]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/mmzone.h
Merge tag 'v4.7-rc1' into patchwork
[mirror_ubuntu-zesty-kernel.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #else
72 # define is_migrate_cma(migratetype) false
73 #endif
74
75 #define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
79 extern int page_group_by_mobility_disabled;
80
81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
84 #define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
88 struct free_area {
89 struct list_head free_list[MIGRATE_TYPES];
90 unsigned long nr_free;
91 };
92
93 struct pglist_data;
94
95 /*
96 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
97 * So add a wild amount of padding here to ensure that they fall into separate
98 * cachelines. There are very few zone structures in the machine, so space
99 * consumption is not a concern here.
100 */
101 #if defined(CONFIG_SMP)
102 struct zone_padding {
103 char x[0];
104 } ____cacheline_internodealigned_in_smp;
105 #define ZONE_PADDING(name) struct zone_padding name;
106 #else
107 #define ZONE_PADDING(name)
108 #endif
109
110 enum zone_stat_item {
111 /* First 128 byte cacheline (assuming 64 bit words) */
112 NR_FREE_PAGES,
113 NR_ALLOC_BATCH,
114 NR_LRU_BASE,
115 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
116 NR_ACTIVE_ANON, /* " " " " " */
117 NR_INACTIVE_FILE, /* " " " " " */
118 NR_ACTIVE_FILE, /* " " " " " */
119 NR_UNEVICTABLE, /* " " " " " */
120 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
121 NR_ANON_PAGES, /* Mapped anonymous pages */
122 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
123 only modified from process context */
124 NR_FILE_PAGES,
125 NR_FILE_DIRTY,
126 NR_WRITEBACK,
127 NR_SLAB_RECLAIMABLE,
128 NR_SLAB_UNRECLAIMABLE,
129 NR_PAGETABLE, /* used for pagetables */
130 NR_KERNEL_STACK,
131 /* Second 128 byte cacheline */
132 NR_UNSTABLE_NFS, /* NFS unstable pages */
133 NR_BOUNCE,
134 NR_VMSCAN_WRITE,
135 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
136 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
137 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
138 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
139 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
140 NR_DIRTIED, /* page dirtyings since bootup */
141 NR_WRITTEN, /* page writings since bootup */
142 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
143 #ifdef CONFIG_NUMA
144 NUMA_HIT, /* allocated in intended node */
145 NUMA_MISS, /* allocated in non intended node */
146 NUMA_FOREIGN, /* was intended here, hit elsewhere */
147 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
148 NUMA_LOCAL, /* allocation from local node */
149 NUMA_OTHER, /* allocation from other node */
150 #endif
151 WORKINGSET_REFAULT,
152 WORKINGSET_ACTIVATE,
153 WORKINGSET_NODERECLAIM,
154 NR_ANON_TRANSPARENT_HUGEPAGES,
155 NR_FREE_CMA_PAGES,
156 NR_VM_ZONE_STAT_ITEMS };
157
158 /*
159 * We do arithmetic on the LRU lists in various places in the code,
160 * so it is important to keep the active lists LRU_ACTIVE higher in
161 * the array than the corresponding inactive lists, and to keep
162 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
163 *
164 * This has to be kept in sync with the statistics in zone_stat_item
165 * above and the descriptions in vmstat_text in mm/vmstat.c
166 */
167 #define LRU_BASE 0
168 #define LRU_ACTIVE 1
169 #define LRU_FILE 2
170
171 enum lru_list {
172 LRU_INACTIVE_ANON = LRU_BASE,
173 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
174 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
175 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
176 LRU_UNEVICTABLE,
177 NR_LRU_LISTS
178 };
179
180 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
181
182 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
183
184 static inline int is_file_lru(enum lru_list lru)
185 {
186 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
187 }
188
189 static inline int is_active_lru(enum lru_list lru)
190 {
191 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
192 }
193
194 struct zone_reclaim_stat {
195 /*
196 * The pageout code in vmscan.c keeps track of how many of the
197 * mem/swap backed and file backed pages are referenced.
198 * The higher the rotated/scanned ratio, the more valuable
199 * that cache is.
200 *
201 * The anon LRU stats live in [0], file LRU stats in [1]
202 */
203 unsigned long recent_rotated[2];
204 unsigned long recent_scanned[2];
205 };
206
207 struct lruvec {
208 struct list_head lists[NR_LRU_LISTS];
209 struct zone_reclaim_stat reclaim_stat;
210 /* Evictions & activations on the inactive file list */
211 atomic_long_t inactive_age;
212 #ifdef CONFIG_MEMCG
213 struct zone *zone;
214 #endif
215 };
216
217 /* Mask used at gathering information at once (see memcontrol.c) */
218 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
219 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
220 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
221
222 /* Isolate clean file */
223 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
224 /* Isolate unmapped file */
225 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
226 /* Isolate for asynchronous migration */
227 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
228 /* Isolate unevictable pages */
229 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
230
231 /* LRU Isolation modes. */
232 typedef unsigned __bitwise__ isolate_mode_t;
233
234 enum zone_watermarks {
235 WMARK_MIN,
236 WMARK_LOW,
237 WMARK_HIGH,
238 NR_WMARK
239 };
240
241 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
242 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
243 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
244
245 struct per_cpu_pages {
246 int count; /* number of pages in the list */
247 int high; /* high watermark, emptying needed */
248 int batch; /* chunk size for buddy add/remove */
249
250 /* Lists of pages, one per migrate type stored on the pcp-lists */
251 struct list_head lists[MIGRATE_PCPTYPES];
252 };
253
254 struct per_cpu_pageset {
255 struct per_cpu_pages pcp;
256 #ifdef CONFIG_NUMA
257 s8 expire;
258 #endif
259 #ifdef CONFIG_SMP
260 s8 stat_threshold;
261 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
262 #endif
263 };
264
265 #endif /* !__GENERATING_BOUNDS.H */
266
267 enum zone_type {
268 #ifdef CONFIG_ZONE_DMA
269 /*
270 * ZONE_DMA is used when there are devices that are not able
271 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
272 * carve out the portion of memory that is needed for these devices.
273 * The range is arch specific.
274 *
275 * Some examples
276 *
277 * Architecture Limit
278 * ---------------------------
279 * parisc, ia64, sparc <4G
280 * s390 <2G
281 * arm Various
282 * alpha Unlimited or 0-16MB.
283 *
284 * i386, x86_64 and multiple other arches
285 * <16M.
286 */
287 ZONE_DMA,
288 #endif
289 #ifdef CONFIG_ZONE_DMA32
290 /*
291 * x86_64 needs two ZONE_DMAs because it supports devices that are
292 * only able to do DMA to the lower 16M but also 32 bit devices that
293 * can only do DMA areas below 4G.
294 */
295 ZONE_DMA32,
296 #endif
297 /*
298 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
299 * performed on pages in ZONE_NORMAL if the DMA devices support
300 * transfers to all addressable memory.
301 */
302 ZONE_NORMAL,
303 #ifdef CONFIG_HIGHMEM
304 /*
305 * A memory area that is only addressable by the kernel through
306 * mapping portions into its own address space. This is for example
307 * used by i386 to allow the kernel to address the memory beyond
308 * 900MB. The kernel will set up special mappings (page
309 * table entries on i386) for each page that the kernel needs to
310 * access.
311 */
312 ZONE_HIGHMEM,
313 #endif
314 ZONE_MOVABLE,
315 #ifdef CONFIG_ZONE_DEVICE
316 ZONE_DEVICE,
317 #endif
318 __MAX_NR_ZONES
319
320 };
321
322 #ifndef __GENERATING_BOUNDS_H
323
324 struct zone {
325 /* Read-mostly fields */
326
327 /* zone watermarks, access with *_wmark_pages(zone) macros */
328 unsigned long watermark[NR_WMARK];
329
330 unsigned long nr_reserved_highatomic;
331
332 /*
333 * We don't know if the memory that we're going to allocate will be
334 * freeable or/and it will be released eventually, so to avoid totally
335 * wasting several GB of ram we must reserve some of the lower zone
336 * memory (otherwise we risk to run OOM on the lower zones despite
337 * there being tons of freeable ram on the higher zones). This array is
338 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
339 * changes.
340 */
341 long lowmem_reserve[MAX_NR_ZONES];
342
343 #ifdef CONFIG_NUMA
344 int node;
345 #endif
346
347 /*
348 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
349 * this zone's LRU. Maintained by the pageout code.
350 */
351 unsigned int inactive_ratio;
352
353 struct pglist_data *zone_pgdat;
354 struct per_cpu_pageset __percpu *pageset;
355
356 /*
357 * This is a per-zone reserve of pages that are not available
358 * to userspace allocations.
359 */
360 unsigned long totalreserve_pages;
361
362 #ifndef CONFIG_SPARSEMEM
363 /*
364 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
365 * In SPARSEMEM, this map is stored in struct mem_section
366 */
367 unsigned long *pageblock_flags;
368 #endif /* CONFIG_SPARSEMEM */
369
370 #ifdef CONFIG_NUMA
371 /*
372 * zone reclaim becomes active if more unmapped pages exist.
373 */
374 unsigned long min_unmapped_pages;
375 unsigned long min_slab_pages;
376 #endif /* CONFIG_NUMA */
377
378 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
379 unsigned long zone_start_pfn;
380
381 /*
382 * spanned_pages is the total pages spanned by the zone, including
383 * holes, which is calculated as:
384 * spanned_pages = zone_end_pfn - zone_start_pfn;
385 *
386 * present_pages is physical pages existing within the zone, which
387 * is calculated as:
388 * present_pages = spanned_pages - absent_pages(pages in holes);
389 *
390 * managed_pages is present pages managed by the buddy system, which
391 * is calculated as (reserved_pages includes pages allocated by the
392 * bootmem allocator):
393 * managed_pages = present_pages - reserved_pages;
394 *
395 * So present_pages may be used by memory hotplug or memory power
396 * management logic to figure out unmanaged pages by checking
397 * (present_pages - managed_pages). And managed_pages should be used
398 * by page allocator and vm scanner to calculate all kinds of watermarks
399 * and thresholds.
400 *
401 * Locking rules:
402 *
403 * zone_start_pfn and spanned_pages are protected by span_seqlock.
404 * It is a seqlock because it has to be read outside of zone->lock,
405 * and it is done in the main allocator path. But, it is written
406 * quite infrequently.
407 *
408 * The span_seq lock is declared along with zone->lock because it is
409 * frequently read in proximity to zone->lock. It's good to
410 * give them a chance of being in the same cacheline.
411 *
412 * Write access to present_pages at runtime should be protected by
413 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
414 * present_pages should get_online_mems() to get a stable value.
415 *
416 * Read access to managed_pages should be safe because it's unsigned
417 * long. Write access to zone->managed_pages and totalram_pages are
418 * protected by managed_page_count_lock at runtime. Idealy only
419 * adjust_managed_page_count() should be used instead of directly
420 * touching zone->managed_pages and totalram_pages.
421 */
422 unsigned long managed_pages;
423 unsigned long spanned_pages;
424 unsigned long present_pages;
425
426 const char *name;
427
428 #ifdef CONFIG_MEMORY_ISOLATION
429 /*
430 * Number of isolated pageblock. It is used to solve incorrect
431 * freepage counting problem due to racy retrieving migratetype
432 * of pageblock. Protected by zone->lock.
433 */
434 unsigned long nr_isolate_pageblock;
435 #endif
436
437 #ifdef CONFIG_MEMORY_HOTPLUG
438 /* see spanned/present_pages for more description */
439 seqlock_t span_seqlock;
440 #endif
441
442 /*
443 * wait_table -- the array holding the hash table
444 * wait_table_hash_nr_entries -- the size of the hash table array
445 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
446 *
447 * The purpose of all these is to keep track of the people
448 * waiting for a page to become available and make them
449 * runnable again when possible. The trouble is that this
450 * consumes a lot of space, especially when so few things
451 * wait on pages at a given time. So instead of using
452 * per-page waitqueues, we use a waitqueue hash table.
453 *
454 * The bucket discipline is to sleep on the same queue when
455 * colliding and wake all in that wait queue when removing.
456 * When something wakes, it must check to be sure its page is
457 * truly available, a la thundering herd. The cost of a
458 * collision is great, but given the expected load of the
459 * table, they should be so rare as to be outweighed by the
460 * benefits from the saved space.
461 *
462 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
463 * primary users of these fields, and in mm/page_alloc.c
464 * free_area_init_core() performs the initialization of them.
465 */
466 wait_queue_head_t *wait_table;
467 unsigned long wait_table_hash_nr_entries;
468 unsigned long wait_table_bits;
469
470 ZONE_PADDING(_pad1_)
471 /* free areas of different sizes */
472 struct free_area free_area[MAX_ORDER];
473
474 /* zone flags, see below */
475 unsigned long flags;
476
477 /* Write-intensive fields used from the page allocator */
478 spinlock_t lock;
479
480 ZONE_PADDING(_pad2_)
481
482 /* Write-intensive fields used by page reclaim */
483
484 /* Fields commonly accessed by the page reclaim scanner */
485 spinlock_t lru_lock;
486 struct lruvec lruvec;
487
488 /*
489 * When free pages are below this point, additional steps are taken
490 * when reading the number of free pages to avoid per-cpu counter
491 * drift allowing watermarks to be breached
492 */
493 unsigned long percpu_drift_mark;
494
495 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
496 /* pfn where compaction free scanner should start */
497 unsigned long compact_cached_free_pfn;
498 /* pfn where async and sync compaction migration scanner should start */
499 unsigned long compact_cached_migrate_pfn[2];
500 #endif
501
502 #ifdef CONFIG_COMPACTION
503 /*
504 * On compaction failure, 1<<compact_defer_shift compactions
505 * are skipped before trying again. The number attempted since
506 * last failure is tracked with compact_considered.
507 */
508 unsigned int compact_considered;
509 unsigned int compact_defer_shift;
510 int compact_order_failed;
511 #endif
512
513 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
514 /* Set to true when the PG_migrate_skip bits should be cleared */
515 bool compact_blockskip_flush;
516 #endif
517
518 bool contiguous;
519
520 ZONE_PADDING(_pad3_)
521 /* Zone statistics */
522 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
523 } ____cacheline_internodealigned_in_smp;
524
525 enum zone_flags {
526 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
527 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
528 ZONE_CONGESTED, /* zone has many dirty pages backed by
529 * a congested BDI
530 */
531 ZONE_DIRTY, /* reclaim scanning has recently found
532 * many dirty file pages at the tail
533 * of the LRU.
534 */
535 ZONE_WRITEBACK, /* reclaim scanning has recently found
536 * many pages under writeback
537 */
538 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
539 };
540
541 static inline unsigned long zone_end_pfn(const struct zone *zone)
542 {
543 return zone->zone_start_pfn + zone->spanned_pages;
544 }
545
546 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
547 {
548 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
549 }
550
551 static inline bool zone_is_initialized(struct zone *zone)
552 {
553 return !!zone->wait_table;
554 }
555
556 static inline bool zone_is_empty(struct zone *zone)
557 {
558 return zone->spanned_pages == 0;
559 }
560
561 /*
562 * The "priority" of VM scanning is how much of the queues we will scan in one
563 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
564 * queues ("queue_length >> 12") during an aging round.
565 */
566 #define DEF_PRIORITY 12
567
568 /* Maximum number of zones on a zonelist */
569 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
570
571 enum {
572 ZONELIST_FALLBACK, /* zonelist with fallback */
573 #ifdef CONFIG_NUMA
574 /*
575 * The NUMA zonelists are doubled because we need zonelists that
576 * restrict the allocations to a single node for __GFP_THISNODE.
577 */
578 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
579 #endif
580 MAX_ZONELISTS
581 };
582
583 /*
584 * This struct contains information about a zone in a zonelist. It is stored
585 * here to avoid dereferences into large structures and lookups of tables
586 */
587 struct zoneref {
588 struct zone *zone; /* Pointer to actual zone */
589 int zone_idx; /* zone_idx(zoneref->zone) */
590 };
591
592 /*
593 * One allocation request operates on a zonelist. A zonelist
594 * is a list of zones, the first one is the 'goal' of the
595 * allocation, the other zones are fallback zones, in decreasing
596 * priority.
597 *
598 * To speed the reading of the zonelist, the zonerefs contain the zone index
599 * of the entry being read. Helper functions to access information given
600 * a struct zoneref are
601 *
602 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
603 * zonelist_zone_idx() - Return the index of the zone for an entry
604 * zonelist_node_idx() - Return the index of the node for an entry
605 */
606 struct zonelist {
607 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
608 };
609
610 #ifndef CONFIG_DISCONTIGMEM
611 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
612 extern struct page *mem_map;
613 #endif
614
615 /*
616 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
617 * (mostly NUMA machines?) to denote a higher-level memory zone than the
618 * zone denotes.
619 *
620 * On NUMA machines, each NUMA node would have a pg_data_t to describe
621 * it's memory layout.
622 *
623 * Memory statistics and page replacement data structures are maintained on a
624 * per-zone basis.
625 */
626 struct bootmem_data;
627 typedef struct pglist_data {
628 struct zone node_zones[MAX_NR_ZONES];
629 struct zonelist node_zonelists[MAX_ZONELISTS];
630 int nr_zones;
631 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
632 struct page *node_mem_map;
633 #ifdef CONFIG_PAGE_EXTENSION
634 struct page_ext *node_page_ext;
635 #endif
636 #endif
637 #ifndef CONFIG_NO_BOOTMEM
638 struct bootmem_data *bdata;
639 #endif
640 #ifdef CONFIG_MEMORY_HOTPLUG
641 /*
642 * Must be held any time you expect node_start_pfn, node_present_pages
643 * or node_spanned_pages stay constant. Holding this will also
644 * guarantee that any pfn_valid() stays that way.
645 *
646 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
647 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
648 *
649 * Nests above zone->lock and zone->span_seqlock
650 */
651 spinlock_t node_size_lock;
652 #endif
653 unsigned long node_start_pfn;
654 unsigned long node_present_pages; /* total number of physical pages */
655 unsigned long node_spanned_pages; /* total size of physical page
656 range, including holes */
657 int node_id;
658 wait_queue_head_t kswapd_wait;
659 wait_queue_head_t pfmemalloc_wait;
660 struct task_struct *kswapd; /* Protected by
661 mem_hotplug_begin/end() */
662 int kswapd_max_order;
663 enum zone_type classzone_idx;
664 #ifdef CONFIG_COMPACTION
665 int kcompactd_max_order;
666 enum zone_type kcompactd_classzone_idx;
667 wait_queue_head_t kcompactd_wait;
668 struct task_struct *kcompactd;
669 #endif
670 #ifdef CONFIG_NUMA_BALANCING
671 /* Lock serializing the migrate rate limiting window */
672 spinlock_t numabalancing_migrate_lock;
673
674 /* Rate limiting time interval */
675 unsigned long numabalancing_migrate_next_window;
676
677 /* Number of pages migrated during the rate limiting time interval */
678 unsigned long numabalancing_migrate_nr_pages;
679 #endif
680
681 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
682 /*
683 * If memory initialisation on large machines is deferred then this
684 * is the first PFN that needs to be initialised.
685 */
686 unsigned long first_deferred_pfn;
687 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
688
689 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
690 spinlock_t split_queue_lock;
691 struct list_head split_queue;
692 unsigned long split_queue_len;
693 #endif
694 } pg_data_t;
695
696 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
697 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
698 #ifdef CONFIG_FLAT_NODE_MEM_MAP
699 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
700 #else
701 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
702 #endif
703 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
704
705 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
706 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
707
708 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
709 {
710 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
711 }
712
713 static inline bool pgdat_is_empty(pg_data_t *pgdat)
714 {
715 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
716 }
717
718 static inline int zone_id(const struct zone *zone)
719 {
720 struct pglist_data *pgdat = zone->zone_pgdat;
721
722 return zone - pgdat->node_zones;
723 }
724
725 #ifdef CONFIG_ZONE_DEVICE
726 static inline bool is_dev_zone(const struct zone *zone)
727 {
728 return zone_id(zone) == ZONE_DEVICE;
729 }
730 #else
731 static inline bool is_dev_zone(const struct zone *zone)
732 {
733 return false;
734 }
735 #endif
736
737 #include <linux/memory_hotplug.h>
738
739 extern struct mutex zonelists_mutex;
740 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
741 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
742 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
743 int classzone_idx, unsigned int alloc_flags,
744 long free_pages);
745 bool zone_watermark_ok(struct zone *z, unsigned int order,
746 unsigned long mark, int classzone_idx,
747 unsigned int alloc_flags);
748 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
749 unsigned long mark, int classzone_idx);
750 enum memmap_context {
751 MEMMAP_EARLY,
752 MEMMAP_HOTPLUG,
753 };
754 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
755 unsigned long size);
756
757 extern void lruvec_init(struct lruvec *lruvec);
758
759 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
760 {
761 #ifdef CONFIG_MEMCG
762 return lruvec->zone;
763 #else
764 return container_of(lruvec, struct zone, lruvec);
765 #endif
766 }
767
768 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
769
770 #ifdef CONFIG_HAVE_MEMORY_PRESENT
771 void memory_present(int nid, unsigned long start, unsigned long end);
772 #else
773 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
774 #endif
775
776 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
777 int local_memory_node(int node_id);
778 #else
779 static inline int local_memory_node(int node_id) { return node_id; };
780 #endif
781
782 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
783 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
784 #endif
785
786 /*
787 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
788 */
789 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
790
791 static inline int populated_zone(struct zone *zone)
792 {
793 return (!!zone->present_pages);
794 }
795
796 extern int movable_zone;
797
798 #ifdef CONFIG_HIGHMEM
799 static inline int zone_movable_is_highmem(void)
800 {
801 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
802 return movable_zone == ZONE_HIGHMEM;
803 #else
804 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
805 #endif
806 }
807 #endif
808
809 static inline int is_highmem_idx(enum zone_type idx)
810 {
811 #ifdef CONFIG_HIGHMEM
812 return (idx == ZONE_HIGHMEM ||
813 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
814 #else
815 return 0;
816 #endif
817 }
818
819 /**
820 * is_highmem - helper function to quickly check if a struct zone is a
821 * highmem zone or not. This is an attempt to keep references
822 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
823 * @zone - pointer to struct zone variable
824 */
825 static inline int is_highmem(struct zone *zone)
826 {
827 #ifdef CONFIG_HIGHMEM
828 return is_highmem_idx(zone_idx(zone));
829 #else
830 return 0;
831 #endif
832 }
833
834 /* These two functions are used to setup the per zone pages min values */
835 struct ctl_table;
836 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
837 void __user *, size_t *, loff_t *);
838 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
839 void __user *, size_t *, loff_t *);
840 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
841 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
842 void __user *, size_t *, loff_t *);
843 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
844 void __user *, size_t *, loff_t *);
845 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
846 void __user *, size_t *, loff_t *);
847 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
848 void __user *, size_t *, loff_t *);
849
850 extern int numa_zonelist_order_handler(struct ctl_table *, int,
851 void __user *, size_t *, loff_t *);
852 extern char numa_zonelist_order[];
853 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
854
855 #ifndef CONFIG_NEED_MULTIPLE_NODES
856
857 extern struct pglist_data contig_page_data;
858 #define NODE_DATA(nid) (&contig_page_data)
859 #define NODE_MEM_MAP(nid) mem_map
860
861 #else /* CONFIG_NEED_MULTIPLE_NODES */
862
863 #include <asm/mmzone.h>
864
865 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
866
867 extern struct pglist_data *first_online_pgdat(void);
868 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
869 extern struct zone *next_zone(struct zone *zone);
870
871 /**
872 * for_each_online_pgdat - helper macro to iterate over all online nodes
873 * @pgdat - pointer to a pg_data_t variable
874 */
875 #define for_each_online_pgdat(pgdat) \
876 for (pgdat = first_online_pgdat(); \
877 pgdat; \
878 pgdat = next_online_pgdat(pgdat))
879 /**
880 * for_each_zone - helper macro to iterate over all memory zones
881 * @zone - pointer to struct zone variable
882 *
883 * The user only needs to declare the zone variable, for_each_zone
884 * fills it in.
885 */
886 #define for_each_zone(zone) \
887 for (zone = (first_online_pgdat())->node_zones; \
888 zone; \
889 zone = next_zone(zone))
890
891 #define for_each_populated_zone(zone) \
892 for (zone = (first_online_pgdat())->node_zones; \
893 zone; \
894 zone = next_zone(zone)) \
895 if (!populated_zone(zone)) \
896 ; /* do nothing */ \
897 else
898
899 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
900 {
901 return zoneref->zone;
902 }
903
904 static inline int zonelist_zone_idx(struct zoneref *zoneref)
905 {
906 return zoneref->zone_idx;
907 }
908
909 static inline int zonelist_node_idx(struct zoneref *zoneref)
910 {
911 #ifdef CONFIG_NUMA
912 /* zone_to_nid not available in this context */
913 return zoneref->zone->node;
914 #else
915 return 0;
916 #endif /* CONFIG_NUMA */
917 }
918
919 struct zoneref *__next_zones_zonelist(struct zoneref *z,
920 enum zone_type highest_zoneidx,
921 nodemask_t *nodes);
922
923 /**
924 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
925 * @z - The cursor used as a starting point for the search
926 * @highest_zoneidx - The zone index of the highest zone to return
927 * @nodes - An optional nodemask to filter the zonelist with
928 *
929 * This function returns the next zone at or below a given zone index that is
930 * within the allowed nodemask using a cursor as the starting point for the
931 * search. The zoneref returned is a cursor that represents the current zone
932 * being examined. It should be advanced by one before calling
933 * next_zones_zonelist again.
934 */
935 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
936 enum zone_type highest_zoneidx,
937 nodemask_t *nodes)
938 {
939 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
940 return z;
941 return __next_zones_zonelist(z, highest_zoneidx, nodes);
942 }
943
944 /**
945 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
946 * @zonelist - The zonelist to search for a suitable zone
947 * @highest_zoneidx - The zone index of the highest zone to return
948 * @nodes - An optional nodemask to filter the zonelist with
949 * @zone - The first suitable zone found is returned via this parameter
950 *
951 * This function returns the first zone at or below a given zone index that is
952 * within the allowed nodemask. The zoneref returned is a cursor that can be
953 * used to iterate the zonelist with next_zones_zonelist by advancing it by
954 * one before calling.
955 */
956 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
957 enum zone_type highest_zoneidx,
958 nodemask_t *nodes)
959 {
960 return next_zones_zonelist(zonelist->_zonerefs,
961 highest_zoneidx, nodes);
962 }
963
964 /**
965 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
966 * @zone - The current zone in the iterator
967 * @z - The current pointer within zonelist->zones being iterated
968 * @zlist - The zonelist being iterated
969 * @highidx - The zone index of the highest zone to return
970 * @nodemask - Nodemask allowed by the allocator
971 *
972 * This iterator iterates though all zones at or below a given zone index and
973 * within a given nodemask
974 */
975 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
976 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
977 zone; \
978 z = next_zones_zonelist(++z, highidx, nodemask), \
979 zone = zonelist_zone(z))
980
981 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
982 for (zone = z->zone; \
983 zone; \
984 z = next_zones_zonelist(++z, highidx, nodemask), \
985 zone = zonelist_zone(z))
986
987
988 /**
989 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
990 * @zone - The current zone in the iterator
991 * @z - The current pointer within zonelist->zones being iterated
992 * @zlist - The zonelist being iterated
993 * @highidx - The zone index of the highest zone to return
994 *
995 * This iterator iterates though all zones at or below a given zone index.
996 */
997 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
998 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
999
1000 #ifdef CONFIG_SPARSEMEM
1001 #include <asm/sparsemem.h>
1002 #endif
1003
1004 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1005 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1006 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1007 {
1008 return 0;
1009 }
1010 #endif
1011
1012 #ifdef CONFIG_FLATMEM
1013 #define pfn_to_nid(pfn) (0)
1014 #endif
1015
1016 #ifdef CONFIG_SPARSEMEM
1017
1018 /*
1019 * SECTION_SHIFT #bits space required to store a section #
1020 *
1021 * PA_SECTION_SHIFT physical address to/from section number
1022 * PFN_SECTION_SHIFT pfn to/from section number
1023 */
1024 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1025 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1026
1027 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1028
1029 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1030 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1031
1032 #define SECTION_BLOCKFLAGS_BITS \
1033 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1034
1035 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1036 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1037 #endif
1038
1039 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1040 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1041
1042 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1043 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1044
1045 struct page;
1046 struct page_ext;
1047 struct mem_section {
1048 /*
1049 * This is, logically, a pointer to an array of struct
1050 * pages. However, it is stored with some other magic.
1051 * (see sparse.c::sparse_init_one_section())
1052 *
1053 * Additionally during early boot we encode node id of
1054 * the location of the section here to guide allocation.
1055 * (see sparse.c::memory_present())
1056 *
1057 * Making it a UL at least makes someone do a cast
1058 * before using it wrong.
1059 */
1060 unsigned long section_mem_map;
1061
1062 /* See declaration of similar field in struct zone */
1063 unsigned long *pageblock_flags;
1064 #ifdef CONFIG_PAGE_EXTENSION
1065 /*
1066 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1067 * section. (see page_ext.h about this.)
1068 */
1069 struct page_ext *page_ext;
1070 unsigned long pad;
1071 #endif
1072 /*
1073 * WARNING: mem_section must be a power-of-2 in size for the
1074 * calculation and use of SECTION_ROOT_MASK to make sense.
1075 */
1076 };
1077
1078 #ifdef CONFIG_SPARSEMEM_EXTREME
1079 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1080 #else
1081 #define SECTIONS_PER_ROOT 1
1082 #endif
1083
1084 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1085 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1086 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1087
1088 #ifdef CONFIG_SPARSEMEM_EXTREME
1089 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1090 #else
1091 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1092 #endif
1093
1094 static inline struct mem_section *__nr_to_section(unsigned long nr)
1095 {
1096 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1097 return NULL;
1098 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1099 }
1100 extern int __section_nr(struct mem_section* ms);
1101 extern unsigned long usemap_size(void);
1102
1103 /*
1104 * We use the lower bits of the mem_map pointer to store
1105 * a little bit of information. There should be at least
1106 * 3 bits here due to 32-bit alignment.
1107 */
1108 #define SECTION_MARKED_PRESENT (1UL<<0)
1109 #define SECTION_HAS_MEM_MAP (1UL<<1)
1110 #define SECTION_MAP_LAST_BIT (1UL<<2)
1111 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1112 #define SECTION_NID_SHIFT 2
1113
1114 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1115 {
1116 unsigned long map = section->section_mem_map;
1117 map &= SECTION_MAP_MASK;
1118 return (struct page *)map;
1119 }
1120
1121 static inline int present_section(struct mem_section *section)
1122 {
1123 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1124 }
1125
1126 static inline int present_section_nr(unsigned long nr)
1127 {
1128 return present_section(__nr_to_section(nr));
1129 }
1130
1131 static inline int valid_section(struct mem_section *section)
1132 {
1133 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1134 }
1135
1136 static inline int valid_section_nr(unsigned long nr)
1137 {
1138 return valid_section(__nr_to_section(nr));
1139 }
1140
1141 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1142 {
1143 return __nr_to_section(pfn_to_section_nr(pfn));
1144 }
1145
1146 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1147 static inline int pfn_valid(unsigned long pfn)
1148 {
1149 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1150 return 0;
1151 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1152 }
1153 #endif
1154
1155 static inline int pfn_present(unsigned long pfn)
1156 {
1157 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1158 return 0;
1159 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1160 }
1161
1162 /*
1163 * These are _only_ used during initialisation, therefore they
1164 * can use __initdata ... They could have names to indicate
1165 * this restriction.
1166 */
1167 #ifdef CONFIG_NUMA
1168 #define pfn_to_nid(pfn) \
1169 ({ \
1170 unsigned long __pfn_to_nid_pfn = (pfn); \
1171 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1172 })
1173 #else
1174 #define pfn_to_nid(pfn) (0)
1175 #endif
1176
1177 #define early_pfn_valid(pfn) pfn_valid(pfn)
1178 void sparse_init(void);
1179 #else
1180 #define sparse_init() do {} while (0)
1181 #define sparse_index_init(_sec, _nid) do {} while (0)
1182 #endif /* CONFIG_SPARSEMEM */
1183
1184 /*
1185 * During memory init memblocks map pfns to nids. The search is expensive and
1186 * this caches recent lookups. The implementation of __early_pfn_to_nid
1187 * may treat start/end as pfns or sections.
1188 */
1189 struct mminit_pfnnid_cache {
1190 unsigned long last_start;
1191 unsigned long last_end;
1192 int last_nid;
1193 };
1194
1195 #ifndef early_pfn_valid
1196 #define early_pfn_valid(pfn) (1)
1197 #endif
1198
1199 void memory_present(int nid, unsigned long start, unsigned long end);
1200 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1201
1202 /*
1203 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1204 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1205 * pfn_valid_within() should be used in this case; we optimise this away
1206 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1207 */
1208 #ifdef CONFIG_HOLES_IN_ZONE
1209 #define pfn_valid_within(pfn) pfn_valid(pfn)
1210 #else
1211 #define pfn_valid_within(pfn) (1)
1212 #endif
1213
1214 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1215 /*
1216 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1217 * associated with it or not. In FLATMEM, it is expected that holes always
1218 * have valid memmap as long as there is valid PFNs either side of the hole.
1219 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1220 * entire section.
1221 *
1222 * However, an ARM, and maybe other embedded architectures in the future
1223 * free memmap backing holes to save memory on the assumption the memmap is
1224 * never used. The page_zone linkages are then broken even though pfn_valid()
1225 * returns true. A walker of the full memmap must then do this additional
1226 * check to ensure the memmap they are looking at is sane by making sure
1227 * the zone and PFN linkages are still valid. This is expensive, but walkers
1228 * of the full memmap are extremely rare.
1229 */
1230 bool memmap_valid_within(unsigned long pfn,
1231 struct page *page, struct zone *zone);
1232 #else
1233 static inline bool memmap_valid_within(unsigned long pfn,
1234 struct page *page, struct zone *zone)
1235 {
1236 return true;
1237 }
1238 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1239
1240 #endif /* !__GENERATING_BOUNDS.H */
1241 #endif /* !__ASSEMBLY__ */
1242 #endif /* _LINUX_MMZONE_H */