ratio sysctl changes.
131 */
132 unsigned long lowmem_reserve[MAX_NR_ZONES];
133
134 #ifdef CONFIG_NUMA
135 struct per_cpu_pageset *pageset[NR_CPUS];
136 #else
137 struct per_cpu_pageset pageset[NR_CPUS];
138 #endif
139 /*
140 * free areas of different sizes
141 */
142 spinlock_t lock;
143 #ifdef CONFIG_MEMORY_HOTPLUG
144 /* see spanned/present_pages for more description */
145 seqlock_t span_seqlock;
146 #endif
147 struct free_area free_area[MAX_ORDER];
148
149
150 ZONE_PADDING(_pad1_)
151
152 /* Fields commonly accessed by the page reclaim scanner */
153 spinlock_t lru_lock;
154 struct list_head active_list;
155 struct list_head inactive_list;
156 unsigned long nr_scan_active;
157 unsigned long nr_scan_inactive;
158 unsigned long nr_active;
159 unsigned long nr_inactive;
160 unsigned long pages_scanned; /* since last reclaim */
161 int all_unreclaimable; /* All pages pinned */
162
163 /*
164 * Does the allocator try to reclaim pages from the zone as soon
165 * as it fails a watermark_ok() in __alloc_pages?
166 */
167 int reclaim_pages;
168 /* A count of how many reclaimers are scanning this zone */
169 atomic_t reclaim_in_progress;
170
171 /*
172 * prev_priority holds the scanning priority for this zone. It is
173 * defined as the scanning priority at which we achieved our reclaim
174 * target at the previous try_to_free_pages() or balance_pgdat()
175 * invokation.
176 *
177 * We use prev_priority as a measure of how much stress page reclaim is
178 * under - it drives the swappiness decision: whether to unmap mapped
179 * pages.
180 *
181 * temp_priority is used to remember the scanning priority at which
182 * this zone was successfully refilled to free_pages == pages_high.
183 *
184 * Access to both these fields is quite racy even on uniprocessor. But
185 * it is expected to average out OK.
186 */
187 int temp_priority;
188 int prev_priority;
189
190
191 ZONE_PADDING(_pad2_)
192 /* Rarely used or read-mostly fields */
193
194 /*
195 * wait_table -- the array holding the hash table
196 * wait_table_size -- the size of the hash table array
197 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
198 *
199 * The purpose of all these is to keep track of the people
200 * waiting for a page to become available and make them
201 * runnable again when possible. The trouble is that this
202 * consumes a lot of space, especially when so few things
203 * wait on pages at a given time. So instead of using
204 * per-page waitqueues, we use a waitqueue hash table.
205 *
206 * The bucket discipline is to sleep on the same queue when
207 * colliding and wake all in that wait queue when removing.
208 * When something wakes, it must check to be sure its page is
209 * truly available, a la thundering herd. The cost of a
210 * collision is great, but given the expected load of the
211 * table, they should be so rare as to be outweighed by the
212 * benefits from the saved space.
213 *
214 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
215 * primary users of these fields, and in mm/page_alloc.c
216 * free_area_init_core() performs the initialization of them.
217 */
218 wait_queue_head_t * wait_table;
219 unsigned long wait_table_size;
220 unsigned long wait_table_bits;
221
222 /*
223 * Discontig memory support fields.
224 */
225 struct pglist_data *zone_pgdat;
226 struct page *zone_mem_map;
227 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
228 unsigned long zone_start_pfn;
229
230 /*
231 * zone_start_pfn, spanned_pages and present_pages are all
232 * protected by span_seqlock. It is a seqlock because it has
233 * to be read outside of zone->lock, and it is done in the main
234 * allocator path. But, it is written quite infrequently.
235 *
236 * The lock is declared along with zone->lock because it is
237 * frequently read in proximity to zone->lock. It's good to
238 * give them a chance of being in the same cacheline.
239 */
240 unsigned long spanned_pages; /* total size, including holes */
241 unsigned long present_pages; /* amount of memory (excluding holes) */
242
243 /*
244 * rarely used fields:
245 */
246 char *name;
247 } ____cacheline_maxaligned_in_smp;
248
249
250 /*
251 * The "priority" of VM scanning is how much of the queues we will scan in one
252 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
253 * queues ("queue_length >> 12") during an aging round.
254 */
255 #define DEF_PRIORITY 12
256
257 /*
258 * One allocation request operates on a zonelist. A zonelist
259 * is a list of zones, the first one is the 'goal' of the
260 * allocation, the other zones are fallback zones, in decreasing
261 * priority.
262 *
263 * Right now a zonelist takes up less than a cacheline. We never
264 * modify it apart from boot-up, and only a few indices are used,
265 * so despite the zonelist table being relatively big, the cache
266 * footprint of this construct is very small.
267 */
268 struct zonelist {
269 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
270 };
271
272
273 /*
274 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
275 * (mostly NUMA machines?) to denote a higher-level memory zone than the
276 * zone denotes.
277 *
278 * On NUMA machines, each NUMA node would have a pg_data_t to describe
279 * it's memory layout.
280 *
281 * Memory statistics and page replacement data structures are maintained on a
282 * per-zone basis.
283 */
284 struct bootmem_data;
285 typedef struct pglist_data {
286 struct zone node_zones[MAX_NR_ZONES];
287 struct zonelist node_zonelists[GFP_ZONETYPES];
288 int nr_zones;
289 #ifdef CONFIG_FLAT_NODE_MEM_MAP
290 struct page *node_mem_map;
291 #endif
292 struct bootmem_data *bdata;
293 #ifdef CONFIG_MEMORY_HOTPLUG
294 /*
295 * Must be held any time you expect node_start_pfn, node_present_pages
296 * or node_spanned_pages stay constant. Holding this will also
297 * guarantee that any pfn_valid() stays that way.
298 *
299 * Nests above zone->lock and zone->size_seqlock.
300 */
301 spinlock_t node_size_lock;
302 #endif
303 unsigned long node_start_pfn;
304 unsigned long node_present_pages; /* total number of physical pages */
305 unsigned long node_spanned_pages; /* total size of physical page
306 range, including holes */
307 int node_id;
308 struct pglist_data *pgdat_next;
309 wait_queue_head_t kswapd_wait;
310 struct task_struct *kswapd;
311 int kswapd_max_order;
312 } pg_data_t;
313
314 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
315 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
316 #ifdef CONFIG_FLAT_NODE_MEM_MAP
317 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
318 #else
319 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
320 #endif
321 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
322
323 #include <linux/memory_hotplug.h>
324
325 extern struct pglist_data *pgdat_list;
326
327 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
328 unsigned long *free, struct pglist_data *pgdat);
329 void get_zone_counts(unsigned long *active, unsigned long *inactive,
330 unsigned long *free);
331 void build_all_zonelists(void);
332 void wakeup_kswapd(struct zone *zone, int order);
333 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
334 int alloc_type, int can_try_harder, gfp_t gfp_high);
335
336 #ifdef CONFIG_HAVE_MEMORY_PRESENT
337 void memory_present(int nid, unsigned long start, unsigned long end);
338 #else
339 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
340 #endif
341
342 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
343 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
344 #endif
345
346 /*
347 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
348 */
349 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
350
351 /**
352 * for_each_pgdat - helper macro to iterate over all nodes
353 * @pgdat - pointer to a pg_data_t variable
354 *
355 * Meant to help with common loops of the form
356 * pgdat = pgdat_list;
357 * while(pgdat) {
358 * ...
359 * pgdat = pgdat->pgdat_next;
360 * }
361 */
362 #define for_each_pgdat(pgdat) \
363 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
364
365 /*
366 * next_zone - helper magic for for_each_zone()
367 * Thanks to William Lee Irwin III for this piece of ingenuity.
368 */
369 static inline struct zone *next_zone(struct zone *zone)
370 {
371 pg_data_t *pgdat = zone->zone_pgdat;
372
373 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
374 zone++;
375 else if (pgdat->pgdat_next) {
376 pgdat = pgdat->pgdat_next;
377 zone = pgdat->node_zones;
378 } else
379 zone = NULL;
380
381 return zone;
382 }
383
384 /**
385 * for_each_zone - helper macro to iterate over all memory zones
386 * @zone - pointer to struct zone variable
387 *
388 * The user only needs to declare the zone variable, for_each_zone
389 * fills it in. This basically means for_each_zone() is an
390 * easier to read version of this piece of code:
391 *
392 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
393 * for (i = 0; i < MAX_NR_ZONES; ++i) {
394 * struct zone * z = pgdat->node_zones + i;
395 * ...
396 * }
397 * }
398 */
399 #define for_each_zone(zone) \
400 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
401
402 static inline int is_highmem_idx(int idx)
403 {
404 return (idx == ZONE_HIGHMEM);
405 }
406
407 static inline int is_normal_idx(int idx)
408 {
409 return (idx == ZONE_NORMAL);
410 }
411 /**
412 * is_highmem - helper function to quickly check if a struct zone is a
413 * highmem zone or not. This is an attempt to keep references
414 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
415 * @zone - pointer to struct zone variable
416 */
417 static inline int is_highmem(struct zone *zone)
418 {
419 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
420 }
421
422 static inline int is_normal(struct zone *zone)
423 {
424 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
425 }
426
427 /* These two functions are used to setup the per zone pages min values */
428 struct ctl_table;
429 struct file;
430 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
431 void __user *, size_t *, loff_t *);
432 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
433 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
434 void __user *, size_t *, loff_t *);
435
436 #include <linux/topology.h>
437 /* Returns the number of the current Node. */
438 #ifndef numa_node_id
439 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
440 #endif
441
442 #ifndef CONFIG_NEED_MULTIPLE_NODES
443
444 extern struct pglist_data contig_page_data;
445 #define NODE_DATA(nid) (&contig_page_data)
446 #define NODE_MEM_MAP(nid) mem_map
447 #define MAX_NODES_SHIFT 1
448 #define pfn_to_nid(pfn) (0)
449
450 #else /* CONFIG_NEED_MULTIPLE_NODES */
451
452 #include <asm/mmzone.h>
453
454 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
455
456 #ifdef CONFIG_SPARSEMEM
457 #include <asm/sparsemem.h>
458 #endif
459
460 #if BITS_PER_LONG == 32
461 /*
462 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
463 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
464 */
465 #define FLAGS_RESERVED 9
466
467 #elif BITS_PER_LONG == 64
468 /*
469 * with 64 bit flags field, there's plenty of room.
470 */
471 #define FLAGS_RESERVED 32
472
473 #else
474
475 #error BITS_PER_LONG not defined
476
477 #endif
478
479 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
480 #define early_pfn_to_nid(nid) (0UL)
481 #endif
482
483 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
484 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
485
486 #ifdef CONFIG_SPARSEMEM
487
488 /*
489 * SECTION_SHIFT #bits space required to store a section #
490 *
491 * PA_SECTION_SHIFT physical address to/from section number
492 * PFN_SECTION_SHIFT pfn to/from section number
493 */
494 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
495
496 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
497 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
498
499 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
500
501 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
502 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
503
504 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
505 #error Allocator MAX_ORDER exceeds SECTION_SIZE
506 #endif
507
508 struct page;
509 struct mem_section {
510 /*
511 * This is, logically, a pointer to an array of struct
512 * pages. However, it is stored with some other magic.
513 * (see sparse.c::sparse_init_one_section())
514 *
515 * Making it a UL at least makes someone do a cast
516 * before using it wrong.
517 */
518 unsigned long section_mem_map;
519 };
520
521 #ifdef CONFIG_SPARSEMEM_EXTREME
522 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
523 #else
524 #define SECTIONS_PER_ROOT 1
525 #endif
526
527 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
528 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
529 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
530
531 #ifdef CONFIG_SPARSEMEM_EXTREME
532 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
533 #else
534 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
535 #endif
536
537 static inline struct mem_section *__nr_to_section(unsigned long nr)
538 {
539 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
540 return NULL;
541 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
542 }
543 extern int __section_nr(struct mem_section* ms);
544
545 /*
546 * We use the lower bits of the mem_map pointer to store
547 * a little bit of information. There should be at least
548 * 3 bits here due to 32-bit alignment.
549 */
550 #define SECTION_MARKED_PRESENT (1UL<<0)
551 #define SECTION_HAS_MEM_MAP (1UL<<1)
552 #define SECTION_MAP_LAST_BIT (1UL<<2)
553 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
554
555 static inline struct page *__section_mem_map_addr(struct mem_section *section)
556 {
557 unsigned long map = section->section_mem_map;
558 map &= SECTION_MAP_MASK;
559 return (struct page *)map;
560 }
561
562 static inline int valid_section(struct mem_section *section)
563 {
564 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
565 }
566
567 static inline int section_has_mem_map(struct mem_section *section)
568 {
569 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
570 }
571
572 static inline int valid_section_nr(unsigned long nr)
573 {
574 return valid_section(__nr_to_section(nr));
575 }
576
577 /*
578 * Given a kernel address, find the home node of the underlying memory.
579 */
580 #define kvaddr_to_nid(kaddr) pfn_to_nid(__pa(kaddr) >> PAGE_SHIFT)
581
582 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
583 {
584 return __nr_to_section(pfn_to_section_nr(pfn));
585 }
586
587 #define pfn_to_page(pfn) \
588 ({ \
589 unsigned long __pfn = (pfn); \
590 __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \
591 })
592 #define page_to_pfn(page) \
593 ({ \
594 page - __section_mem_map_addr(__nr_to_section( \
595 page_to_section(page))); \
596 })
597
598 static inline int pfn_valid(unsigned long pfn)
599 {
600 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
601 return 0;
602 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
603 }
604
605 /*
606 * These are _only_ used during initialisation, therefore they
607 * can use __initdata ... They could have names to indicate
608 * this restriction.
609 */
610 #ifdef CONFIG_NUMA
611 #define pfn_to_nid early_pfn_to_nid
612 #endif
613
614 #define pfn_to_pgdat(pfn) \
615 ({ \
616 NODE_DATA(pfn_to_nid(pfn)); \
617 })
618
619 #define early_pfn_valid(pfn) pfn_valid(pfn)
620 void sparse_init(void);
621 #else
622 #define sparse_init() do {} while (0)
623 #define sparse_index_init(_sec, _nid) do {} while (0)
624 #endif /* CONFIG_SPARSEMEM */
625
626 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
627 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
628 #else
629 #define early_pfn_in_nid(pfn, nid) (1)
630 #endif
631
632 #ifndef early_pfn_valid
633 #define early_pfn_valid(pfn) (1)
634 #endif
635
636 void memory_present(int nid, unsigned long start, unsigned long end);
637 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
638
639 #endif /* !__ASSEMBLY__ */
640 #endif /* __KERNEL__ */
641 #endif /* _LINUX_MMZONE_H */